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General setting

Consider the N-particle system in mean-field interaction

dX i
t =
√

2σdB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt , i ∈ {1, ...,N}.

where K is an interaction kernel.

Question : What happens when N →∞?

In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.
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Formal limit of SDE

N-particle system in a space X

dX i
t =
√

2σdB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt .

Limit as N goes to infinity?
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Formal limit of SDE

N-particle system in a space X

dX i
t =
√

2σdB i
t + K ∗ µN

t (X i
t )dt ,

µN
t :=

1
N

N∑
i=1

δX i
t
.

Limit as N goes to infinity?
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1
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Limit as N goes to infinity? Formally{
dX̄t =

√
2σdBt + K ∗ ρ̄t (X̄t )dt ,

ρ̄t = Law(X̄t ).
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Formal limit of SDE

N-particle system in a space X

dX i
t =
√

2σdB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt . (PS)

Limit as N goes to infinity? Formally{
dX̄t =

√
2σdBt + K ∗ ρ̄t (X̄t )dt ,

ρ̄t = Law(X̄t ).
(NL)
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Fokker-Planck equations

For the particle system

dX i
t =
√

2σdB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt

←→

∂tρ
N
t = −

N∑
i=1

∇xi ·

 1
N

N∑
j=1

K (xi − xj )

 ρN
t

+ σ

N∑
i=1

∆xiρ
N
t .

For the non linear equation{
dX̄t =

√
2σdBt + K ∗ ρ̄t (X̄t )dt ,

ρ̄t = Law(X̄t ).
←→ ∂t ρ̄t = −∇ · (ρ̄t (K ∗ ρ̄t )) + σ∆ρ̄t .
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Several variations
Kinetic setting/Degenerate noise in a non-convex confining
potential{

dX i
t = V i

t dt
dV i

t =
√

2σdB i
t − V i

t dt −∇U(X i
t )dt − 1

N

∑N
j=1∇W (X i

t − X j
t )dt .

Singular interactions

(dim=2) dX i
t =
√

2σdB i
t +

1
N

∑
j 6=i

K (X i
t − X j

t )dt , K (x) =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)

(dim=1) dX i
t =

√
2σ
N

dBi
t − λX i

t dt +
1
N

∑
j 6=i

X i
t − X j

t∣∣∣X i
t − X j

t

∣∣∣α+1 dt .

"Incomplete" interactions

dX i
t = F

(
X i

t , ωi

)
dt +

αN

N

N∑
j=1

ξ
(N)
i,j Γ

(
X i

t , ωi ,X j
t , ωj

)
dt +

√
2σdB i

t .
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Propagation of chaos

In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.

We denote, for any k ≤ N

ρk,N
t (x1, .., xk ) =

∫
XN−k

ρN
t (x1, .., xN)dxk+1...dxN

Usual result : "Chaos" at time zero propagates over time

lim
N→∞

ρk,N
t = ρ̄⊗k

t , ∀k ∈ N,∀t ≥ 0, if true for t = 0,

or, equivalently, "µN
t := 1

N

∑N
i=1 δX i

t
→ ρ̄t ".
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Usual (or current) methods

Goal : Show µN
t → ρ̄t or ρk,N

t → ρ̄⊗k
t as N →∞, if possible uniformly in t .

Some methods :
• Coupling methods (McKean, Sznitman, Eberle...) :
Wp (µ, ν)p = infX∼µ,Y∼ν E (|X − Y |p) . ShowWp

(
ρk,N

t , ρ̄⊗k
t

)
→ 0.

• Energy/Entropy estimates (Serfaty, Jabin-Wang...) : Consider a
"good" quantity (energy, relative entropy), and prove it is decreasing.

• BBGKY hierarchies (Lacker, Han, Bresch-Jabin-Soler...) : The joint
law of k particles depends on the joint law of k + 1 particles, thus
find interesting bounds iteratively on the relative entropy or other.

• Tightness/Compactness (Rogers-Shi, Cépa-Lépingle,
Fournier-Hauray-Mischler...) : Prove tightness of the sequence of
measures and uniqueness of the limit.

• Weak norm and Lions derivative calculus (Delarue-Tse,
Chassagneux, Szpruch...)
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Usual (or current) methods

Goal : Show µN
t → ρ̄t or ρk,N

t → ρ̄⊗k
t as N →∞, if possible uniformly in t .

Some methods :
• Coupling methods (McKean, Sznitman, Eberle...) :
Wp (µ, ν)p = infX∼µ,Y∼ν E (|X − Y |p) . ShowWp

(
ρk,N

t , ρ̄⊗k
t

)
→ 0.

