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e;\:\‘v‘g)lmusm'd dXti,N _ th,th

aviN = v2aBN — VPN dt — vUXN) dt — 5 S WP — xEY) dt
N~ N —— ————
Coupling method B.m friction confinement interaction

uction of a N _ 1 N )
Ht =N Zi:1 5)(;”"
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. i\N \/i,N N N d
o o Particle system ((X{N, VPM))ior v, with XPY, VPN e R

.....
Propagation of chaos

dXiN = VNt , ' 4 _
dV’ N f aBy" — Vi dt — vUXM) dt — N WX — XEY) at
pling method

B.m friction confinement interaction

N _ 1N )
Ht =N Zi:1 5)(,”"’

Underdamped Langevin diffusion (Non linear particle)

dX: = Vit
dVi = v2dB; — Vidt — VU(Xi)dt — VW = i (X:)at (NL)
/._L[ = LaW(Xt)

with

VW s fir(x /VWX y)ii(dy)
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. i\N ysi,N . i\N \/i,N d
o Particle system ((X{%, Vi™))izr, v, with X7, V™ € R

ax(h=viNat . '

dviN = v2dBi — ViNdt — vUX;N)dt — VW s (XM)dt (PS)
N_ 15N 5

He = 5 2y xiN

Underdamped Langevin diffusion (Non linear particle)

aX; = Vidt
dVi = v2dB: — Vidt — VU(X:)dt — VW  [ir(X;)dt (NL)
ht = LaW(Xy)

with
VW s fiu(x) = / IW(x— y)u(dy)
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Propagation of chaos

Provided the particles start in independent positions, they will stay "more
or less" independent.
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Results

Coupling method

Construction of a
distance

Convergence

Propagation of chaos

Provided the particles start in independent positions, they will stay "more
or less" independent.

To quantify this "more or less", we compare the law of any subset of k
particles within the N particles system to the law of k independent
non-linear particles.
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Assumptions on the
confinement potential

Assumption
The potential U is non-negative and there exist A > 0 and A > 0 such
that

2
vx e R?, %VU(X)~X2)\(U(X)+%>—A.

Furthermore, there is a constant Ly > 0 such that

vx,y eRY xR, |[VU(x)-VU(y)| < Lulx —yl.
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Assumptions on the
confinement potential

The double-well potential given by

U(x):{ (¢ =1)" X <1,

(]x| =1)®  otherwise.

satisfies the previous assumptions.

FIGURE — Double well potential
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Assumptions on the interaction
potential

Assumption
VW (0) = 0 and there exists Lw < \/8 such that

Vx,y eRxRY, VW (x)— VW (y)| < Lw|x -yl

In particular VW (x) | < Lw|x| for all x € R?.
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tion of chaos

Distance

L1-Wasserstein and L2-Wasserstein distances

Definition
Let 12 and v be two probability measures on R?. We define

Wiv) = _inf /|x — X + |v — ¥Ir(d(x, v)d(%, 7))

en(u,v)

Walu, v) = ( in )/|x—)"(|2+ v — V2T (d(x, v)d(%, \7)))1/2

f
ren(u,v

where the infimum is chosen on all couplings of  and v.
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Propagation of chaos

Distance

L1-Wasserstein and L2-Wasserstein distances

Definition
Let 12 and v be two probability measures on R?. We define

W(u,v) = |nf /|x—x|+|v— v|IF(d(x, v)d(x, 7))

W, v) = ( inf /|x—5<|2+ v - vPr(d(x va(x. 7))
2 H? ren(‘u‘ﬂ/) , )
where the infimum is chosen on all couplings of . and v.

Likewise, for 1 and v two probability measures on R?? and a measurable
function h : R?? x R?? — R, we define

Wh (p,v) = inf /hxvxv r(d(x,v)d(x,v)).

ren(w,v)
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Propagation of chaos

Convergence

Theorem

Let U € C' (RY) satisfy the previous assumption. There is an explicit

c" > 0 such that, for all W € C' (RY) satisfying Lw < c", there is an
explicit > 0 such that for all probability measures v{ and vZ on R?® with
a finite second moment, there are explicit constants Cy, C, > 0 such that
forallt > 0,

Wi (I/t,l/;) <e "'C, Wo (V,,l/t) <e "G,

where i} and 7? are the probability densities of solutions of (NL) with
respective initial distributions 7 and 5.

