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The model

1D N-particle system in mean field interaction

dX; = \/20ndBl — U'(X})d 2 V'(X{ = Xl)dt,
/#l
where

® gy diffusion coefficient,

(B'); independent Brownian motions,

U confining potential such that either U’ is Lipschitz continuous or
U'(x) = Ax,

* 3a>0,VxeR", V/(x)=—

. SR
|x\°+1 .



Unif. in time
Prop. of Chaos in
dimension 1

Pierre Le Bris

The model
Motivation
Finding the limit
Usual methods

Well posedness
Large number of
particles

Proof of the estimate

Motivation

The (generalized) Dyson Brownian motion

i 20 i i 1 1
dX; =\ JpdBt — AXidt+ 5 > o X/dt

#i



Unif. in time
Prop. of Chaos in
dimension 1

Pierre Le Bris

The model
Motivation
Finding the limit

Usual methods

Well posedness

particles

Proof of the estimate

Motivation

The (generalized) Dyson Brownian motion
i %708 axidty ST 1
dX; = \/ Jp 9Bt — AXidt + ; XX dt.

Question : What happens when N — oo ?
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‘ dX; = \/2ondB; — U'(X})dt — %Z V(X — X!)dt.

Large number of J#i
particles

s Formally, notice 4 YN, V(X — X!) = V'« u(X{), where
N._ 1 N
e = § 2ot 5x;‘-
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Finding the limit

o) = \/2owdB] — U'(X})at — 15" V(X - X))at.

J#i

Formally, notice 5 >-N, V/(X{ — X/) = V' = 1i'(X{), where
pt = LN, 8y Assuming oy — o,

{ aX; = v2odB; — U’(Xt)dt — V'« ﬁ[()(()dt7

pt = Law(X}),
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Finding the limit

dX; = \/2ondB; — U'(X})dt — %Z V(X — X!)dt.
J#i
v Formally, notice § o, V/(X{ — X!) = V'« uf(X{), where
pt = LN, 8y Assuming oy — o,

Well posedness

{ aX; = v2odB; — U’(Xr)dt — V'« ﬁ[()(()dt7
[)t = LaW(Xt),

which is linked to

Orpt = Ox ((Ul + V'« ﬁt) ﬁt) + aafxﬁ,.
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e Coupling methods (McKean, Sznitman, Eberle...) :

We ()’ = inf E (\x - Y|2) .

~p,Y

Let pi' = Law(X, ..., X{"), show W2 (o', 5°") — 0.
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Goal : Show pl — 7.

Some methods :

e Coupling methods (McKean, Sznitman, Eberle...) :

W () = inf  E(IX - YE).

Let pl = Law(X{, ..., X}"), show Wx (o}, 52N) — 0.
® Energy/Entropy estimates (Serfaty, Jabin, Wang...).
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Goal : Show pl — 7.

Some methods :

e Coupling methods (McKean, Sznitman, Eberle...) :

W () = inf  E(IX - YE).

Let pl = Law(X{, ..., X}"), show Wx (o}, 52N) — 0.
® Energy/Entropy estimates (Serfaty, Jabin, Wang...).
e Tightness (Rogers, Zhi, Cépa, Lépingle...).
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Existence, uniqueness, no
collisions

Theorem
Consider N > 2, and —oo < X1 < ... < Xy < 00.

° /fa> 1, forany on > 0, there exists a unique strong solution
X = (X", ..., XN) to the particle system with initial condition X§ = x4,
..., X)) = xn, which furthermore satisfies X' < ... < X! forallt > 0,
P-a.s.