• Energy/Entropy estimates (Serfaty, Jabin-Wang...) : Consider a
"good" quantity (energy, relative entropy), and prove it is decreasing.

• BBGKY hierarchies (Lacker, Han, Bresch-Jabin-Soler...) : The joint
law of k particles depends on the joint law of k + 1 particles, thus
find interesting bounds iteratively on the relative entropy or other.

• Tightness/Compactness (Rogers-Shi, Cépa-Lépingle,
Fournier-Hauray-Mischler...) : Prove tightness of the sequence of
measures and uniqueness of the limit.

• Weak norm and Lions derivative calculus (Delarue-Tse,
Chassagneux, Szpruch...)
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II. Coupling methods : kinetic setting or
incomplete interactions
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Synchronous coupling


dX i

t = 1
N

∑N
j=1 K (X i

t − X j
t )dt +

√
2σdB i

t ,

dX̄ i
t = K ∗ ρ̄t (X̄ i

t )dt +
√

2σdB i
t ,

ρ̄t = Law(X̄t ).

Thus, for all i ∈ {1, ...,N}

d |X i
t − X̄ i

t | = Atdt ,

with
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j=1 K (X i

t − X j
t )dt +

√
2σdB i

t ,

dX̄ i
t = K ∗ ρ̄t (X̄ i

t )dt +
√

2σdB i
t ,

ρ̄t = Law(X̄t ).

Thus, for all i ∈ {1, ...,N}

d |X i
t − X̄ i

t | = Atdt ,

with

At ≤

∣∣∣∣∣∣ 1
N

N∑
j=1

K (X i
t − X j

t )− K ∗ ρ̄t (X̄ i
t )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
N

N∑
j=1

K (X i
t − X j

t )−
1
N

N∑
j=1

K (X̄ i
t − X̄ j

t )

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
N

N∑
j=1

K (X̄ i
t − X̄ j

t )− K ∗ ρ̄t (X̄ i
t )

∣∣∣∣∣∣ .
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∣∣∣∣∣∣ 1
N

N∑
j=1

K (X i
t − X j

t )−
1
N

N∑
j=1

K (X̄ i
t − X̄ j

t )

∣∣∣∣∣∣︸ ︷︷ ︸
Lipschitz continuity

+

∣∣∣∣∣∣ 1
N

N∑
j=1

K (X̄ i
t − X̄ j

t )− K ∗ ρ̄t (X̄ i
t )

∣∣∣∣∣∣︸ ︷︷ ︸
Law of large numbers

.
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Synchronous coupling-2

By Gronwall’s lemma and exchangeability

E
(
|X i

t − X̄ i
t |
)
≤ e2Lt

(
E
(
|X i

0 − X̄ i
0|
)

+
C√
N

)
.

and thus

W1

(
ρk,N

t , ρ̄⊗k
t

)
≤E

(
k∑

i=1

|X i
t − X̄ i

t |

)
≤ e2Lt

(
E

(
k∑

i=1

|X i
0 − X̄ i

0|

)
+

Ck√
N

)
.
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(
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t − X̄ i

t |

)
≤ e2Lt

(
E

(
k∑

i=1

|X i
0 − X̄ i

0|

)
+

Ck√
N

)
.

Because this holds for any initial coupling of ρk,N
0 and ρ̄⊗k

0 ,

W1

(
ρk,N

t , ρ̄⊗k
t

)
≤e2Lt

(
W1

(
ρk,N

0 , ρ̄⊗k
0

)
+

Ck√
N

)
.
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(
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+
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(
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(
k∑
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0 − X̄ i
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)
+

Ck√
N

)
.

Because this holds for any initial coupling of ρk,N
0 and ρ̄⊗k

0 ,

W1

(
ρk,N

t , ρ̄⊗k
t

)
≤e2Lt

(
W1

(
ρk,N

0 , ρ̄⊗k
0

)
+

Ck√
N

)
.

Problem : Not uniform in time !
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Kinetic setting

Particle system ((X i,N
t ,V i,N

t ))i=1,...,N , with X i,N
t ,V i,N

t ∈ Rd{
dX i,N

t = V i,N
t dt

dV i,N
t =

√
2σdBi

t − V i,N
t dt −∇U(X i,N

t )dt − 1
N

∑N
j=1∇W (X i,N

t − X j,N
t )dt

Underdamped Langevin diffusion (Non linear particle)
dX̄t = V̄tdt
dV̄t =

√
2σdBt − V̄tdt −∇U(X̄t )dt −∇W ∗ µ̄t (X̄t )dt

µ̄t = Law(X̄t )

with
∇W ∗ µ̄t (x) =

∫
Rd
∇W (x − y)µ̄t (dy)
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Assumptions on the
confinement potential

Assumption
The potential U is non-negative and there exist λ > 0 and A ≥ 0 such
that

∀x ∈ Rd ,
1
2
∇U (x) · x ≥ λ

(
U (x) +

|x |2

4

)
− A.

