I. Introduction

Convergence rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex cases.

Pierre Le Bris
Joint work with : Arnaud Guillin (LMBP), Pierre Monmarché (LJLL)

LJLL, Sorbonne Université - Paris
SMAI 2021
24/06/2021

Convergence

 rate for VFP and Unif. in time Prop. of ChaosPierre Le Bris
I. Introduction

Processes and
Propagation of chaos
Propagation of chaos
Assumptions and Results

II. Proof of

 convergenceCoupling method
Construction of a
distance
Convergence

I. Introduction

Convergence rate for VFP and Unif. in time Prop. of Chaos

Processes

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos

Particle system $\left(\left(X_{t}^{i, N}, V_{t}^{i, N}\right)\right)_{i=1, \ldots, N}$, with $X_{t}^{i, N}, V_{t}^{i, N} \in \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
d X_{i}^{i, N}=V_{t}^{i, N} d t \\
d V_{t}^{i, N}=\sqrt{2} d B_{t}^{i}-V_{t}^{i, N} d t-\nabla U\left(X_{t}^{i, N}\right) d t-\frac{1}{N} \sum_{j=1}^{N} \nabla W\left(X_{t}^{i, N}-X_{t}^{j, N}\right) d t \\
\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i, N}}
\end{array}\right.
$$

Convergence rate for VFP and Unif. in time Prop. of Chaos

Pierre Le Bris

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos Assumptions and Results
II. Proof of convergence

Processes

Particle system $\left(\left(X_{t}^{i, N}, V_{t}^{i, N}\right)\right)_{i=1, \ldots, N}$, with $X_{t}^{i, N}, V_{t}^{i, N} \in \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
d X_{t}^{i, N}=V_{t}^{i, N} d t \\
d V_{t}^{i, N}=\sqrt{2} \underbrace{}_{\substack{B, m \\
d B_{t}^{i, N}}}-\underbrace{V_{t}^{i, N}}_{\text {friction }} d t-\underbrace{\nabla U\left(X_{t}^{i, N}\right)}_{\text {confinement }} d t-\frac{1}{N} \sum_{j=1}^{N} \underbrace{\nabla W\left(X_{t}^{i, N}-X_{t}^{j, N}\right)}_{\text {interaction }} d t \\
\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i, N}}
\end{array}\right.
$$

Particle system $\left(\left(X_{t}^{i, N}, V_{t}^{i, N}\right)\right)_{i=1, \ldots, N}$, with $X_{t}^{i, N}, V_{t}^{i, N} \in \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
d X_{t}^{i, N}=V_{t}^{i, N} d t \\
d V_{t}^{i, N}=\sqrt{2} \underbrace{d B_{t}^{i, N}}_{\text {B.m }}-\underbrace{V_{t}^{i, N}}_{\text {friction }} d t-\underbrace{\nabla U\left(X_{t}^{i, N}\right)}_{\text {confinement }} d t-\frac{1}{N} \sum_{j=1}^{N} \underbrace{\nabla W\left(X_{t}^{i, N}-X_{t}^{j, N}\right)}_{\text {interaction }} d t \\
\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i, N}}
\end{array}\right.
$$

Underdamped Langevin diffusion (Non linear particle)

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=\bar{V}_{t} d t \tag{NL}\\
d \bar{V}_{t}=\sqrt{2} d B_{t}-V_{t} d t-\nabla U\left(\bar{X}_{t}\right) d t-\nabla W * \bar{\mu}_{t}\left(\bar{X}_{t}\right) d t \\
\bar{\mu}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right)
\end{array}\right.
$$

with

$$
\nabla W * \bar{\mu}_{t}(x)=\int_{\mathbb{R}^{d}} \nabla W(x-y) \bar{\mu}_{t}(d y)
$$

Processes

Particle system $\left(\left(X_{t}^{i, N}, V_{t}^{i, N}\right)\right)_{i=1, \ldots, N}$, with $X_{t}^{i, N}, V_{t}^{i, N} \in \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
d X_{t}^{i, N}=V_{t}^{i, N} d t \tag{PS}\\
d V_{t}^{i, N}=\sqrt{2} d B_{t}^{i}-V_{t}^{i, N} d t-\nabla U\left(X_{t}^{i, N}\right) d t-\nabla W * \mu_{t}^{N}\left(X_{t}^{i, N}\right) d t \\
\mu_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{t}^{i, N}}
\end{array}\right.
$$

Underdamped Langevin diffusion (Non linear particle)

$$
\left\{\begin{array}{l}
d \bar{X}_{t}=\bar{V}_{t} d t \tag{NL}\\
d \bar{V}_{t}=\sqrt{2} d B_{t}-V_{t} d t-\nabla U\left(\bar{X}_{t}\right) d t-\nabla W * \bar{\mu}_{t}\left(\bar{X}_{t}\right) d t \\
\bar{\mu}_{t}=\operatorname{Law}\left(\bar{X}_{t}\right)
\end{array}\right.
$$

with

$$
\nabla W * \bar{\mu}_{t}(x)=\int_{\mathbb{R}^{d}} \nabla W(x-y) \bar{\mu}_{t}(d y)
$$

Convergence rate for VFP and Unif. in time Prop. of Chaos

Propagation of chaos

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos

Provided the particles start in independent positions, they will stay "more or less" independent.

Propagation of chaos

I. Introduction

Provided the particles start in independent positions, they will stay "more or less" independent.

