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at.

N
axi = F (x;‘,w,) dt + aT\I/V S eMr (X,7w,,X{7w/) dt + v20dB..
j=1
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Jim_ piN = pPk vk € NVt > 0, if true for t = 0,
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e Energy/Entropy estimates (Serfaty, Jabin-Wang...) : Consider a
"good" quantity (energy, relative entropy), and prove it is decreasing.

® BBGKY hierarchies (Lacker, Han, Bresch-Jabin-Soler...) : The joint
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find interesting bounds iteratively on the relative entropy or other.

® Tightness/Compactness (Rogers-Shi, Cépa-Lépingle,
Fournier-Hauray-Mischler...) : Prove tightness of the sequence of
measures and uniqueness of the limit.

® Weak norm and Lions derivative calculus (Delarue-Tse,
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Problem : Not uniform in time!
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Three behaviors

e When any of the particle ventures at infinity (i.e | X;| or | V;| becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,

= use a Lyapunov function (i.e H such that $EH < B — vEH).

e When the particles are near the space
{(X['N,)_([, Vi, \7{) eRY XN _ X+ VIN _ Vi = o} ,

the L' distance will naturally contract,
= use a synchronous coupling.

e Otherwise, the particles are in a compact set,
= use a reflection coupling.
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Coupling

We consider the following coupling

dXi = Vidt

dVi = —Vidt - VU (X]) dt — VW = it (X{) dt + v2rc (Z], W) dB}>'
+v2sc (Z{, W) dB*'

fit = L (X})

axiN = viNat

dV’ N=—ViNdt — vUXM)at — & SN YWY — XPN)dt
2 (rc (Zi, W) (/d 2elel T)dBt’C” +sc(Z, Wi)d f‘*") ,

with
rc® + sc® =1,
3

re(z,w)=0if|z+w| < Zoralz|+|z+ w| > R + &,

re(z,w)=1if|z+w| > ¢and o|z| + |z + w| < Ry.
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Define, for f a well chosen concave function and H a Lyapunov function

i i,N i i,N i i,N i7i

re=al Xyt = X+ XU - X+ Vet =V,
Langevin diffusion 1 N
Extension to other i vi i i i
po=x > (i) (14 eH (X W) + eHOGN, V)
Remarks on the N i1
method =

N . .
DILLANTY

2\
2\

2D vortex model

3 ( )
yson Brownian A
motion e
E— =N Z f (r,) G
i=1
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Main result

Theorem (Guillin-LB-Monmarché ('22))

Letc® > 0anda> 0. Let U € C' (RY) satisfy the previous assumption.
There is an explicit ¢ > 0 such that, for all W € C' (R?) satisfying

Lw < ¢, there exist explicit By, B, > 0, such that for all probability

measures vy on R?® (under some initial moment assumption depending
onC® and a) and for all t > 0,

kB kB.
KN Sok) o KB 2 (kN —ok) o KB2
W1 (V[ s Ut ) > \/N’ WQ (Vt y Ut ) = \/N’
for all k € N, where v°" is the marginal distribution at time t of the first k
particles (X!, Vi), ..., (X{, V{)) of an N particle system (PS) with initial

distribution ()N, while o is the probability densities of (NL) with initial
distribution vq.
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coupling
Contraction :

e Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory
Relat. Fields (2016)

e Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative
contraction rates for Langevin dynamics. Ann. Probab. (2019)

e Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Quantitative Harris-type theorems for
diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc.(2019)

Propagation of chaos :

e Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. An elementary
approach to uniform in time propagation of chaos. Proc. Amer. Math. Soc. (2020)

e Arnaud Guillin, Pierre Le Bris, and Pierre Monmarché. Convergence rates for the
Viasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex
cases. Electron. J. Probab. (2022)

e Katharina Schuh. Global contractivity for Langevin dynamics with distribution-dependent
forces and uniform in time propagation of chaos. arXiv preprint arXiv :2206.03082 (2022)
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FitzHugh-Nagumo model

Show uniform in time propagation of chaos of

N = (XM = () = O = a)at+ § T K2 - 2T
FoxdB o .
dCN = (v XN = N + B)at + § SN Ke(ZN — ZPY) + ocdBy,

towards

dXt ( — ()‘g)a — ét — Oz)dt + K)i * ﬁt(Z)dt -l— O'de?(
dCi = (vX; — Ct + B)dt + K¢ * ir(Z)dt + ocdB?,

where we allow either ox or o¢ to be equal to 0.