Furthermore, there is a constant LU > 0 such that

∀x , y ∈ Rd × Rd , |∇U (x)−∇U (y) | ≤ LU |x − y |.
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Assumptions on the
confinement potential

The double-well potential given by

U (x) =

{ (
x2 − 1

)2
if |x | ≤ 1,

(|x | − 1)2 otherwise.

satisfies the previous assumptions.

FIGURE – Double well potential
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Assumptions on the interaction
potential

Assumption
∇W (0) = 0 and there exists LW ≤ λ/8 such that

∀x , y ∈ Rd × Rd , |∇W (x)−∇W (y) | ≤ LW |x − y |.

In particular |∇W (x) | ≤ LW |x | for all x ∈ Rd .
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Constructing solutions

We need to construct simultaneously two solutions

dX̄ i
t = V̄ i

t dt
dV̄ i

t = −V̄ i
t dt −∇U

(
X̄ i

t
)

dt −∇W ∗ µ̄t
(
X̄ i

t
)

dt +
√

2σdB i,1
t

µ̄t = L
(
X̄ i

t
)

dX i,N
t = V i,N

t dt
dV i,N

t = −V i,N
t dt −∇U(X i,N

t )dt − 1
N

∑N
j=1∇W (X i,N

t − X j,N
t )dt

+
√

2σdB i,2
t ,
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Coupling

To construct a coupling, play with the randomness. Here, the Brownian
motions.

FIGURE – Synchronous coupling

Choosing B i,1 = B i,2 :

• the Brownian noise is canceled
out in the infinitesimal evolution of
the difference(
Z i

t ,W
i
t
)

=
(

X 1,N
t − X̄ 1

t ,V
1,N
t − V̄ 1

t

)
,

• the contraction of a distance
between the processes can only be
induced by the deterministic drift.

• Here : contraction when
Z i

t + W i
t = 0



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

18/62

Coupling

To construct a coupling, play with the randomness. Here, the Brownian
motions.

FIGURE – Synchronous coupling

Choosing B i,1 = B i,2 :

• the Brownian noise is canceled
out in the infinitesimal evolution of
the difference(
Z i

t ,W
i
t
)

=
(

X 1,N
t − X̄ 1

t ,V
1,N
t − V̄ 1

t

)
,

• the contraction of a distance
between the processes can only be
induced by the deterministic drift.

• Here : contraction when
Z i

t + W i
t = 0



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

18/62

Coupling

To construct a coupling, play with the randomness. Here, the Brownian
motions.

FIGURE – Synchronous coupling

Choosing B i,1 = B i,2 :

• the Brownian noise is canceled
out in the infinitesimal evolution of
the difference(
Z i

t ,W
i
t
)

=
(

X 1,N
t − X̄ 1

t ,V
1,N
t − V̄ 1

t

)
,

• the contraction of a distance
between the processes can only be
induced by the deterministic drift.

• Here : contraction when
Z i

t + W i
t = 0



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

18/62

Coupling

To construct a coupling, play with the randomness. Here, the Brownian
motions.

FIGURE – Synchronous coupling

Choosing B i,1 = B i,2 :

• the Brownian noise is canceled
out in the infinitesimal evolution of
the difference(
Z i

t ,W
i
t
)

=
(

X 1,N
t − X̄ 1

t ,V
1,N
t − V̄ 1

t

)
,

• the contraction of a distance
between the processes can only be
induced by the deterministic drift.

• Here : contraction when
Z i

t + W i
t = 0



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

19/62

Coupling

Outside of {(z, v) ∈ R2d , z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.

FIGURE – Reflection coupling

Writing

ei
t =

{
Z i

t +W i
t

|Z i
t +W i

t |
if Z i

t + W i
t 6= 0

0 otherwise

we consider
dBi,2

t =
(

Id − 2ei
te

i,T
t

)
dBi,1

t :

• this maximizes the variance of the
noise in the desired direction,

• requires a modification of the
distance by some concave function
=⇒ only within a compact set.
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Three behaviors

•When any of the particle ventures at infinity (i.e |Xt | or |Vt | becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,
=⇒ use a Lyapunov function (i.e H such that d

dt EH ≤ B − γEH).