Furthermore, we have existence and unicity of -as well as convergence
towards - a stationary solution.
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Propagation of chaos

Theorem

Letc® > 0anda> 0. Let U € C' (R?) satisfy the previous assumption.
There is an explicit ¢ > 0 such that, for all W € C' (R?) satisfying

Lw < c%, there exist explicit By, B. > 0, such that for all probability
measures vy on R%? (under some initial moment assumption depending
onC® and a) and for all t > 0,

kB kB.
KN Sek\ o KB1 2 (KN —ok) o KB2
W1(1/t , Uy )_\/N, Wg(u, , Uy )_m,
for all k € N, where v°" is the marginal distribution at time t of the first k
particles (X!, Vi), ..., (X{, V) of an N particle system (PS) with initial
distribution ()N, while o, is the probability densities of (NL) with initial
distribution vy.
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Extension of

Convergence rate :

e Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory
Relat. Fields (2016)

e Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative
contraction rates for Langevin dynamics. Ann. Probab. (2019)

e Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Quantitative Harris-type theorems for
diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc.(2019)

Propagation of chaos :

e Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. An elementary
approach to uniform in time propagation of chaos. Proc. Amer. Math. Soc. (2020)
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gation of chaos

gation of chaos

Coupling

Consider two clouds of particle with different starting shape

ax; = Vidt
dV} = v2dB! — V] dt — VU(X)dt — VW x ui (X{ )dt
dX? = Vidt

dVf = v2dB; — Vidt — VU(XF)at — VW« uf(XF)alt
= Law(X;)7 e = LaW(XtZ)
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Consider two clouds of particle with different starting shape

Assumptions and

aX; = Vat
dV} = v2dB] — Viot = VU(X[)at — VW « i (X[ )l
dXf = Vot
dV2 = v2dB? — V2dt — VU(X?)dt — VW x p2(X?)dt

pi = Law(X), pf = Law(X?)
Then, denoting v{ = Law((X{, V}))

Wil f) = _inf B (IX = XFI+ |V - V7))

€N(pt,vt)
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Consider two clouds of particle with different starting shape

Assumptions and
Results

ax; = Vdt
Coupling method d‘:/t1 = \_/édB; - ‘7[1 at — VU()_(I1 )dt -V W :U/; ( _l1 )dt
dx? = Vi

dVF = v2dBf — VEdt — VU(XF)dt — VW  uf (XF)alt
pi = Law(X}), pf = Law(XF)
Then, denoting v} = Law((X{, V}))
1o Pl w2 i D2
g (5 )

Idea behind coupling arguments : instead of considering the infimum
over all couplings, construct one.
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Propagation of chaos motions.
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Results

Coupling method

Construction of a
distance

Convergence
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Coupling

To construct a coupling, play with the randomness. Here, the Brownian

motions.

FIGURE — Synchronous coupling

Choosing B' = B? :

e the Brownian noise is canceled
out in the infinitesimal evolution of
the difference

(Z, W) = (X! = XE, Vi — V),
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To construct a coupling, play with the randomness. Here, the Brownian

motions.

FIGURE — Synchronous coupling

Choosing B' = B? :

e the Brownian noise is canceled
out in the infinitesimal evolution of
the difference

(Z, W) = (X! = XE, Vi — V),

e the contraction of a distance
between the processes can only be
induced by the deterministic drift.
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Assumptions and
Results

Coupling method
C

tion of a

Coupling

To construct a coupling, play with the randomness. Here, the Brownian

motions.

FIGURE — Synchronous coupling

Choosing B' = B? :

e the Brownian noise is canceled
out in the infinitesimal evolution of
the difference

(Z, W) = (X! = XE, Vi — V),

e the contraction of a distance
between the processes can only be
induced by the deterministic drift.

e Here : contraction when
Zi+Wi =0
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Convergence

Coupling

Outside of {(z, v) € R??, z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.
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Outside of {(z, v) € R??, z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.

Assumptions and

Results

X} Writing

[ ] ':
Coupling method e z .
o ) 1 R t+ W
(,r‘)rv{Ju\ tion of a B, ," e = ZF W] if Zt + Wt 75 0

) 0 otherwise
we consider
dB; = (Id — 2ece] ) dB} :
X7
. — &t
B}

FIGURE — Reflection coupling
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Assumptions and
Results

Coupling method

Coupling

Outside of {(z, v) € R??, z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.

X

B,l R

FIGURE — Reflection coupling

Writing
Z+W, .
o= Zw T4+ WO
otherwise
we consider

dB; = (Id — 2ece] ) dB} :

e this maximizes the variance of the
noise in the desired direction,
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Coupling method
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ation of chaos

Coupling

Outside of {(z, v) € R??, z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.

X

B,l R4

FIGURE — Reflection coupling

Writing
Z+W, .
o= Zw T4+ WO
otherwise
we consider

dB; = (Id — 2ece] ) dB} :

e this maximizes the variance of the
noise in the desired direction,

e requires a modification of the
distance by some concave function.