Reference :

o Laetitia Colombani and Pierre Le Bris. Chaos propagation in mean field networks of
FitzHugh-Nagumo neurons. arXiv preprint arXiv :2206.13291 (2022)
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axi = F (x;’,w,-) WN Z eMr (X,’,w,-,x{,w,-) dt + v20dB,

Extension to other
models where

Remarks on the

e o (M= (6},7))1_’1,6{1"“7N}, " € {0,1} : graph,
® {wi}tieq1,...,ny - environmental disorder,

‘ ® (an)n>1 :scaling,

ol e F:RYx X +— RY: outside force,

r: (R x X) — RY : interaction
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In a graph-2

Assuming there is p € [0, 1]

(N)
sup  |an—— —p| =220,
ie{1,...,N} N N—oo

uniform in time propagation of chaos towards

I

axy =F (__,“’,w) At +p fro, T (X, w, y,@) pe(dy, d@)dt + V20 dB;,
pt = LaW(th7w)
Reference :

e Pierre Le Bris and Christophe Poquet. A note on uniform in time propagation of chaos in
graphs, in preparation (2022).

e Sylvain Delattre, Giambattista Giacomin, and Eric Lugon. A note on dynamical models on
randomgraphs and Fokker-Planck equations, J. Stat. Phys. (2016).
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Some remarks on the method

Pros :

o Quantitative,

e Yields/Uses a probabilistic
understanding of the result,

o "Quite" robust...

Cons:

e Not sharp in N (cf. Lacker),

e So far, restricted to "nice"
interactions...
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where p is the local pressure.
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Consider the 2D incompressible Navier-Stokes system on u € R?

QU=—u-Vu—Vp+Au

e V- u=0,
where p is the local pressure. Taking the curl of the equation above, we
get that w(t, x) = V x u(t, x) satisfies

éi‘v?:fom:dej Ow=-V-((K*xw)w) + Aw.

Closing remarks



Some recent
results in Prop. of
Chaos

Pierre Le Bris

Motivation

Propagation of chaos

Some methods

Langevin diffusion

to othel

2D vortex model

Dyson Brownian
motion

Closing remarks

The 2D vortex model

The Biot-Savart kernel, defined in R? by

1 x* 1 Xo X
K = —_—— 0 — —_——_— — .
0= g i = 2 (o i)
Consider the 2D incompressible Navier-Stokes system on u € R?

ou=—u-Vu—Vp+ Au
V- u=0,

where p is the local pressure. Taking the curl of the equation above, we
get that w(t, x) = V x u(t, x) satisfies

Ow = -V - (K *xw)w) + Aw.
N-particle system on the torus T¢

N
i i, 1 i j
dX; = v2dB, + N ; K(X{ — X])at.
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Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants Cy and C, such that for all N € N, all exchangeable probability
density p and all t > 0

_ _ C
Hu(pr, pt') < 91 (Hw(pévmév) + ﬁ)
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Results

Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants Cy and C, such that for all N € N, all exchangeable probability
density p and all t > 0

_ _ C
Hu(pr, pt') < 91 (HN(PQI7PSV) + ﬁ)

Theorem (Guillin-LB-Monmarché ('21))
Under some assumptions (satisfied by the Biot-Savart kernel) there are

constants Cy, C, and Cs such that for all N € N, all exchangeable
probability density p and all t > 0

Gs

Hupt' 7)< Cre™ = Hu(po . 70) + o
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Various distances

For x = (X)icp,my € T, we write 7(x) = & SV, &y, the associated
empirical measure.
Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that py = py, there is a constant C such that for all k < N € N
andallt > 0,

~ _ N
It = s+ e () < ¢ (| )

1
2

and
E v We(m(X), pr)) < Ca(N)

where a(N) = N~"/2In(1 + N) ifd =2 and a(N) = N="/9 ifd > 2.
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Some references on 2D vortex
model

e Pierre-Emmanuel Jabin and Zhenfu Wang. Quantitative estimates of propagation of chaos
for stochastic systems with w=">° kernels. Invent. Math., (2018)

e Arnaud Guillin, Pierre Le Bris, and Pierre Monmarché. Uniform in time propagation of chaos
for the 2D vortex model and other singular stochastic systems. arXiv preprint
arXiv :2108.08675 (2021)

o Nicolas Fournier, Maxime Hauray, and Stéphane Mischler. Propagation of chaos for the 2D
viscous vortex model. J. Eur. Math. Soc. (JEMS), (2014)

e Matthew Rosenzweig and Sylvia Serfaty. Global-in-time mean-field convergence for singular
Riesz-type diffusive flows. arXiv preprint arXiv :2108.09878 (2021)



Some recent
results in Prop. of
Chaos

Pierre Le Bris

. Introduction
Motivation
Propagation of chaos
Some methods

1. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion
Extension to other
models

Remarks on the
method

1ll. Singular
kernels : entropy
method or
Cauchy-type
method

2D vortex model
Dyson Brownian
motion

Closing remarks

Step one : Time evolution of the
relative entropy

We write

_ 1
Hn(t) = Hn(pt,pt) . In(t) = N Z /]I‘dN d

N

Pt

Vy; log =
R

2
axM.