To quantify this "more or less", we compare the law of any subset of k particles within the N particles system to the law of k independent non-linear particles.

Assumptions on the confinement potential

Assumption

The potential U is non-negative and there exist $\lambda>0$ and $A \geq 0$ such that

$$
\forall x \in \mathbb{R}^{d}, \quad \frac{1}{2} \nabla U(x) \cdot x \geq \lambda\left(U(x)+\frac{|x|^{2}}{4}\right)-A .
$$

Furthermore, there is a constant $L_{u}>0$ such that

$$
\forall x, y \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad|\nabla U(x)-\nabla U(y)| \leq L_{U}|x-y| .
$$

. Introduction

Assumptions on the confinement potential

The double-well potential given by

$$
U(x)= \begin{cases}\left(x^{2}-1\right)^{2} & \text { if }|x| \leq 1 \\ (|x|-1)^{2} & \text { otherwise }\end{cases}
$$

satisfies the previous assumptions.

FIGURE - Double well potential

Assumptions on the interaction potential

I. Introduction Processes and Propagation of chaos Propagation of chaos Assumptions and Results

II. Proof of

Assumption

$\nabla W(0)=0$ and there exists $L_{W} \leq \lambda / 8$ such that

$$
\forall x, y \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad|\nabla W(x)-\nabla W(y)| \leq L_{W}|x-y|
$$

In particular $|\nabla W(x)| \leq L_{W}|x|$ for all $x \in \mathbb{R}^{d}$.

Distance

1. Introduction

L1-Wasserstein and L2-Wasserstein distances

Definition

Let μ and ν be two probability measures on $\mathbb{R}^{2 d}$. We define

$$
\begin{gathered}
\mathcal{W}(\mu, \nu)=\inf _{\Gamma \in \Pi(\mu, \nu)} \int|x-\tilde{x}|+|v-\tilde{v}| \Gamma(d(x, v) d(\tilde{x}, \tilde{v})) \\
\mathcal{W}_{2}(\mu, \nu)=\left(\inf _{\Gamma \in \Pi(\mu, \nu)} \int|x-\tilde{x}|^{2}+|v-\tilde{v}|^{2} \Gamma(d(x, v) d(\tilde{x}, \tilde{v}))\right)^{1 / 2}
\end{gathered}
$$

where the infimum is chosen on all couplings of μ and ν.

Distance

L1-Wasserstein and L2-Wasserstein distances

Definition

Let μ and ν be two probability measures on $\mathbb{R}^{2 d}$. We define

$$
\begin{gathered}
\mathcal{W}(\mu, \nu)=\inf _{\Gamma \in \Pi(\mu, \nu)} \int|x-\tilde{x}|+|v-\tilde{v}| \Gamma(d(x, v) d(\tilde{x}, \tilde{v})) \\
\mathcal{W}_{2}(\mu, \nu)=\left(\inf _{\Gamma \in \Pi(\mu, \nu)} \int|x-\tilde{x}|^{2}+|v-\tilde{v}|^{2} \Gamma(d(x, v) d(\tilde{x}, \tilde{v}))\right)^{1 / 2}
\end{gathered}
$$

where the infimum is chosen on all couplings of μ and ν.
Likewise, for μ and ν two probability measures on $\mathbb{R}^{2 d}$ and a measurable function $h: \mathbb{R}^{2 d} \times \mathbb{R}^{2 d} \rightarrow \mathbb{R}$, we define

$$
\mathcal{W}_{h}(\mu, \nu)=\inf _{\ulcorner\in \Pi(\mu, \nu)} \int h(x, v, \tilde{x}, \tilde{v}) \Gamma(d(x, v) d(\tilde{x}, \tilde{v}))
$$

Convergence

Theorem

Let $U \in \mathcal{C}^{1}\left(\mathbb{R}^{d}\right)$ satisfy the previous assumption. There is an explicit $c^{W}>0$ such that, for all $W \in \mathcal{C}^{1}\left(\mathbb{R}^{d}\right)$ satisfying $L_{W}<c^{w}$, there is an explicit $\tau>0$ such that for all probability measures ν_{0}^{1} and ν_{0}^{2} on $\mathbb{R}^{2 d}$ with a finite second moment, there are explicit constants $C_{1}, C_{2}>0$ such that for all $t \geqslant 0$,

$$
\mathcal{W}_{1}\left(\bar{\nu}_{t}^{1}, \bar{\nu}_{t}^{2}\right) \leq e^{-\tau t} C_{1}, \quad \mathcal{W}_{2}\left(\bar{\nu}_{t}^{1}, \bar{\nu}_{t}^{2}\right) \leq e^{-\tau t} C_{2}
$$

where $\bar{\nu}_{t}^{1}$ and $\bar{\nu}_{t}^{2}$ are the probability densities of solutions of (NL) with respective initial distributions $\bar{\nu}_{0}^{1}$ and $\bar{\nu}_{0}^{2}$.
Furthermore, we have existence and unicity of -as well as convergence towards - a stationary solution.

