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Processes

Particle system ((X i,N
t ,V i,N

t ))i=1,...,N , with X i,N
t ,V i,N

t ∈ Rd
dX i,N

t = V i,N
t dt

dV i,N
t =

√
2dB i

t − V i,N
t dt −∇U(X i,N

t )dt − 1
N

∑N
j=1∇W (X i,N

t − X j,N
t )dt

µN
t = 1

N

∑N
i=1 δX i,N

t

Underdamped Langevin diffusion (Non linear particle)
dX̄t = V̄tdt
dV̄t =

√
2dBt − Vtdt −∇U(X̄t )dt −∇W ∗ µ̄t (X̄t )dt

µ̄t = Law(X̄t )

(NL)

with
∇W ∗ µ̄t (x) =

∫
Rd
∇W (x − y)µ̄t (dy)
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Propagation of chaos

Provided the particles start in independent positions, they will stay "more
or less" independent.

To quantify this "more or less", we compare the law of any subset of k
particles within the N particles system to the law of k independent
non-linear particles.
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Assumptions on the
confinement potential

Assumption
The potential U is non-negative and there exist λ > 0 and A ≥ 0 such
that

∀x ∈ Rd ,
1
2
∇U (x) · x ≥ λ

(
U (x) +

|x |2

4

)
− A.

Furthermore, there is a constant LU > 0 such that

∀x , y ∈ Rd × Rd , |∇U (x)−∇U (y) | ≤ LU |x − y |.
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Assumptions on the
confinement potential

The double-well potential given by

U (x) =

{ (
x2 − 1

)2
if |x | ≤ 1,

(|x | − 1)2 otherwise.

satisfies the previous assumptions.

FIGURE – Double well potential
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Assumptions on the interaction
potential

Assumption
∇W (0) = 0 and there exists LW ≤ λ/8 such that

∀x , y ∈ Rd × Rd , |∇W (x)−∇W (y) | ≤ LW |x − y |.

In particular |∇W (x) | ≤ LW |x | for all x ∈ Rd .
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Distance

L1-Wasserstein and L2-Wasserstein distances

Definition
Let µ and ν be two probability measures on R2d . We define

W(µ, ν) = inf
Γ∈Π(µ,ν)

∫
|x − x̃ |+ |v − ṽ |Γ(d(x , v)d(x̃ , ṽ))

W2(µ, ν) =
(

inf
Γ∈Π(µ,ν)

∫
|x − x̃ |2 + |v − ṽ |2Γ(d(x , v)d(x̃ , ṽ))

)1/2

where the infimum is chosen on all couplings of µ and ν.

Likewise, for µ and ν two probability measures on R2d and a measurable
function h : R2d × R2d → R, we define

Wh (µ, ν) = inf
Γ∈Π(µ,ν)

∫
h (x , v , x̃ , ṽ) Γ (d (x , v) d (x̃ , ṽ)) .
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W2(µ, ν) =
(

inf
Γ∈Π(µ,ν)

∫
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Convergence

Theorem
Let U ∈ C1 (Rd) satisfy the previous assumption. There is an explicit
cW > 0 such that, for all W ∈ C1 (Rd) satisfying LW < cW , there is an
explicit τ > 0 such that for all probability measures ν1

0 and ν2
0 on R2d with

a finite second moment, there are explicit constants C1,C2 > 0 such that
for all t > 0,

W1

(
ν̄1

t , ν̄
2
t

)
≤ e−τ tC1 , W2

(
ν̄1

t , ν̄
2
t

)
≤ e−τ tC2

where ν̄1
t and ν̄2

t are the probability densities of solutions of (NL) with
respective initial distributions ν̄1

0 and ν̄2
0 .

Furthermore, we have existence and unicity of -as well as convergence
towards - a stationary solution.
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Propagation of chaos

Theorem
Let C0 > 0 and a > 0. Let U ∈ C1 (Rd) satisfy the previous assumption.
There is an explicit cW > 0 such that, for all W ∈ C1 (Rd) satisfying
LW < cW , there exist explicit B1,B2 > 0, such that for all probability
measures ν0 on R2d (under some initial moment assumption depending
on C0 and a) and for all t ≥ 0,

W1

(
νk,N

t , ν̄⊗k
t

)
≤ kB1√

N
, W2

2

(
νk,N

t , ν̄⊗k
t

)
≤ kB2√

N
,

for all k ∈ N, where νk,N
t is the marginal distribution at time t of the first k

particles
(
(X 1

t ,V
1
t ), ...., (X k

t ,V
k
t )
)

of an N particle system (PS) with initial
distribution (ν0)⊗N , while ν̄t is the probability densities of (NL) with initial
distribution ν0.
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Extension of

Convergence rate :

• Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory
Relat. Fields (2016)

• Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative
contraction rates for Langevin dynamics. Ann. Probab. (2019)

• Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Quantitative Harris-type theorems for
diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc.(2019)

Propagation of chaos :

• Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. An elementary
approach to uniform in time propagation of chaos. Proc. Amer. Math. Soc. (2020)
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II. Proof of convergence
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Coupling

Consider two clouds of particle with different starting shape
dX̄ 1

t = V̄ 1
t dt

dV̄ 1
t =
√

2dB1
t − V̄ 1

t dt −∇U(X̄ 1
t )dt −∇W ∗ µ1

t (X̄ 1
t )dt

dX̄ 2
t = V̄ 2

t dt
dV̄ 2

t =
√

2dB2
t − V̄ 2

t dt −∇U(X̄ 2
t )dt −∇W ∗ µ2

t (X̄ 2
t )dt

µ1
t = Law(X̄ 1

t ), µ2
t = Law(X̄ 2

t )

Then, denoting ν i
t = Law((X̄ i

t , V̄
i
t ))

W1(ν1
t , ν

2
t ) = inf

Γ∈Π(µt ,νt )
EΓ

(
|X̄ 1

t − X̄ 2
t |+ |V̄ 1

t − V̄ 2
t |
)

Idea behind coupling arguments : instead of considering the infimum
over all couplings, construct one.
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Coupling

To construct a coupling, play with the randomness. Here, the Brownian
motions.