Convergence
rate for VFP and
Unif. in time
Prop. of Chaos

Pierre Le Bris

cesses and
tion of chaos

Assumptions and
Results

Coupling method

Construction of a
distance

Convergence

Three behaviors

« When any of the particle ventures at infinity (i.e |X;| or | V;| becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,

= use a Lyapunov function (i.e H such that $EH < B — vEH).
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Coupling method

Construction of a

Three behaviors

« When any of the particle ventures at infinity (i.e |X;| or | V;| becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,

= use a Lyapunov function (i.e H such that $EH < B — vEH).

e When the particles are near the space
{()_(117)_(f2’ \_/125 \_/12) € R4d7)_(t1 - )_(IZ + ‘7[1 - \_/12 = 0}7

the L' distance will naturally contract,
= use a synchronous coupling.
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Coupling method

Construction of a

Three behaviors

« When any of the particle ventures at infinity (i.e |X;| or | V;| becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,

= use a Lyapunov function (i.e H such that $EH < B — vEH).

e When the particles are near the space

{()_(117)_(f2’ \_/125 \_/12) € R4d7)_(t1 - )_(IZ + ‘7[1 - \_/12 = 0}7
the L' distance will naturally contract,
= use a synchronous coupling.

e Otherwise, the particles are in a compact set,
= use a reflection coupling.
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Results

II. Proof of
convergence
Coupling method

Construction of a
distance

Convergence
ll. Proof of

propagation of
chaos

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that %IEH < C — \EH).
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Construction of a
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gation of chaos

gation of chaos

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that %EH < C — \EH).
Step 2 : Consider

p((xa, v1),(xe2, v2))
:f(a|X1 — X2| + ‘X1 — Xo + Vy — Vg‘) (1 + EH(X1, V1) + EH(Xz, V2))
=f(r)G
such that
Cip((x1, v1), (X2, v2)) 2 |X1 — Xo| + |V — V2.

f is nondecreasing, non negative, concave, and constant for r greater
than a threshold.



Convergence
rate for VFP and
Unif. in time
Prop. of Chaos

Pierre Le Bris

Assumptions and
Results

Coupling method

Construction of a
distance

Convergence

Construction of a distance

Step 1 : Construct a Lyapunov function H (such that %IEH < C — \EH).
Step 2 : Consider

p((xa, v1),(xe2, v2))
:f(a|X1 — X2| + ‘X1 — Xo + Vy — Vg‘) (1 + EH(X17 V1) + EH(Xg, V2))
=f(r)G
such that
Cip((x1, v1), (X2, v2)) 2 |X1 — Xo| + |V — V2.

f is nondecreasing, non negative, concave, and constant for r greater
than a threshold. o
Step 3 : Coupling and calculate the dynamics of p((X!, V'), (X2, V?)).

® |n a contracting region of space, synchronous coupling.
* Near that space, reflection coupling.
e "Atinfinity", use the Lyapunov function.
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aXx; = V/at . .
dV} = -Vidt — VU (X}) dt — VW x p (X}) dt + V2sc (Z;, W;) dB°
+V2re(Z, W) dBf°

Coupling method ,U/I_: La\iV ()_(11)
e dXf = Vidt i i
dVF = —VEdt — VU(XF)ot — YW = ju(XF)at + V250 (Zi, W) dBY°

+V2re(zi, W) (ld — 2ere] ) dBf°
/1; = |_aW()(,2)7

with
rc® + sc® =1,
3

re(z,w)=0if|z+w| < Zoral|z|+|z4+w| > R +&,

re(z,w)=1if|z4+w| > ¢and alz| + |2+ w| < Ry.
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Calculating the dynamics

We have

t
vt >0, GCtp[ < po +/ eCSsts + M;,
0

where M; is a continuous local martingale and
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We have

t
vt >0, eCtpz < po +/ eCSsts + M;,
0

where M; is a continuous local martingale and

C o ’“m ofa d Z

e K= (et (a2 +(Lu+LW)|Z\) () G
(f” (I’[) G;+24emax( ) I’[f (I’t ) fC Z(, Wt)

+e(2B—H (X, V) = AH(XE, V7)) £ (r)

(
+ Lwf (R)E(|Z]) G + eLw (6 + 8)) (IE(| ) +IE|X¢|)) ().
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1. Introduction

Processes and
Propagation of chaos

Propagation of chaos

Assumptions and
Results

II. Proof of
convergence
Coupling method
Construction of a
distance
Convergence

ll. Proof of

propagation of
chaos

Calculating the dynamics

We have .
vt >0, e pr < po +/ e“Ksds + M,
0

where M; is a continuous local martingale and

dt
+4 (f” (1) Gt + 24€ max (1, 2171) nf (r,)) rc(Z:, Wh)?
e (2B—yH (XL W) —yH(XE, VD)) £ (r)

+ Lwf' (R)E(|Z]) G + eLw (6 + 8) (IE (1X! |)2 + E(|)‘(,2|)2) f(n).