Propagation of chaos

$$
\mathcal{W}_{1}\left(\nu_{t}^{k, N}, \bar{\nu}_{t}^{\otimes k}\right) \leq \frac{k B_{1}}{\sqrt{N}}, \quad \mathcal{W}_{2}^{2}\left(\nu_{t}^{k, N}, \bar{\nu}_{t}^{\otimes k}\right) \leq \frac{k B_{2}}{\sqrt{N}}
$$

for all $k \in \mathbb{N}$, where $\nu_{t}^{k, N}$ is the marginal distribution at time t of the first k
particles $\left(\left(X_{t}^{1}, V_{t}^{1}\right), \ldots,\left(X_{t}^{k}, V_{t}^{k}\right)\right)$ of an N particle system $(P S)$ with initial
distribution $\left(\nu_{0}\right)^{\otimes N}$, while $\bar{\nu}_{t}$ is the probability densities of (NL) with initial
for all $k \in \mathbb{N}$, where $\nu_{t}^{k, N}$ is the marginal distribution at time t of the first k
particles $\left(\left(X_{t}^{1}, V_{t}^{1}\right), \ldots,\left(X_{t}^{k}, V_{t}^{k}\right)\right)$ of an N particle system (PS) with initial
distribution $\left(\nu_{0}\right)^{\otimes N}$, while $\bar{\nu}_{t}$ is the probability densities of (NL) with initial
for all $k \in \mathbb{N}$, where $\nu_{t}^{k, N}$ is the marginal distribution at time t of the first k
particles $\left(\left(X_{t}^{1}, V_{t}^{1}\right), \ldots,\left(X_{t}^{k}, V_{t}^{k}\right)\right)$ of an N particle system $(P S)$ with initial
distribution $\left(\nu_{0}\right)^{\otimes N}$, while $\bar{\nu}_{t}$ is the probability densities of (NL) with initial distribution ν_{0}.

Theorem

Let $\mathcal{C}^{0}>0$ and $a>0$. Let $U \in \mathcal{C}^{1}\left(\mathbb{R}^{d}\right)$ satisfy the previous assumption. There is an explicit $c^{W}>0$ such that, for all $W \in \mathcal{C}^{1}\left(\mathbb{R}^{d}\right)$ satisfying $L_{W}<c^{W}$, there exist explicit $B_{1}, B_{2}>0$, such that for all probability measures ν_{0} on $\mathbb{R}^{2 d}$ (under some initial moment assumption depending on \mathcal{C}^{0} and a) and for all $t \geq 0$,
I. Introduction Processes and Propagation of chaos Propagation of chaos Assumptions and Results

Extension of

Convergence rate :

- Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Relat. Fields (2016)
- Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative contraction rates for Langevin dynamics. Ann. Probab. (2019)
- Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc.(2019)

Propagation of chaos :

- Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. An elementary approach to uniform in time propagation of chaos. Proc. Amer. Math. Soc. (2020)

Convergence rate for VFP and Unif. in time Prop. of Chaos

Pierre Le Bris
I. Introduction

Processes and
Propagation of chaos
Propagation of chaos
Assumptions and Results
II. Proof of convergence
Coupling method
Construction of a distance
Convergence

II. Proof of convergence

Coupling

I. Introduction

Consider two clouds of particle with different starting shape

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{1}=\bar{V}_{t}^{1} d t \\
d \bar{V}_{t}^{1}=\sqrt{2} d B_{t}^{1}-\bar{V}_{t}^{1} d t-\nabla U\left(\bar{X}_{t}^{1}\right) d t-\nabla W * \mu_{t}^{1}\left(\bar{X}_{t}^{1}\right) d t \\
d \bar{X}_{t}^{2}=\bar{V}_{t}^{2} d t \\
d \bar{V}_{t}^{2}=\sqrt{2} d B_{t}^{2}-\bar{V}_{t}^{2} d t-\nabla U\left(\bar{X}_{t}^{2}\right) d t-\nabla W * \mu_{t}^{2}\left(\bar{X}_{t}^{2}\right) d t \\
\mu_{t}^{1}=\operatorname{Law}\left(\bar{X}_{t}^{1}\right), \mu_{t}^{2}=\operatorname{Law}\left(\bar{X}_{t}^{2}\right)
\end{array}\right.
$$

Coupling

I. Introduction

Consider two clouds of particle with different starting shape

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{1}=\bar{V}_{t}^{1} d t \\
d \bar{V}_{t}^{1}=\sqrt{2} d B_{t}^{1}-\bar{V}_{t}^{1} d t-\nabla U\left(\bar{X}_{t}^{1}\right) d t-\nabla W * \mu_{t}^{1}\left(\bar{X}_{t}^{1}\right) d t \\
d \bar{X}_{t}^{2}=\bar{V}_{t}^{2} d t \\
d \bar{V}_{t}^{2}=\sqrt{2} d B_{t}^{2}-\bar{V}_{t}^{2} d t-\nabla U\left(\bar{X}_{t}^{2}\right) d t-\nabla W * \mu_{t}^{2}\left(\bar{X}_{t}^{2}\right) d t \\
\mu_{t}^{1}=\operatorname{Law}\left(\bar{X}_{t}^{1}\right), \mu_{t}^{2}=\operatorname{Law}\left(\bar{X}_{t}^{2}\right)
\end{array}\right.
$$

Then, denoting $\nu_{t}^{i}=\operatorname{Law}\left(\left(\bar{X}_{t}^{i}, \bar{V}_{t}^{i}\right)\right)$

$$
\mathcal{W}_{1}\left(\nu_{t}^{1}, \nu_{t}^{2}\right)=\inf _{\Gamma \in \Pi\left(\mu_{t}, \nu_{t}\right)} \mathbb{E}_{\Gamma}\left(\left|\bar{X}_{t}^{1}-\bar{X}_{t}^{2}\right|+\left|\bar{V}_{t}^{1}-\bar{V}_{t}^{2}\right|\right)
$$

