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The model

1D N-particle system in mean field interaction

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt ,

where
• σN diffusion coefficient,
• (B i )i independent Brownian motions,
• U confining potential such that either U ′ is Lipschitz continuous or

U ′(x) = λx ,
• ∃α ≥ 0, ∀x ∈ R∗, V ′(x) = − x

|x|α+1 .
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Motivation

The (generalized) Dyson Brownian motion

dX i
t =

√
2σ
N

dB i
t − λX i

t dt +
1
N

∑
j 6=i

1
X i

t − X j
t

dt .

Question : What happens when N →∞?
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Finding the limit

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt .

Formally, notice 1
N

∑N
j=1 V ′(X i

t − X j
t ) = V ′ ∗ µN

t (X i
t ), where

µN
t := 1

N

∑N
i=1 δX i

t
. Assuming σN → σ,{

dXt =
√

2σdBt − U ′(Xt )dt − V ′ ∗ ρ̄t (Xt )dt ,
ρ̄t = Law(Xt ),

which is linked to

∂t ρ̄t = ∂x
((

U ′ + V ′ ∗ ρ̄t
)
ρ̄t
)

+ σ∂2
xx ρ̄t .



Unif. in time
Prop. of Chaos in

dimension 1

Pierre Le Bris

I. Introduction
The model

Motivation

Finding the limit

Usual methods

Some results
Well posedness

Large number of
particles

Proof of the estimate

5/14

Finding the limit

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt .

Formally, notice 1
N

∑N
j=1 V ′(X i

t − X j
t ) = V ′ ∗ µN

t (X i
t ), where

µN
t := 1

N

∑N
i=1 δX i

t
.

Assuming σN → σ,{
dXt =

√
2σdBt − U ′(Xt )dt − V ′ ∗ ρ̄t (Xt )dt ,

ρ̄t = Law(Xt ),

which is linked to

∂t ρ̄t = ∂x
((

U ′ + V ′ ∗ ρ̄t
)
ρ̄t
)

+ σ∂2
xx ρ̄t .



Unif. in time
Prop. of Chaos in

dimension 1

Pierre Le Bris

I. Introduction
The model

Motivation

Finding the limit

Usual methods

Some results
Well posedness

Large number of
particles

Proof of the estimate

5/14

Finding the limit

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt .

Formally, notice 1
N

∑N
j=1 V ′(X i

t − X j
t ) = V ′ ∗ µN

t (X i
t ), where

µN
t := 1

N

∑N
i=1 δX i

t
. Assuming σN → σ,{

dXt =
√

2σdBt − U ′(Xt )dt − V ′ ∗ ρ̄t (Xt )dt ,
ρ̄t = Law(Xt ),

which is linked to

∂t ρ̄t = ∂x
((

U ′ + V ′ ∗ ρ̄t
)
ρ̄t
)

+ σ∂2
xx ρ̄t .



Unif. in time
Prop. of Chaos in

dimension 1

Pierre Le Bris

I. Introduction
The model

Motivation

Finding the limit

Usual methods

Some results
Well posedness

Large number of
particles

Proof of the estimate

5/14

Finding the limit

dX i
t =

√
2σNdB i

t − U ′(X i
t )dt − 1

N

∑
j 6=i

V ′(X i
t − X j

t )dt .

Formally, notice 1
N

∑N
j=1 V ′(X i

t − X j
t ) = V ′ ∗ µN

t (X i
t ), where

µN
t := 1

N

∑N
i=1 δX i

t
. Assuming σN → σ,{

dXt =
√

2σdBt − U ′(Xt )dt − V ′ ∗ ρ̄t (Xt )dt ,
ρ̄t = Law(Xt ),

which is linked to

∂t ρ̄t = ∂x
((

U ′ + V ′ ∗ ρ̄t
)
ρ̄t
)

+ σ∂2
xx ρ̄t .



Unif. in time
Prop. of Chaos in

dimension 1

Pierre Le Bris

I. Introduction
The model

Motivation

Finding the limit

Usual methods

Some results
Well posedness

Large number of
particles

Proof of the estimate

6/14

Usual methods

Goal : Show µN
t → ρ̄t .

Some methods :
• Coupling methods (McKean, Sznitman, Eberle...) :

W2 (µ, ν)2 = inf
X∼µ,Y∼ν

E
(
|X − Y |2

)
.

Let ρN
t = Law(X 1

t , ...,X
N
t ), showW2

(
ρN

t , ρ̄
⊗N
t

)
→ 0.

• Energy/Entropy estimates (Serfaty, Jabin, Wang...).
• Tightness (Rogers, Zhi, Cépa, Lépingle...).
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Some results
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Existence, uniqueness, no
collisions

Theorem
Consider N ≥ 2, and −∞ < x1 < ... < xN <∞.
• If α > 1, for any σN ≥ 0, there exists a unique strong solution

X = (X 1, ...,X N) to the particle system with initial condition X 1
0 = x1,

..., X N
0 = xN , which furthermore satisfies X 1

t < ... < X N
t for all t ≥ 0,

P-a.s.
• The same result holds for α = 1 and σN ≤ 1

N .
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"Cauchy sequence"

Lemma
Let (µN)N∈N be any sequence of independent empirical measures, such
that µN

t is the empirical measure of the N particle system at time t. Then
(for λ > 0, α = 1, U ′(x) = λx and σN = 1

N ), we have for all t ≥ 0 and all
N,M ≥ 1

E
(
W2

(
µN

t , µ
M
t

)2
)
≤ e−2λtE

(
W2

(
µN

0 , µ
M
0

)2
)

+
C

N ∧M
.