Ki = (cf(n) + (a‘”Zf' + (Lu + LW)|Z,\) f (r,)) G

Reflection coupling : choose f sufficiently concave, to have those two
lines nonpositive
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Propagation of chaos
Assumptions and
Results

II. Proof of
sonvergence
Coupling method

Construction of a
distance

Convergence

ll. Proof o

propa

chaos

Calculating the dynamics

We have .
vt >0, GCtp[ < po +/ eCSsts + M;,
0
where M; is a continuous local martingale and

Ki = (cf(n) + (adljf” + (Lu + LW)|Z,\) f (r,)) G

+4 (f” (rt) Gt + 24¢ max (1, 2171) rf’ (r,)) rc(Z, Wi)?
te (25 —+H ()‘(,‘, \7,‘) — yH(X, \7,"‘)) £(r)
4 Lwf (M E(|Z]) Gt + eLw (6 + 8)) (E (I)'(? |)2 + E(|)‘(,2|)2) f(r).

Synchronous coupling : when the deterministic drift is contracting, this
line alone will be sufficiently small.
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Propagation of chaos

Assumptions and
Results

Coupling method

Construction of a
distance

Convergence

Calculating the dynamics

We have .
vt >0, GCtp[ < po +/ eCSsts + M;,
0
where M; is a continuous local martingale and

b= (et 0+ (0% + (Lo + Lwizil ) £ (1)) &

+4 (f” (rt) Gt + 24¢ max (1, 21?) rf’ (r,)) rc(Z, Wi)?
te (25 —AH ()‘(2, \7,‘) — yH(XE, \7,2)) £(r)
4 Lwf (ME(|Z]) Gt + eLw (6 + 8)) (E (I)'(? |)2 + E(|)‘(,2|)2> f(r).

Translates the effect the Lyapunov function has in bringing back
processes that would have ventured at infinity.
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Propagation of chaos

Assumptions and
Results

Coupling method

Construction of a
distance

Convergence

Calculating the dynamics

We have

t
vVt >0, eCtpf < po +/ e“Ksds + M;,
0

where M; is a continuous local martingale and

Ki = (cf(rt) + <ad(|jzt" +(Lu+ LW)|z,|> f'(r,)> G
4 (f” (i) Gi + 24¢ max (1, 2171) nf (r,)) re(Z, Wiy?
te (25 —H ()‘(,‘, \7,‘) —yH(X?, V?)) f(rr)
+Lwf' (M) E(1Z1]) Gi + eLw (6 + 8)) (E C) +1E(\5<?\)2) ().

Contains the non linearity, tackled by taking Lw sufficiently small.
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e We consider the following coupling
dXi = Vidt . | -
T dVj = —Vidt - vu (5(,’) dt — VW x fis (X)) dt + v2rc (Z{, W}) dB'
Convergence +\/§SC (Ztly VV{’) dB;sc,l
Ill. Proof of - i
propagation of Mt : L (X;)
enaes axN = vVt , . _

VN = —viNdt — vUXM)at — S VWY = XEN)dt

+V2 (re (Zi, W) (10 — 2¢je} ") dB> + s (Z, Wi) aB;°")
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Define

Assumptions and

Results r,i :OC|ZII‘ + |O;|7

. H(x,v)
Coupling method H(x, v) :/ exp (avu) du
0

Construction of a
distance

Convergence

ey p=t Z £ () (14 B (R T) + B, Vi)
N N . )
SR -
1 o A\ A ey
:N;f(l}) Gt = szt

2\
Iz
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Convergence
rate for VFP and
Unif. in time
Prop. of Chaos

Pierre Le Bris

I1l. Proof of
propagation of
chaos

Distance

K =f' (r{) G <a d‘dzt” +(Lu+Lw)1Z]| + (¢Cr1 + Cr2) rire® (2, W,’>> + 2¢f (r,") G
N
+ 41" (i) Gire® (2L, W) + 19w s fie (X)) - 1N ; vw (X - X)) 1 (i) ¢l
et (1) <49 DR (%) - LR - S B (%)
- ]‘Ié A, Vf’”))
L2 (Y 6l o () 6 - e (1)
et (/) g S (a/R) + 3 5 e ()
i 2
+elw (64 8XN)f (I’tl) (#X{N') exp (a HIN)

_ %f (r{) <HI.Ne><p <a\/HTV +1NiHiNexp (a\/?/v)) .
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