•When the particles are near the space{(
X i,N

t , X̄ i
t ,V

i,N
t , V̄ i

t

)
∈ R4d ,X i,N

t − X̄ i
t + V i,N

t − V̄ i
t = 0

}
,

the L1 distance will naturally contract,
=⇒ use a synchronous coupling.

• Otherwise, the particles are in a compact set,
=⇒ use a reflection coupling.
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the L1 distance will naturally contract,
=⇒ use a synchronous coupling.

• Otherwise, the particles are in a compact set,
=⇒ use a reflection coupling.
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Coupling

We consider the following coupling

dX̄ i
t = V̄ i

t dt
dV̄ i

t = −V̄ i
t dt −∇U

(
X̄ i

t
)

dt −∇W ∗ µ̄t
(
X̄ i

t
)

dt +
√

2rc
(
Z i

t ,W
i
t
)
dBrc,i

t

+
√

2sc
(
Z i

t ,W
i
t
)
dBsc,i

t
µ̄t = L

(
X̄ i

t
)

dX i,N
t = V i,N

t dt
dV i,N

t = −V i,N
t dt −∇U(X i,N

t )dt − 1
N

∑N
j=1∇W (X i,N

t − X j,N
t )dt

+
√

2
(

rc
(
Z i

t ,W
i
t
) (

Id − 2ei
te

i,T
t

)
dBrc,i

t + sc
(
Z i

t ,W
i
t
)
dBsc,i

t

)
,

with

rc2 + sc2 = 1,

rc (z,w) = 0 if |z + w | ≤ ξ

2
or α|z|+ |z + w | ≥ R1 + ξ,

rc (z,w) = 1 if |z + w | ≥ ξ and α|z|+ |z + w | ≤ R1.
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Semimetrics

Define, for f a well chosen concave function and H a Lyapunov function

r i
t =α|X i,N

t − X̄ i
t |+ |X i,N

t − X̄ i
t + V i,N

t − V̄ i
t |,

ρt =
1
N

N∑
i=1

f
(

r i
t

)(
1 + εH

(
X̄ i

t , V̄
i
t

)
+ εH(X i,N

t ,V i,N
t )

+
ε

N

N∑
j=1

H
(

X̄ j
t , V̄

j
t

)
+

ε

N

N∑
j=1

H(X j,N
t ,V j,N

t )


:=

1
N

N∑
i=1

f
(

r i
t

)
Gi

t .
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Main result

Theorem (Guillin-LB-Monmarché (’22))
Let C0 > 0 and a > 0. Let U ∈ C1 (Rd) satisfy the previous assumption.
There is an explicit cW > 0 such that, for all W ∈ C1 (Rd) satisfying
LW < cW , there exist explicit B1,B2 > 0, such that for all probability
measures ν0 on R2d (under some initial moment assumption depending
on C0 and a) and for all t ≥ 0,

W1

(
νk,N

t , ν̄⊗k
t

)
≤ kB1√

N
, W2

2

(
νk,N

t , ν̄⊗k
t

)
≤ kB2√

N
,

for all k ∈ N, where νk,N
t is the marginal distribution at time t of the first k

particles
(
(X 1

t ,V
1
t ), ...., (X k

t ,V
k
t )
)

of an N particle system (PS) with initial
distribution (ν0)⊗N , while ν̄t is the probability densities of (NL) with initial
distribution ν0.



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

24/62

Somes references on reflection
coupling

Contraction :

• Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory
Relat. Fields (2016)

• Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative
contraction rates for Langevin dynamics. Ann. Probab. (2019)

• Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Quantitative Harris-type theorems for
diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc.(2019)

Propagation of chaos :

• Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. An elementary
approach to uniform in time propagation of chaos. Proc. Amer. Math. Soc. (2020)

• Arnaud Guillin, Pierre Le Bris, and Pierre Monmarché. Convergence rates for the
Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex
cases. Electron. J. Probab. (2022)

• Katharina Schuh. Global contractivity for Langevin dynamics with distribution-dependent
forces and uniform in time propagation of chaos. arXiv preprint arXiv :2206.03082 (2022)
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FitzHugh-Nagumo model

Show uniform in time propagation of chaos of
dX i,N

t = (X i,N
t − (X i,N

t )3 − C i,N
t − α)dt + 1

N

∑N
j=1 KX (Z i,N

t − Z j,N
t )

+σX dBi,X
t

dC i,N
t = (γX i,N

t − C i,N
t + β)dt + 1

N

∑N
j=1 KC(Z i,N

t − Z j,N
t ) + σCdB i,C

t ,

towards{
dX̄t = (X̄t − (X̄t )

3 − C̄t − α)dt + KX ∗ µ̄t (Z̄t )dt + σX dB̄X
t

dC̄t = (γX̄t − C̄t + β)dt + KC ∗ µ̄t (Z̄t )dt + σCdB̄C
t ,

where we allow either σX or σC to be equal to 0.