® The same result holds fora = 1 and oy < 1N



Unif. in time
Prop. of Chaos in
dimension 1

Pierre Le Bris

The model
Motivation
Finding the limit

Usual methods

Well posedness
Large number of
particles

Proof of the estimate

"Cauchy sequence"

Lemma
Let ( uN )nen be any sequence of independent empirical measures, such
that Y is the empirical measure of the N particle system at time t. Then

(forx>0,a=1,U(x)=Xxandoy = 1N), we have for all t > 0 and all
N,M > 1

E (Wz (uﬁvwﬁw)z) <e Mg (Wz (MS',MS”)Z) + WCM
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Remark : The same result holds...
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Let ( uN )nen be any sequence of independent empirical measures, such
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"Cauchy sequence"

Lemma
Let ( uN )nen be any sequence of independent empirical measures, such
that Y is the empirical measure of the N particle system at time t. Then

(forx>0,a=1,U(x)=Xxandoy = 1N), we have for all t > 0 and all
N,M > 1

E (Wz (uﬁvwﬁw)z) <e Mg (Wz (MS',MS")Z) + WCM

Remark : The same result holds...
e for U = 0, but no longer uniform in time,
o fora € [1,2], with rate N~ 5%,

e for U’ only Lipschitz continuous, but no longer uniform in time,
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"Cauchy sequence"

Lemma

Let ( uN )nen be any sequence of independent empirical measures, such
that Y is the empirical measure of the N particle system at time t. Then
(forx>0,a=1,U(x)=Xxandoy = ‘N), we have for all t > 0 and all
N,M > 1

E (Wz (uﬁvwﬁw)z) <e Mg (Wz (MS',MS")Z) + WCM

Remark : The same result holds...

e for U = 0, but no longer uniform in time,

for a € [1,2[, with rate N~ %57,

for U’ only Lipschitz continuous, but no longer uniform in time,

e for the supremum, but no longer uniform in time.
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such that

E (Wz(ufv,ﬁr)z) — 0.
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Proof of the estimate

For two sets of points (Xi)ic(1,...n3 @nd (¥))jeqa,....np, With Xy < ... < xy
and y; < ... < yn, and two measures p = 4 >, 65 and v = %Zj by,

1
Wa () = 15 3 = il
i
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Proof of the estimate

For two sets of points (X)ic(1,....ny @nd (¥))jeq1

N> with x; < ... < xpn

.....

and y; < ... < yn, and two measures p = 4 >, 65 and v = %Zjé_yj :

1
Wa(u,v)” = 5 3 b= P
i

Let
—co <X =..=XN <
—o <Y =..=Y"<
Thus
1 M 1 NM
e =m ;5'{‘“ =M ;5”
and

< XN

2 1w )
= 2 X =V
i=1

NM
= .. = A < 00

< YIM(N—1)+1 _ NM

=Tt < 0.

1 N 1 NM
= NZ&;’,N = W;(SY[,

i=1

2
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Proof of the estimate-2

Direct calculations yield :
N M 2
d(Wz (Mr e ) )
— _2\Ws (M’ HM)Z dt+20 (11 at + am,
t s Mt N M

~ i 2 (K= Y) (Vi - x) - v - v)) et
i i
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2 (-2 (Ve -
_Z (v' X —

_Z(v’

i>j

Proof of the estimate-3

Xy - v'(vi - )

x1) 7V(Y7Y/>((

- x) —V(Y’—Y/)((
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(v’(x’

v i -

Proof of the estimate-3

Xy - v'(vi - )
)- (4-)
) - ().

x1) 7V(Y7Y/>(<X7Y
(

Xl —V(Y’—Y’) (

UCEEIEEDY

i
i>jstXj=x]

S S
i>jstyi=vl i>jstXi=xI
MM — _
_ M 1)N7N(N 1)M.
2 2

viyi-vh (v =Y
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Proof of the estimate-3

Xy - v'(vi - )

Xy = v =) (=) - (X =)
((x=x) -

=S (Ve =xh - v =vh) (X - (vi-v).
i>j

> > vei-x) (X -x)+ S v - (vi-Y)
i>jstyi=vl i>jstXi=xI

> > 1+ >
i>jstyi=vl i>jstXi=xI

__MM-1), NN-1

2

Hence

2

E <W2 (uf',uf”Y) < e PME (Wz (u@'au?f')z) + Nf/\//'
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