Coupling

Consider two clouds of particle with different starting shape

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{1}=\bar{V}_{t}^{1} d t \\
d \bar{V}_{t}^{1}=\sqrt{2} d B_{t}^{1}-\bar{V}_{t}^{1} d t-\nabla U\left(\bar{X}_{t}^{1}\right) d t-\nabla W * \mu_{t}^{1}\left(\bar{X}_{t}^{1}\right) d t \\
d \bar{X}_{t}^{2}=\bar{V}_{t}^{2} d t \\
d \bar{V}_{t}^{2}=\sqrt{2} d B_{t}^{2}-\bar{V}_{t}^{2} d t-\nabla U\left(\bar{X}_{t}^{2}\right) d t-\nabla W * \mu_{t}^{2}\left(\bar{X}_{t}^{2}\right) d t \\
\mu_{t}^{1}=\operatorname{Law}\left(\bar{X}_{t}^{1}\right), \mu_{t}^{2}=\operatorname{Law}\left(\bar{X}_{t}^{2}\right)
\end{array}\right.
$$

Then, denoting $\nu_{t}^{i}=\operatorname{Law}\left(\left(\bar{X}_{t}^{i}, \bar{V}_{t}^{i}\right)\right)$

$$
\mathcal{W}_{1}\left(\nu_{t}^{1}, \nu_{t}^{2}\right)=\inf _{\Gamma \in \Pi\left(\mu_{t}, \nu_{t}\right)} \mathbb{E}_{\Gamma}\left(\left|\bar{X}_{t}^{1}-\bar{X}_{t}^{2}\right|+\left|\bar{V}_{t}^{1}-\bar{V}_{t}^{2}\right|\right)
$$

Idea behind coupling arguments : instead of considering the infimum over all couplings, construct one.

Convergence rate for VFP and Unif. in time Prop. of Chaos

Processes and Propagation of chaos Propagation of chaos Assumptions and Results
II. Proof of convergence Coupling method Construction of a distance
Convergence
III. Proof of propagation of chaos

Coupling

To construct a coupling, play with the randomness. Here, the Brownian motions.

Coupling

I. Introduction

To construct a coupling, play with the randomness. Here, the Brownian motions.

Choosing $B^{1}=B^{2}$:

- the Brownian noise is canceled out in the infinitesimal evolution of the difference $\left(Z_{t}, W_{t}\right)=\left(\bar{X}_{t}^{1}-\bar{X}_{t}^{2}, \bar{V}_{t}^{1}-\bar{V}_{t}^{2}\right)$,

FIGURE - Synchronous coupling

Coupling

1. Introduction

To construct a coupling, play with the randomness. Here, the Brownian motions.

Choosing $B^{1}=B^{2}$:

- the Brownian noise is canceled out in the infinitesimal evolution of the difference $\left(Z_{t}, W_{t}\right)=\left(\bar{X}_{t}^{1}-\bar{X}_{t}^{2}, \bar{V}_{t}^{1}-\bar{V}_{t}^{2}\right)$,
- the contraction of a distance between the processes can only be induced by the deterministic drift.

FIGURE - Synchronous coupling

Coupling

1. Introduction

To construct a coupling, play with the randomness. Here, the Brownian motions.

FIGURE - Synchronous coupling

Choosing $B^{1}=B^{2}$:

- the Brownian noise is canceled out in the infinitesimal evolution of the difference $\left(Z_{t}, W_{t}\right)=\left(\bar{X}_{t}^{1}-\bar{X}_{t}^{2}, \bar{V}_{t}^{1}-\bar{V}_{t}^{2}\right)$,
- the contraction of a distance between the processes can only be induced by the deterministic drift.
- Here : contraction when
$Z_{t}+W_{t}=0$

Convergence rate for VFP and Unif. in time Prop. of Chaos
I. Introduction

Processes and Propagation of chaos Propagation of chaos Assumptions and Results

Outside of $\left\{(z, v) \in \mathbb{R}^{2 d}, z+w=0\right\}$, it is necessary to make use of the noise to get the processes closer to one another.

Coupling

I. Introduction

Outside of $\left\{(z, v) \in \mathbb{R}^{2 d}, z+w=0\right\}$, it is necessary to make use of the noise to get the processes closer to one another.

Writing

$$
e_{t}= \begin{cases}\frac{Z_{t}+W_{t}}{\left|Z_{t}+W_{t}\right|} & \text { if } Z_{t}+W_{t} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

we consider

$$
d B_{t}^{2}=\left(l d-2 e_{t} e_{t}^{T}\right) d B_{t}^{1}:
$$

FIGURE - Reflection coupling

Coupling

I. Introduction

Outside of $\left\{(z, v) \in \mathbb{R}^{2 d}, z+w=0\right\}$, it is necessary to make use of the noise to get the processes closer to one another.

Writing

$$
e_{t}= \begin{cases}\frac{Z_{t}+W_{t}}{\left|Z_{t}+W_{t}\right|} & \text { if } Z_{t}+W_{t} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

we consider

$$
d B_{t}^{2}=\left(I d-2 e_{t} e_{t}^{T}\right) d B_{t}^{1}:
$$

- this maximizes the variance of the noise in the desired direction,

FIGURE - Reflection coupling

Coupling

1. Introduction

Outside of $\left\{(z, v) \in \mathbb{R}^{2 d}, z+w=0\right\}$, it is necessary to make use of the noise to get the processes closer to one another.