Reference :

• Laetitia Colombani and Pierre Le Bris. Chaos propagation in mean field networks of
FitzHugh-Nagumo neurons. arXiv preprint arXiv :2206.13291 (2022)
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In a graph

dX i
t = F

(
X i

t , ωi

)
dt +

αN

N

N∑
j=1

ξ
(N)
i,j Γ

(
X i

t , ωi ,X j
t , ωj

)
dt +

√
2σdB i

t ,

where
• ξ(N) =

(
ξ

(N)
i,j

)
i,j∈{1,...,N}

, ξ
(N)
i,j ∈ {0, 1} : graph,

• {ωi}i∈{1,...,N} : environmental disorder,
• (αN)N≥1 : scaling,
• F : Rd ×X 7→ Rd : outside force,

• Γ :
(
Rd ×X

)2 7→ Rd : interaction
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In a graph-2

Assuming there is p ∈ [0, 1]

sup
i∈{1,...,N}

∣∣∣∣∣αN
d (N)

i

N
− p

∣∣∣∣∣ a.s−−−−→
N→∞

0,

uniform in time propagation of chaos towards{
dX̄ω

t = F
(
X̄ω

t , ω
)

dt + p
∫
Rd×X Γ

(
X̄ω

t , ω, y , ω̃
)
ρ̄t (dy , d ω̃)dt +

√
2σdBt ,

ρ̄t = Law(X̄ω
t , ω)

,

Reference :

• Pierre Le Bris and Christophe Poquet. A note on uniform in time propagation of chaos in
graphs, in preparation (2022).

• Sylvain Delattre, Giambattista Giacomin, and Eric Luçon. A note on dynamical models on
randomgraphs and Fokker-Planck equations, J. Stat. Phys. (2016).
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Some remarks on the method

Pros :

• Quantitative,

• Yields/Uses a probabilistic
understanding of the result,

• "Quite" robust...

Cons :

• Not sharp in N (cf. Lacker),

• So far, restricted to "nice"
interactions...
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III. Singular kernels : entropy method or
Cauchy-type method
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The 2D vortex model
The Biot-Savart kernel, defined in R2 by

K (x) =
1

2π
x⊥

|x |2 =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)
.

Consider the 2D incompressible Navier-Stokes system on u ∈ R2

∂tu =− u · ∇u −∇p + ∆u

∇ · u =0,

where p is the local pressure. Taking the curl of the equation above, we
get that ω(t , x) = ∇× u(t , x) satisfies

∂tω = −∇ · ((K ∗ ω)ω) + ∆ω.

N-particle system on the torus Td

dX i
t =
√

2dB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt .
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(Rescaled) relative entropy

Definition
Let µ and ν be two probability measures on TdN . We consider the
rescaled relative entropy

HN(ν, µ) =

{
1
N Eµ

(
dν
dµ log dν

dµ

)
if ν � µ,

+∞ otherwise.
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Results

Theorem (adapted from Jabin-Wang (’18))
Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants C1 and C2 such that for all N ∈ N, all exchangeable probability
density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ eC1t

(
HN(ρN

0 , ρ̄
N
0 ) +

C2

N

)

Theorem (Guillin-LB-Monmarché (’21))
Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants C1, C2 and C3 such that for all N ∈ N, all exchangeable
probability density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ C1e−C2tHN(ρN

0 , ρ̄
N
0 ) +

C3

N
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Various distances

For x = (xi )i∈J1,NK ∈ TdN , we write π(x) = 1
N

∑N
i=1 δxi the associated

empirical measure.

Corollary
Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that ρN

0 = ρ̄N
0 , there is a constant C such that for all k ≤ N ∈ N

and all t ≥ 0,

‖ρk,N
t − ρ̄k

t ‖L1 +W2

(
ρk,N

t , ρ̄k
t

)
≤ C

(⌊
N
k

⌋)− 1
2

and
EρN

t
(W2(π(X), ρ̄t )) 6 Cα(N)

where α(N) = N−1/2 ln(1 + N) if d = 2 and α(N) = N−1/d if d > 2.
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Some references on 2D vortex
model

• Pierre-Emmanuel Jabin and Zhenfu Wang. Quantitative estimates of propagation of chaos
for stochastic systems with w−1,∞ kernels. Invent. Math., (2018)