Remark : The same result holds...
• for U = 0, but no longer uniform in time,

• for α ∈ [1, 2[, with rate N−
2−α
α ,

• for U ′ only Lipschitz continuous, but no longer uniform in time,
• for the supremum, but no longer uniform in time.
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Conclusion

Using independence, this implies that there exists a (deterministic) ρ̄t

such that

E
(
W2(µN

t , ρ̄t )
2
)
→ 0.
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Proof of the estimate
For two sets of points (xi )i∈{1,...,N} and (yj )j∈{1,...,N}, with x1 ≤ ... ≤ xN

and y1 ≤ ... ≤ yN , and two measures µ = 1
N

∑
i δxi and ν = 1

N

∑
j δyj :

W2 (µ, ν)2 =
1
N

∑
i

|xi − yi |2.

Let

−∞ <X 1
t = ... = X N

t < ... < X N(M−1)+1
t = ... = X NM

t <∞

−∞ <Y 1
t = ... = Y M

t < ... < Y M(N−1)+1
t = ... = Y NM

t <∞.

Thus

µM
t =

1
M

M∑
i=1

δX̃ i,M
t

=
1

NM

NM∑
i=1

δX i
t

and µN
t =

1
N

N∑
i=1

δỸ i,N
t

=
1

NM

NM∑
i=1

δY i
t
,

and

W2

(
µN

t , µ
M
t

)2
=

1
NM

NM∑
i=1

∣∣∣X i
t − Y i

t

∣∣∣2 .
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Proof of the estimate-2

Direct calculations yield :

d
(
W2

(
µN

t , µ
M
t

)2
)

= −2λW2

(
µN

t , µ
M
t

)2
dt + 2σ

(
1
N

+
1
M

)
dt + dMt

− 2
(NM)2

∑
i

(
X i

t − Y i
t

)∑
j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)

dt .
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Proof of the estimate-3

∑
i

(
X i

t − Y i
t

)∑
j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)

=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − Y i

t

)
−
(

X j
t − Y j

t

))
=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − X j

t

)
−
(

Y i
t − Y j

t

))
.

≥
∑

i>j s.t Y i
t =Y j

t

V ′(X i
t − X j

t )
(

X i
t − X j

t

)
+

∑
i>j s.t Xi

t =Xj
t

V ′(Y i
t − Y j

t )
(

Y i
t − Y j

t

)

≥
∑

i>j s.t Y i
t =Y j

t

−1 +
∑

i>j s.t Xi
t =Xj

t

−1

=−
M(M − 1)

2
N −

N(N − 1)
2

M.

Hence

E
(
W2

(
µ

N
t , µ

M
t

)2
)
≤ e−2λtE

(
W2

(
µ

N
0 , µ

M
0

)2
)

+
C

N ∧ M
.
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t − Y j

t

))
.

≥
∑

i>j s.t Y i
t =Y j

t

V ′(X i
t − X j

t )
(

X i
t − X j

t

)
+

∑
i>j s.t Xi

t =Xj
t

V ′(Y i
t − Y j

t )
(

Y i
t − Y j

t

)

≥
∑

i>j s.t Y i
t =Y j

t

−1 +
∑

i>j s.t Xi
t =Xj

t

−1

=−
M(M − 1)

2
N −

N(N − 1)
2

M.

Hence

E
(
W2

(
µ

N
t , µ

M
t

)2
)
≤ e−2λtE

(
W2

(
µ

N
0 , µ

M
0

)2
)

+
C

N ∧ M
.
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Proof of the estimate-3

∑
i

(
X i

t − Y i
t

)∑
j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)

=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − Y i

t

)
−
(

X j
t − Y j

t

))
=
∑
i>j

(
V ′(X i

t − X j
t )− V ′(Y i

t − Y j
t )
)((

X i
t − X j

t

)
−
(

Y i
t − Y j

t

))
.

≥
∑

i>j s.t Y i
t =Y j

t

V ′(X i
t − X j

t )
(

X i
t − X j

t

)
+

∑
i>j s.t Xi

t =Xj
t

V ′(Y i
t − Y j

t )
(

Y i
t − Y j

t

)

≥
∑

i>j s.t Y i
t =Y j

t

−1 +
∑

i>j s.t Xi
t =Xj

t

−1

=−
M(M − 1)

2
N −

N(N − 1)
2

M.

Hence

E
(
W2

(
µ

N
t , µ

M
t

)2
)
≤ e−2λtE

(
W2

(
µ

N
0 , µ

M
0

)2
)

+
C

N ∧ M
.
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Thank you
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