FIGURE - Reflection coupling

Writing

$$
e_{t}= \begin{cases}\frac{Z_{t}+W_{t}}{\left|Z_{t}+W_{t}\right|} & \text { if } Z_{t}+W_{t} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

we consider

$$
d B_{t}^{2}=\left(I d-2 e_{t} e_{t}^{T}\right) d B_{t}^{1}:
$$

- this maximizes the variance of the noise in the desired direction,
- requires a modification of the distance by some concave function.

Three behaviors

I. Introduction

- When any of the particle ventures at infinity (i.e $\left|\bar{X}_{t}\right|$ or $\left|\bar{V}_{t}\right|$ becomes sufficiently big), the friction and confinement potential will tend to bring the particle back,
\Longrightarrow use a Lyapunov function (i.e H such that $\frac{d}{d t} \mathbb{E} H \leq B-\gamma \mathbb{E} H$).

Three behaviors

I. Introduction

- When any of the particle ventures at infinity (i.e $\left|\bar{X}_{t}\right|$ or $\left|\bar{V}_{t}\right|$ becomes sufficiently big), the friction and confinement potential will tend to bring the particle back,
\Longrightarrow use a Lyapunov function (i.e H such that $\frac{d}{d t} \mathbb{E} H \leq B-\gamma \mathbb{E} H$).
- When the particles are near the space

$$
\left\{\left(\bar{X}_{t}^{1}, \bar{X}_{t}^{2}, \bar{V}_{t}^{2}, \bar{V}_{t}^{2}\right) \in \mathbb{R}^{4 d}, \bar{X}_{t}^{1}-\bar{X}_{t}^{2}+\bar{V}_{t}^{1}-\bar{V}_{t}^{2}=0\right\}
$$

the L^{1} distance will naturally contract,
\Longrightarrow use a synchronous coupling.

Three behaviors

- When any of the particle ventures at infinity (i.e $\left|\bar{X}_{t}\right|$ or $\left|\bar{V}_{t}\right|$ becomes sufficiently big), the friction and confinement potential will tend to bring the particle back,
\Longrightarrow use a Lyapunov function (i.e H such that $\frac{d}{d t} \mathbb{E} H \leq B-\gamma \mathbb{E} H$).
- When the particles are near the space

$$
\left\{\left(\bar{X}_{t}^{1}, \bar{X}_{t}^{2}, \bar{V}_{t}^{2}, \bar{V}_{t}^{2}\right) \in \mathbb{R}^{4 d}, \bar{X}_{t}^{1}-\bar{X}_{t}^{2}+\bar{V}_{t}^{1}-\bar{V}_{t}^{2}=0\right\}
$$

the L^{1} distance will naturally contract,
\Longrightarrow use a synchronous coupling.

- Otherwise, the particles are in a compact set, \Longrightarrow use a reflection coupling.

Convergence rate for VFP and Unif. in time Prop. of Chaos
I. Introduction

Processes and Propagation of chaos Propagation of chaos Assumptions and Results
II. Proof of convergence Coupling method Construction of a distance Convergence

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that $\left.\frac{d}{d t} \mathbb{E} H \leq C-\lambda \mathbb{E} H\right)$.

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that $\frac{d}{d t} \mathbb{E} H \leq C-\lambda \mathbb{E} H$).
Step 2 : Consider

$$
\begin{aligned}
\rho\left(\left(x_{1}, v_{1}\right)\right. & \left.,\left(x_{2}, v_{2}\right)\right) \\
= & f\left(\alpha\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{2}+v_{1}-v_{2}\right|\right)\left(1+\epsilon H\left(x_{1}, v_{1}\right)+\epsilon H\left(x_{2}, v_{2}\right)\right) \\
= & f(r) G
\end{aligned}
$$

such that

$$
\mathcal{C}_{1} \rho\left(\left(x_{1}, v_{1}\right),\left(x_{2}, v_{2}\right)\right) \geq\left|x_{1}-x_{2}\right|+\left|v_{1}-v_{2}\right|
$$

f is nondecreasing, non negative, concave, and constant for r greater than a threshold.

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that $\frac{d}{d t} \mathbb{E} H \leq C-\lambda \mathbb{E} H$).
Step 2 : Consider

$$
\begin{aligned}
\rho\left(\left(x_{1}, v_{1}\right)\right. & \left.,\left(x_{2}, v_{2}\right)\right) \\
= & f\left(\alpha\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{2}+v_{1}-v_{2}\right|\right)\left(1+\epsilon H\left(x_{1}, v_{1}\right)+\epsilon H\left(x_{2}, v_{2}\right)\right) \\
= & f(r) G
\end{aligned}
$$

such that

$$
\mathcal{C}_{1} \rho\left(\left(x_{1}, v_{1}\right),\left(x_{2}, v_{2}\right)\right) \geq\left|x_{1}-x_{2}\right|+\left|v_{1}-v_{2}\right| .
$$

f is nondecreasing, non negative, concave, and constant for r greater than a threshold.
Step 3 : Coupling and calculate the dynamics of $\rho\left(\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right),\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right)$.

- In a contracting region of space, synchronous coupling.
- Near that space, reflection coupling.
- "At infinity", use the Lyapunov function.