• Arnaud Guillin, Pierre Le Bris, and Pierre Monmarché. Uniform in time propagation of chaos
for the 2D vortex model and other singular stochastic systems. arXiv preprint
arXiv :2108.08675 (2021)

• Nicolas Fournier, Maxime Hauray, and Stéphane Mischler. Propagation of chaos for the 2D
viscous vortex model. J. Eur. Math. Soc. (JEMS), (2014)

• Matthew Rosenzweig and Sylvia Serfaty. Global-in-time mean-field convergence for singular
Riesz-type diffusive flows. arXiv preprint arXiv :2108.09878 (2021)
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Step one : Time evolution of the
relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

It can be shown that

d
dt
HN(t) =− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ̄t (xi )) · ∇xi log ρ̄N

t dXN

− 1
N2

∑
i,j

∫
TdN

ρN
t (div K (xi − xj )− div K ∗ ρ̄t (xi )) dXN .
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• ρ̄ ∈ C∞(R+ ×Td )

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi (’94))

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.
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Step one : Time evolution of the
relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

It can be shown that

d
dt
HN(t) =− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ̄t (xi )) · ∇xi log ρ̄N

t dXN

− 1
N2

∑
i,j

∫
TdN

ρN
t (div K (xi − xj )− div K ∗ ρ̄t (xi )) dXN .
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Step two : Integration by part

We are left with

d
dt
HN(t) =− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN .

Idea : Use the regularity of ρ̄ to deal with the singularity of K

Remark : Notice that, for the Biot-Savart kernel on the whole space R2

K̃ (x) =
1

2π
x⊥

|x |2 ,

we have K̃ = ∇ · Ṽ with

Ṽ (x) =
1

2π

 − arctan
(

x1
x2

)
0

0 arctan
(

x2
x1

)  .
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi ’94)

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β (Phuc-Torres ’08).
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Step two : Integration by part

For all t > 0,
d
dt
HN(t) ≤ AN(t) +

1
2

BN(t)− 1
2
IN(t),

with

AN(t) :=
1

N2

∑
i,j

∫
TdN

ρN
t (V (xi − xj )− V ∗ ρ̄(xi )) :

∇2
xi ρ̄

N
t

ρ̄N
t

dXN

BN(t) :=
1
N

∑
i

∫
TdN

ρN
t

∣∣∇xi ρ̄
N
t

∣∣2
|ρ̄N

t |2

∣∣∣∣∣∣ 1
N

∑
j

V (xi − xj )− V ∗ ρ̄(xi )

∣∣∣∣∣∣
2

dXN .
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Step three : Change of
reference measure and large

deviation estimates

Lemma
For two probability densities µ and ν on a set Ω, and any Φ ∈ L∞(Ω),
η > 0 and N ∈ N,

EµΦ ≤ ηHN(µ, ν) +
η

N
logEνeNΦ/η.
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Large deviation estimates -1

Theorem (Jabin-Wang ’18)
Consider any probability measure µ on Td , ε > 0 and a scalar function
ψ ∈ L∞(Td ×Td ) with ‖ψ‖L∞ < 1

2ε and such that for all z ∈ Td ,∫
Td ψ(z, x)µ(dx) = 0. Then there exists a constant C such that

∫
TdN

exp
( 1

N

N∑
j1,j2=1

ψ(x1, xj1 )ψ(x1, xj2 )
)
µ⊗NdXN ≤ C,

where C depends on

α = (ε‖ψ‖L∞)4 < 1 , β =
(√

2ε‖ψ‖L∞

)4
< 1.
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Large deviation estimates -2

Theorem (Jabin-Wang ’18)
Consider any probability measure µ on Td and φ ∈ L∞(Td ×Td ) with

γ :=
(

16002 + 36e4
)(

sup
p≥1

‖ supz |φ(·, z)|‖Lp(µ))

p

)2
< 1.

Assume that φ satisfies the following cancellations

∀z ∈ Td ,

∫
Td
φ(x , z)µ(dx) = 0 =

∫
Td
φ(z, x)µ(dx) .