Some recent
results in Prop. of
Chaos

Pierre Le Bris

Motivation
Propagation of chaos

Some methods

Langevin diffusion

Extension to other
models

Remarks on the
method

2D vortex model

Dyson Brownian
motion

Closing remarks

Step one : Time evolution of the
relative entropy

We write

2
- 1
Halt) = Huol71), Tu(®) = 3 [ o ox"
i T

N

Pt

Vy; log =
R

It can be shown that

d

EHNU) =—1In(1)

1 _ _
i 2 [P (K= ) — K ) - Vi log X!
— JT
1]

1 . . _
s /WN oV (div K(xi — x;) — div K * 5i(x;)) dX".
)
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We are left with

gH/\/(f) = —1In(1)

dt
1 _
Sy /TdN AN (K(x5 = x) = K % p(x)) - Vi log X",
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Idea : Use the regularity of p to deal with the singularity of K
Remark : Notice that, for the Biot-Savart kernel on the whole space R?

1 x+t

K(x) = EW’

we have K = V - V with
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Theorem (Jabin-Wang ’18)

Consider any probability measure . on T? and ¢ € L=(T9 x T9) with

o 2 4 Il sup, [&(-, 2)|Il oy \ 2
= (1600 +36e) (z;,? 5 ) <1.

Assume that ¢ satisfies the following cancellations
vzet’, [ otz =0~ [ oz ud).
Td Td

Then, for all N € N,

/ exp( qu(x,,x,) ®NdXN§%<oo‘

ij=1
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Forallt > 0,

d

Hn(t) < C (’HN(I‘) + %) _ %ZN(I‘),

with
C = CilIV2hillios |V oo A + Col| VI[Fe X202 (| V | E

where Ci, C, are universal constants.
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A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant CL°,
then for all N > 0, v®N satisfies a LS| with constant CL°

Lemma (Perturbation)
If v is a probability measure on T satisfying a LS| with constant CL°,
and . is a probability measure with density h with respect to v such that,
for some constant A > 0, % < h < ), then u satisfies a LSI with constant
CLS _ )\2 CLS

(T v -

Lemma (LSI for the uniform distribution)
The uniform distribution u on T satisfies a LSI with constant 31?

Forall N € N, t > 0 and all probability density jy € C3%(T),

2 N 2
_N A% KN N
o (e 1) < g O [ Vi log 25| aX
i=1
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Justifying the calculations
e e Thereis A > 1 such that g, € C°(T°)

= p e C(RY x TY) (Ben-Artzi '94)
o PN e CP(RT x TW) (?227?)
Dealing with the terms

e In the sense of distributions, V- K = 0.
2D vortex model e There is a matrix field V € L> suchthat K =V - V, i.e for

Dyson Brownian

1<a<d Ka=3Y9_,05Vas (Phuc-Torres '08).
- Uniformity in time

e Foralln>1, CY:= ||V < o0

e ||K]||;1 < oo (also used to show regularity).
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Step five : Conclusion

There are constants Cy, C5°, C3 > 0 and a function t — Cy(t) > 0 with
fot Co(s)ds < Cs° forall t > 0 such that forall t > 0

%HN(t) < —(Cy — Cao(t))Hn(t) + %

Multiplying by exp(Cit — fO’ C»(s)ds) and integrating in time we get

Ha(t) < o Cit+f{ Ca(s)92,,,(0) + % /’ gC1(s—0+[{ Ca(u)a g
0

cso oyt G o

e Hn(t) + 7C1Ne ,

IA

which concludes.
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dimension 1
1D N-particle system in mean field interaction

dX; = /2ondB} — U'(X!)dt — ZV X — X{)at,
/#l

where
e gy diffusion coefficient,
e (B'); independent Brownian motions,

e U confining potential such that either U’ is Lipschitz continuous or
U'(x) = Xx,
® Ja >0, Vx e R*, V'(x)=—

_Xx
|x\‘l+1 .