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{1}=\bar{V}_{t}^{1} d t \\
d \bar{V}_{t}^{1}=-\bar{V}_{t}^{1} d t-\nabla U\left(\bar{X}_{t}^{1}\right) d t-\nabla W * \mu_{t}\left(\bar{X}_{t}^{1}\right) d t+\sqrt{2} s c\left(Z_{t}, W_{t}\right) d B_{t}^{s c} \\
\quad \quad+\sqrt{2} r c\left(Z_{t}, W_{t}\right) d B_{t}^{r c} \\
\mu_{t}=\operatorname{Law}\left(\bar{X}_{t}^{1}\right) \\
d \bar{X}_{t}^{2}=\bar{V}_{t}^{2} d t \\
d \bar{V}_{t}^{2}= \\
\quad-\bar{V}_{t}^{2} d t-\nabla U\left(\bar{X}_{t}^{2}\right) d t-\nabla W * \tilde{\mu}_{t}\left(\bar{X}_{t}^{2}\right) d t+\sqrt{2} s c\left(Z_{t}, W_{t}\right) d B_{t}^{s c} \\
\quad \quad \quad \sqrt{2} r c\left(Z_{t}, W_{t}\right)\left(I d-2 e_{t} e_{t}^{T}\right) d B_{t}^{r c} \\
\tilde{\mu}_{t}=\operatorname{Law}\left(\bar{X}_{t}^{2}\right),
\end{array}\right.
$$

with

$$
\begin{aligned}
& r c^{2}+s c^{2}=1 \\
& r c(z, w)=0 \text { if }|z+w| \leq \frac{\xi}{2} \text { or } \alpha|z|+|z+w| \geq R_{1}+\xi \\
& r c(z, w)=1 \text { if }|z+w| \geq \xi \text { and } \alpha|z|+|z+w| \leq R_{1}
\end{aligned}
$$

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and
I. Introduction

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and

$$
\begin{aligned}
K_{t} & =\left(c f\left(r_{t}\right)+\left(\alpha \frac{d\left|Z_{t}\right|}{d t}+\left(L_{U}+L_{w}\right)\left|Z_{t}\right|\right) f^{\prime}\left(r_{t}\right)\right) G_{t} \\
& +4\left(f^{\prime \prime}\left(r_{t}\right) G_{t}+24 \epsilon \max \left(1, \frac{1}{2 \alpha}\right) r_{t} f^{\prime}\left(r_{t}\right)\right) r c\left(Z_{t}, W_{t}\right)^{2} \\
& +\epsilon\left(2 B-\gamma H\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right)-\gamma H\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right) f\left(r_{t}\right) \\
& +L_{w} f^{\prime}\left(r_{t}\right) \mathbb{E}\left(\left|Z_{t}\right|\right) G_{t}+\epsilon L_{W}(6+8 \lambda)\left(\mathbb{E}\left(\left|\bar{X}_{t}^{1}\right|\right)^{2}+\mathbb{E}\left(\left|\bar{X}_{t}^{2}\right|\right)^{2}\right) f\left(r_{t}\right) .
\end{aligned}
$$

. Introduction

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and

$$
\begin{aligned}
K_{t} & =\left(c f\left(r_{t}\right)+\left(\alpha \frac{d\left|Z_{t}\right|}{d t}+\left(L_{u}+L_{w}\right)\left|Z_{t}\right|\right) f^{\prime}\left(r_{t}\right)\right) G_{t} \\
& +4\left(f^{\prime \prime}\left(r_{t}\right) G_{t}+24 \epsilon \max \left(1, \frac{1}{2 \alpha}\right) r_{t} f^{\prime}\left(r_{t}\right)\right) r c\left(Z_{t}, W_{t}\right)^{2} \\
& +\epsilon\left(2 B-\gamma H\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right)-\gamma H\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right) f\left(r_{t}\right) \\
& +L_{w} f^{\prime}\left(r_{t}\right) \mathbb{E}\left(\left|Z_{t}\right|\right) G_{t}+\epsilon L_{w}(6+8 \lambda)\left(\mathbb{E}\left(\left|\bar{X}_{t}^{1}\right|\right)^{2}+\mathbb{E}\left(\left|\bar{X}_{t}^{2}\right|\right)^{2}\right) f\left(r_{t}\right) .
\end{aligned}
$$

Reflection coupling : choose f sufficiently concave, to have those two lines nonpositive

. Introduction

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and

$$
\begin{aligned}
K_{t} & =\left(c f\left(r_{t}\right)+\left(\alpha \frac{d\left|Z_{t}\right|}{d t}+\left(L_{u}+L_{w}\right)\left|Z_{t}\right|\right) f^{\prime}\left(r_{t}\right)\right) G_{t} \\
& +4\left(f^{\prime \prime}\left(r_{t}\right) G_{t}+24 \epsilon \max \left(1, \frac{1}{2 \alpha}\right) r_{t} f^{\prime}\left(r_{t}\right)\right) r c\left(Z_{t}, W_{t}\right)^{2} \\
& +\epsilon\left(2 B-\gamma H\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right)-\gamma H\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right) f\left(r_{t}\right) \\
& +L_{w} f^{\prime}\left(r_{t}\right) \mathbb{E}\left(\left|Z_{t}\right|\right) G_{t}+\epsilon L_{w}(6+8 \lambda)\left(\mathbb{E}\left(\left|\bar{X}_{t}^{1}\right|\right)^{2}+\mathbb{E}\left(\left|\bar{X}_{t}^{2}\right|\right)^{2}\right) f\left(r_{t}\right) .
\end{aligned}
$$

Synchronous coupling : when the deterministic drift is contracting, this line alone will be sufficiently small.