Then, for all N ∈ N,∫
TdN

exp
( 1

N

N∑
i,j=1

φ(xi , xj )
)
µ⊗NdXN ≤ 2

1− γ <∞.
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Partial conclusion

For all t > 0,

d
dt
HN(t) ≤ C

(
HN(t) +

1
N

)
− 1

2
IN(t),

with
C = Ĉ1‖∇2ρ̄t‖L∞‖V‖L∞λ+ Ĉ2‖V‖2

L∞λ
2d2‖∇ρ̄t‖2

L∞

where Ĉ1, Ĉ2 are universal constants.
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Step four : Uniform bounds and
logarithmic Sobolev inequality

Two goals :
• A logarithmic Sobolev inequality for ρ̄N : HN(t) ≤ CIN(t)

• Uniform in time bounds on ‖∇ρ̄t‖L∞ and ‖∇2ρ̄t‖L∞
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A logarithmic Sobolev inequality

Lemma (Tensorization)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν ,
then for all N ≥ 0, ν⊗N satisfies a LSI with constant CLS

ν

Lemma (Perturbation)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν ,
and µ is a probability measure with density h with respect to ν such that,
for some constant λ > 0, 1

λ
≤ h ≤ λ, then µ satisfies a LSI with constant

CLS
µ = λ2CLS

ν .

Lemma (LSI for the uniform distribution)
The uniform distribution u on Td satisfies a LSI with constant 1

8π2 .

For all N ∈ N, t ≥ 0 and all probability density µN ∈ C∞>0(TdN),

HN

(
µN , ρ̄

N
t

)
≤ λ2

8π2

1
N

N∑
i=1

∫
Td
µN

∣∣∣∣∇xi log
µN

ρ̄N
t

∣∣∣∣2 dXN
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Uniform in time bounds on the
derivatives

Lemma
For all n > 1 and α1, ..., αn ∈ J1, dK, there exist Cu

n ,C∞n > 0 such that for
all t > 0,

‖∂α1,...,αn ρ̄t‖L∞ ≤ Cu
n and

∫ t

0
‖∂α1,...,αn ρ̄s‖2

L∞ds ≤ C∞n

Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to
prove such bounds in the Sobolev space Hm for all m, i.e in L2
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prove such bounds in the Sobolev space Hm for all m, i.e in L2
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Uniform in time bounds on the
derivatives-2

By induction on the order of the derivative
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi ’94)

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β (Phuc-Torres ’08).

Uniformity in time

• For all n ≥ 1, C0
n := ‖∇nρ̄0‖L∞ <∞

• ‖K‖L1 <∞ (also used to show regularity).
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Step five : Conclusion

There are constants C1,C∞2 ,C3 > 0 and a function t 7→ C2(t) > 0 with∫ t
0 C2(s)ds ≤ C∞2 for all t ≥ 0 such that for all t ≥ 0

d
dt
HN(t) ≤ −(C1 − C2(t))HN(t) +

C3

N
.

Multiplying by exp(C1t −
∫ t

0 C2(s)ds) and integrating in time we get

HN(t) ≤ e−C1t+
∫ t

0 C2(s)dsHN(0) +
C3

N

∫ t

0
eC1(s−t)+

∫ t
s C2(u)duds

≤ eC∞2 −C1tHN(t) +
C3

C1N
eC∞2 ,

which concludes.
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On ρN ∈ C∞λ (R+ × TNd)

Everything works for regularized kernels K ε, and the final result is
independent of ε.
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Assumptions

On the initial condition

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )

• For all n ≥ 1, C0
n := ‖∇nρ̄0‖L∞ <∞

On the potential K

• ‖K‖L1 <∞.

• In the sense of distributions, ∇ · K = 0,

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β .
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Log and Riesz gases in
dimension 1

1D N-particle system in mean field interaction

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt ,

where
• σN diffusion coefficient,
• (B i )i independent Brownian motions,
• U confining potential such that either U ′ is Lipschitz continuous or

U ′(x) = λx ,
• ∃α ≥ 0, ∀x ∈ R∗, V ′(x) = − x

|x|α+1 .

Motivation : The (generalized) Dyson Brownian motion

dX i
t =

√
2σ
N

dB i
t − λX i

t dt +
1
N

∑
j 6=i

1
X i

t − X j
t

dt .
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Existence, uniqueness, no
collisions

Theorem
Consider N ≥ 2, and −∞ < x1 < ... < xN <∞.
• If α > 1, for any σN ≥ 0, there exists a unique strong solution

X = (X 1, ...,X N) to the particle system with initial condition X 1
0 = x1,

..., X N
0 = xN , which furthermore satisfies X 1

t < ... < X N
t for all t ≥ 0,

P-a.s.
• The same result holds for α = 1 and σN ≤ 1

N .
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"Cauchy sequence"

Lemma
Let (µN)N∈N be any sequence of independent empirical measures, such
that µN

t is the empirical measure of the N particle system at time t. Then
(for λ > 0, α = 1, U ′(x) = λx and σN = 1

N ), we have for all t ≥ 0 and all
N,M ≥ 1

E
(
W2

(
µN

t , µ
M
t

)2
)
≤ e−2λtE

(
W2

(
µN

0 , µ
M
0

)2
)

+
C

N ∧M
.