Motivation : The (generalized) Dyson Brownian motion

i 20’ i i 1 1
ax; = ,/WdB,fothNZX det

#i
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Let ( uN )nen be any sequence of independent empirical measures, such
that Y is the empirical measure of the N particle system at time t. Then
(forx>0,a=1,U(x)=Xxandoy = 1N), we have for all t > 0 and all
N,M > 1

E (Wz (uﬁvwﬁw)z) <e Mg (Wz (MS',MS")Z) + WCM

Remark : The same result holds...
e for U = 0, but no longer uniform in time,
e for a € [1,2[, with rate N*Z_Ta,
e for U’ only Lipschitz continuous, but no longer uniform in time,
e for the supremum, but no longer uniform in time.
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Using independence, this implies that there exists a (deterministic) p:
such that

S E (Wa(uf', 2)°) =0,

which satisfies, for all functions f "sufficiently nice" and vt > 0,

/fX)pz dax) = /f )po(dx) — //f ps(dx)ds

2D vortex model

(Fx) = F))x—y) -
/ / / DX V) 5(dx)s( cly ) .
Closing remarks {x#y} |X y|
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Proof of the estimate

For two sets of points (X/)ic(1,....n3 @nd (¥))jeqa,...,ny, With x1 <. <Xy
and y1 < ... < yn, and two measures p = %Z, 5X, andv = Z dy; -

1
Wa () = 15 3 b= il
i

Let
—oo <X ==X << XM = = XM < o
—oo <Y ==Y < <YMV oy
Thus
1 M 1 NM N
M . _ ' N _ .
H' = i 0w = g 20k andaf = Z N —NMZ5Y'
i=1 i=1 i=1
and

2 4 M 12
Wa (H;V’H;w) = NM Z ’th -Y
i=1
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2 11
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Xy - v'(vi - )
)- (4-)
) - ().

x1) 7V(Y7Y/>(<X7Y
(

xtension r — 4 i 7] i 7l
Em‘:c;o to othe _Z(V (X X —V(Y —Y ) (
Remarks on the i>j
method . . . .
> 3 ve-x(X-x)+ > Vi =y (YY)
i>jstyi=vl i>jstXi=xI
S S S
2D vortex model tV’ Y/ et il
Dyson Brownian i>]s. 1> st Xp=X
motion
L MM, NN
2 2 ’

Hence

E <W2 (u{",u?”f) < e Mg (Wz (u@'»ué”)z) + Nf/\//'



Some recent
results in Prop. of
Chaos

Pierre Le Bris

Motivation

Propagation of chaos

Some methods

Langevin diffusion

Extension to other
models

Remarks on the
method

2D vortex model
Dyson Brownian
motion

Closing remarks

Closing remarks and remaining
problems

The most exciting recent results concerning quantitative
propagation of chaos for singular kernels use "PDE methods"
(Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...



Some recent
results in Prop. of

Closing remarks and remaining
problems

Motivation
Propagation of chaos

Some methods

® The most exciting recent results concerning quantitative
propagation of chaos for singular kernels use "PDE methods"
(Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...

e Can we make these estimates uniform in time (cf
Rosenzweig-Serfaty, Chodron de Courcel-Rosenzweig-Serfaty...)?

2D vortex model

Dyson Brownian
motion

Closing remarks



Some recent
results in Prop. of

Closing remarks and remaining
problems

Motivation
Propagation of chaos

Some methods

® The most exciting recent results concerning quantitative
propagation of chaos for singular kernels use "PDE methods"
(Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...

e Can we make these estimates uniform in time (cf
Rosenzweig-Serfaty, Chodron de Courcel-Rosenzweig-Serfaty...)?

e Can we give probabilistic proofs of similar results ?

2D vortex model

Dyson Brownian
motion

Closing remarks



Some recent
results in Prop. of
Chaos

Pierre Le Bris

Motivation

Propagation of chaos

Some methods

2D vortex model

Dyson Brownian
motion

Closing remarks

Closing remarks and remaining
problems

The most exciting recent results concerning quantitative
propagation of chaos for singular kernels use "PDE methods"
(Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...

Can we make these estimates uniform in time (cf
Rosenzweig-Serfaty, Chodron de Courcel-Rosenzweig-Serfaty...)?

Can we give probabilistic proofs of similar results ?
Can we obtain a sharp rate of convergence a la Lacker ?



Some recent
results in Prop. of

Closing remarks and remaining
problems

Motivation
Propagation of chaos

Some methods

® The most exciting recent results concerning quantitative
B propagation of chaos for singular kernels use "PDE methods"
Exensionto i (Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...

e Can we make these estimates uniform in time (cf
Rosenzweig-Serfaty, Chodron de Courcel-Rosenzweig-Serfaty...)?

e Can we give probabilistic proofs of similar results ?

SRS e Can we obtain a sharp rate of convergence a la Lacker ?

motion
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* Ongoing work : Minibatching, Propagation of chaos and
Metastability.
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