. Introduction

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and

$$
\begin{aligned}
K_{t} & =\left(c f\left(r_{t}\right)+\left(\alpha \frac{d\left|Z_{t}\right|}{d t}+\left(L_{U}+L_{w}\right)\left|Z_{t}\right|\right) f^{\prime}\left(r_{t}\right)\right) G_{t} \\
& +4\left(f^{\prime \prime}\left(r_{t}\right) G_{t}+24 \epsilon \max \left(1, \frac{1}{2 \alpha}\right) r_{t} f^{\prime}\left(r_{t}\right)\right) r c\left(Z_{t}, W_{t}\right)^{2} \\
& +\epsilon\left(2 B-\gamma H\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right)-\gamma H\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right) f\left(r_{t}\right) \\
& +L_{w} f^{\prime}\left(r_{t}\right) \mathbb{E}\left(\left|Z_{t}\right|\right) G_{t}+\epsilon L_{W}(6+8 \lambda)\left(\mathbb{E}\left(\left|\bar{X}_{t}^{1}\right|\right)^{2}+\mathbb{E}\left(\left|\bar{X}_{t}^{2}\right|\right)^{2}\right) f\left(r_{t}\right) .
\end{aligned}
$$

Translates the effect the Lyapunov function has in bringing back processes that would have ventured at infinity.

. Introduction

Calculating the dynamics

We have

$$
\forall t \geq 0, e^{c t} \rho_{t} \leq \rho_{0}+\int_{0}^{t} e^{c s} K_{s} d s+M_{t}
$$

where M_{t} is a continuous local martingale and

$$
\begin{aligned}
K_{t} & =\left(c f\left(r_{t}\right)+\left(\alpha \frac{d\left|Z_{t}\right|}{d t}+\left(L_{U}+L_{w}\right)\left|Z_{t}\right|\right) f^{\prime}\left(r_{t}\right)\right) G_{t} \\
& +4\left(f^{\prime \prime}\left(r_{t}\right) G_{t}+24 \epsilon \max \left(1, \frac{1}{2 \alpha}\right) r_{t} f^{\prime}\left(r_{t}\right)\right) r c\left(Z_{t}, W_{t}\right)^{2} \\
& +\epsilon\left(2 B-\gamma H\left(\bar{X}_{t}^{1}, \bar{V}_{t}^{1}\right)-\gamma H\left(\bar{X}_{t}^{2}, \bar{V}_{t}^{2}\right)\right) f\left(r_{t}\right) \\
& +L_{w} f^{\prime}\left(r_{t}\right) \mathbb{E}\left(\left|Z_{t}\right|\right) G_{t}+\epsilon L_{w}(6+8 \lambda)\left(\mathbb{E}\left(\left|\bar{X}_{t}^{1}\right|\right)^{2}+\mathbb{E}\left(\left|\bar{X}_{t}^{2}\right|\right)^{2}\right) f\left(r_{t}\right) .
\end{aligned}
$$

Contains the non linearity, tackled by taking L_{W} sufficiently small.

Convergence rate for VFP and Unif. in time Prop. of Chaos

Calculating the dynamics

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos
Assumptions and Results
II. Proof of convergence

Conclude using Gronwall's lemma.

Convergence rate for VFP and Unif. in time Prop. of Chaos

Pierre Le Bris
I. Introduction

Processes and
Propagation of chaos
Propagation of chaos
Assumptions and Results
II. Proof of convergence
Coupling method
Construction of a distance
Convergence
III. Proof of propagation of chaos

III. Proof of propagation of chaos

Coupling

I. Introduction

We consider the following coupling

$$
\left\{\begin{array}{l}
d \bar{X}_{t}^{i}=\bar{V}_{t}^{i} d t \\
d \bar{V}_{t}^{i}=-\bar{V}_{t}^{i} d t-\nabla U\left(\bar{X}_{t}^{i}\right) d t-\nabla W * \bar{\mu}_{t}\left(\bar{X}_{t}^{i}\right) d t+\sqrt{2} r c\left(Z_{t}^{i}, W_{t}^{i}\right) d B_{t}^{r c, i} \\
\quad \quad \sqrt{2} s c\left(Z_{t}^{i}, W_{t}^{i}\right) d B_{t}^{s c, i} \\
\bar{\mu}_{t}=\mathcal{L}\left(\bar{X}_{t}^{i}\right) \\
d X_{t}^{i, N}=V_{t}^{i, N} d t \\
d V_{t}^{i, N}= \\
\quad-V_{t}^{i, N} d t-\nabla U\left(X_{t}^{i, N}\right) d t-\frac{1}{N} \sum_{j=1}^{N} \nabla W\left(X_{t}^{i, N}-X_{t}^{j, N}\right) d t \\
\\
\quad+\sqrt{2}\left(r c\left(Z_{t}^{i}, W_{t}^{i}\right)\left(I d-2 e_{t}^{i} e_{t}^{i, T}\right) d B_{t}^{r c, i}+s c\left(Z_{t}^{i}, W_{t}^{i}\right) d B_{t}^{s c, i}\right),
\end{array}\right.
$$