Remark : The same result holds...
• for U = 0, but no longer uniform in time,

• for α ∈ [1, 2[, with rate N−
2−α
α ,

• for U ′ only Lipschitz continuous, but no longer uniform in time,
• for the supremum, but no longer uniform in time.
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Conclusion

Using independence, this implies that there exists a (deterministic) ρ̄t

such that

E
(
W2(µN

t , ρ̄t )
2
)
→ 0,

which satisfies, for all functions f "sufficiently nice" and ∀t > 0,∫
R

f (x)ρ̄t (dx) =

∫
R

f (x)ρ̄0(dx)−
∫ t

0

∫
R

f ′(x)U ′(x)ρ̄s(dx)ds

+
1
2

∫ t

0

∫ ∫
{x 6=y}

(f ′(x)− f ′(y))(x − y)

|x − y |α+1 ρ̄s(dx)ρ̄s(dy)ds.
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Proof of the estimate
For two sets of points (xi )i∈{1,...,N} and (yj )j∈{1,...,N}, with x1 ≤ ... ≤ xN

and y1 ≤ ... ≤ yN , and two measures µ = 1
N

∑
i δxi and ν = 1

N

∑
j δyj :

W2 (µ, ν)2 =
1
N

∑
i

|xi − yi |2.

Let

−∞ <X 1
t = ... = X N

t < ... < X N(M−1)+1
t = ... = X NM

t <∞

−∞ <Y 1
t = ... = Y M

t < ... < Y M(N−1)+1
t = ... = Y NM

t <∞.

Thus

µM
t =

1
M

M∑
i=1

δX̃ i,M
t

=
1

NM

NM∑
i=1

δX i
t

and µN
t =

1
N

N∑
i=1

δỸ i,N
t

=
1

NM

NM∑
i=1

δY i
t
,

and

W2

(
µN

t , µ
M
t

)2
=

1
NM

NM∑
i=1

∣∣∣X i
t − Y i

t

∣∣∣2 .
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δỸ i,N
t

=
1

NM

NM∑
i=1

δY i
t
,

and

W2

(
µN

t , µ
M
t

)2
=

1
NM

NM∑
i=1

∣∣∣X i
t − Y i

t

∣∣∣2 .



Some recent
results in Prop. of

Chaos

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Some methods

II. Coupling
methods : kinetic
setting or
incomplete
interactions
Langevin diffusion

Extension to other
models

Remarks on the
method

III. Singular
kernels : entropy
method or
Cauchy-type
method
2D vortex model

Dyson Brownian
motion

Closing remarks

59/62

Proof of the estimate-2

Direct calculations yield :

d
(
W2

(
µN

t , µ
M
t

)2
)

= −2λW2

(
µN

t , µ
M
t

)2
dt + 2σ

(
1
N

+
1
M

)
dt + dMt

− 2
(NM)2

∑
i

(
X i

t − Y i
t

)∑
j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)
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Proof of the estimate-3

∑
i

(
X i

t − Y i
t

)∑
j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)

=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − Y i

t

)
−
(

X j
t − Y j

t

))
=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − X j

t

)
−
(

Y i
t − Y j

t

))
.

≥
∑

i>j s.t Y i
t =Y j

t

V ′(X i
t − X j

t )
(

X i
t − X j

t

)
+

∑
i>j s.t Xi

t =Xj
t

V ′(Y i
t − Y j

t )
(

Y i
t − Y j

t

)

≥
∑

i>j s.t Y i
t =Y j

t

−1 +
∑

i>j s.t Xi
t =Xj

t

−1

=−
M(M − 1)

2
N −

N(N − 1)

2
M.

Hence

E
(
W2

(
µ

N
t , µ

M
t

)2
)
≤ e−2λtE

(
W2

(
µ

N
0 , µ

M
0

)2
)

+
C

N ∧ M
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Closing remarks and remaining
problems

• The most exciting recent results concerning quantitative
propagation of chaos for singular kernels use "PDE methods"
(Modulated energy, BBGKY hierarchies...), though there are
remaining cases depending on the singularity of the kernel...

• Can we make these estimates uniform in time (cf
Rosenzweig-Serfaty, Chodron de Courcel-Rosenzweig-Serfaty...) ?

• Can we give probabilistic proofs of similar results ?
• Can we obtain a sharp rate of convergence a la Lacker ?
• Ongoing work : Minibatching, Propagation of chaos and

Metastability.
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Thank you
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