Convergence rate for VFP and Unif. in time Prop. of Chaos

Pierre Le Bris

. Introduction

Processes and Propagation of chaos Propagation of chaos

Define

$$
\begin{aligned}
r_{t}^{i}= & \alpha\left|Z_{t}^{i}\right|+\left|Q_{t}^{i}\right|, \\
\tilde{H}(x, v)= & \int_{0}^{H(x, v)} \exp (a \sqrt{u}) d u \\
\rho_{t}= & \frac{1}{N} \sum_{i=1}^{N} f\left(r_{t}^{i}\right)\left(1+\epsilon \tilde{H}\left(\bar{X}_{t}^{i}, \bar{V}_{t}^{i}\right)+\epsilon \tilde{H}\left(X_{t}^{i, N}, V_{t}^{i, N}\right)\right. \\
& \left.+\frac{\epsilon}{N} \sum_{j=1}^{N} \tilde{H}\left(\bar{X}_{t}^{j}, \bar{V}_{t}^{j}\right)+\frac{\epsilon}{N} \sum_{j=1}^{N} \tilde{H}\left(X_{t}^{j, N}, V_{t}^{j, N}\right)\right) \\
:= & \frac{1}{N} \sum_{i=1}^{N} f\left(r_{t}^{i}\right) G_{t}^{i}:=\frac{1}{N} \sum_{i=1}^{N} \rho_{t}^{i} .
\end{aligned}
$$

Convergence rate for VFP and Unif. in time Prop. of Chaos

Pierre Le Bris

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos Assumptions and Results

II. Proof of

 convergence Coupling method Construction of a distanceWe get

$$
d e^{c t} \rho_{t}^{i} \leq e^{c t} K_{t}^{i} d t+d M_{t}^{i}
$$

Distance

with...

Distance

Pierre Le Bris

$$
\begin{aligned}
K_{t}^{i}= & f^{\prime}\left(r_{t}^{i}\right) G_{t}^{i}\left(\alpha \frac{d\left|Z_{t}^{i}\right|}{d t}+\left(L_{U}+L_{W}\right)\left|Z_{t}^{i}\right|+\left(\epsilon C_{t, 1}+C_{f, 2}\right) r_{t}^{i} r c^{2}\left(Z_{t}^{i}, W_{t}^{i}\right)\right)+2 c f\left(r_{t}^{i}\right) G_{t}^{i} \\
+ & 4 f^{\prime \prime}\left(r_{t}^{i}\right) G_{t}^{i} r^{2}\left(Z_{t}^{i}, W_{t}^{i}\right)+\left|\nabla W * \bar{\mu}_{t}\left(\bar{X}_{t}^{i}\right)-\frac{1}{N} \sum_{j=1}^{N} \nabla W\left(\bar{X}_{t}^{i}-\bar{X}_{t}^{j}\right)\right| f^{\prime}\left(r_{t}^{i}\right) G_{t}^{i} \\
+ & \epsilon f\left(r_{t}^{i}\right)\left(4 \tilde{B}-\frac{\gamma}{16} \tilde{H}\left(\bar{X}_{t}^{i}, \bar{v}_{t}^{i}\right)-\frac{\gamma}{16} \tilde{H}\left(X_{t}^{i, N}, V_{t}^{i, N}\right)-\frac{\gamma}{16 N} \sum_{j=1}^{N} \tilde{H}\left(\bar{X}_{t}^{j}, \bar{V}_{t}^{j}\right)\right. \\
& \left.\quad-\frac{\gamma}{16 N} \sum_{j=1}^{N} \tilde{H}\left(X_{t}^{j, N}, V_{t}^{j, N}\right)\right) \\
+ & L_{W} \frac{\sum_{j=1}^{N}\left|Z_{t}^{j}\right|}{N} f^{\prime}\left(r_{t}^{i}\right) G_{t}^{i}-c f\left(r_{t}^{i}\right) G_{t}^{i}-\epsilon f\left(r_{t}^{i}\right)\left(\frac{\gamma}{16} \bar{H}_{i} \exp \left(a \sqrt{\bar{H}_{i}}\right)\right. \\
& \left.+\frac{\gamma}{16} H_{i}^{N} \exp \left(a \sqrt{H_{i}^{N}}\right)+\frac{\gamma}{16 N} \sum_{j=1}^{N} \bar{H}_{j} \exp \left(a \sqrt{\bar{H}_{j}}\right)+\frac{\gamma}{16 N} \sum_{j=1}^{N} H_{j}^{N} \exp \left(a \sqrt{H_{j}^{N}}\right)\right) \\
+ & \epsilon L_{W}(6+8 \lambda) f\left(r_{t}^{i}\right)\left(\frac{\sum_{j=1}^{N}\left|X_{t}^{j, N}\right|}{N}\right)^{2} \exp \left(a \sqrt{H_{i}^{N}}\right) \\
& \quad-\frac{\gamma \epsilon}{8} f\left(r_{t}^{i}\right)\left(H_{i}^{N} \exp \left(a \sqrt{H_{i}^{N}}\right)+\frac{1}{N} \sum_{j=1}^{N} H_{j}^{N} \exp \left(a \sqrt{H_{j}^{N}}\right)\right)
\end{aligned}
$$

I. Introduction

Processes and
Propagation of chaos
Propagation of chaos
Assumptions and Results
II. Proof of convergence Coupling method Construction of a distance
Convergence
III. Proof of propagation of chaos

Thank you