FIGURE – Synchronous coupling

Choosing B1 = B2 :

• the Brownian noise is canceled
out in the infinitesimal evolution of
the difference
(Zt ,Wt ) =

(
X̄ 1

t − X̄ 2
t , V̄

1
t − V̄ 2

t
)
,

• the contraction of a distance
between the processes can only be
induced by the deterministic drift.

• Here : contraction when
Zt + Wt = 0
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Coupling

Outside of {(z, v) ∈ R2d , z + w = 0}, it is necessary to make use of the
noise to get the processes closer to one another.

FIGURE – Reflection coupling

Writing

et =

{
Zt +Wt
|Zt +Wt |

if Zt + Wt 6= 0
0 otherwise

we consider
dB2

t =
(
Id − 2eteT

t
)

dB1
t :

• this maximizes the variance of the
noise in the desired direction,

• requires a modification of the
distance by some concave function.
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FIGURE – Reflection coupling

Writing

et =

{
Zt +Wt
|Zt +Wt |

if Zt + Wt 6= 0
0 otherwise

we consider
dB2

t =
(
Id − 2eteT

t
)

dB1
t :

• this maximizes the variance of the
noise in the desired direction,

• requires a modification of the
distance by some concave function.
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Three behaviors

•When any of the particle ventures at infinity (i.e |X̄t | or |V̄t | becomes
sufficiently big), the friction and confinement potential will tend to bring
the particle back,
=⇒ use a Lyapunov function (i.e H such that d

dt EH ≤ B − γEH).

•When the particles are near the space{(
X̄ 1

t , X̄
2
t , V̄

2
t , V̄

2
t

)
∈ R4d , X̄ 1

t − X̄ 2
t + V̄ 1

t − V̄ 2
t = 0

}
,

the L1 distance will naturally contract,
=⇒ use a synchronous coupling.

• Otherwise, the particles are in a compact set,
=⇒ use a reflection coupling.
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Construction of a distance

Step 1 : Construct a Lyapunov function H (such that d
dt EH ≤ C − λEH).

Step 2 : Consider

ρ((x1, v1),(x2, v2))

=f (α|x1 − x2|+ |x1 − x2 + v1 − v2|) (1 + εH(x1, v1) + εH(x2, v2))

=f (r)G

such that
C1ρ((x1, v1), (x2, v2)) ≥ |x1 − x2|+ |v1 − v2|.

f is nondecreasing, non negative, concave, and constant for r greater
than a threshold.
Step 3 : Coupling and calculate the dynamics of ρ((X̄ 1

t , V̄
1
t ), (X̄ 2

t , V̄
2
t )).

• In a contracting region of space, synchronous coupling.
• Near that space, reflection coupling.
• "At infinity", use the Lyapunov function.
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Construction of the coupling



dX̄ 1
t = V̄ 1

t dt
dV̄ 1

t = −V̄ 1
t dt −∇U

(
X̄ 1

t
)

dt −∇W ∗ µt
(
X̄ 1

t
)

dt +
√

2sc (Zt ,Wt ) dBsc
t

+
√

2rc (Zt ,Wt ) dBrc
t

µt = Law
(
X̄ 1

t
)

dX̄ 2
t = V̄ 2

t dt
dV̄ 2

t = −V̄ 2
t dt −∇U(X̄ 2

t )dt −∇W ∗ µ̃t (X̄ 2
t )dt +

√
2sc (Zt ,Wt ) dBsc

t

+
√

2rc (Zt ,Wt )
(
Id − 2eteT

t
)

dBrc
t

µ̃t = Law(X̄ 2
t ),

with

rc2 + sc2 = 1,

rc (z,w) = 0 if |z + w | ≤ ξ

2
or α|z|+ |z + w | ≥ R1 + ξ,

rc (z,w) = 1 if |z + w | ≥ ξ and α|z|+ |z + w | ≤ R1.
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Calculating the dynamics

We have

∀t ≥ 0, ectρt ≤ ρ0 +

∫ t

0
ecsKsds + Mt ,

where Mt is a continuous local martingale and

Kt =

(
cf (rt ) +

(
α

d |Zt |
dt

+ (LU + LW )|Zt |
)

f ′ (rt )

)
Gt

+4
(

f ′′ (rt ) Gt + 24εmax

(
1,

1
2α

)
rt f ′ (rt )

)
rc (Zt ,Wt )

2

+ε
(

2B − γH
(

X̄ 1
t , V̄

1
t

)
− γH(X̄ 2

t , V̄
2
t )
)

f (rt )

+LW f ′ (rt )E (|Zt |) Gt + εLW (6 + 8λ)

(
E
(
|X̄ 1

t |
)2

+ E(|X̄ 2
t |)2

)
f (rt ) .
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f (rt ) .

Reflection coupling : choose f sufficiently concave, to have those two
lines nonpositive



Convergence
rate for VFP and

Unif. in time
Prop. of Chaos

Pierre Le Bris

I. Introduction
Processes and
Propagation of chaos

Propagation of chaos

Assumptions and
Results

II. Proof of
convergence
Coupling method

Construction of a
distance

Convergence

III. Proof of
propagation of
chaos

19/26

Calculating the dynamics

We have

∀t ≥ 0, ectρt ≤ ρ0 +

∫ t

0
ecsKsds + Mt ,

where Mt is a continuous local martingale and

Kt =

(
cf (rt ) +

(
α

d |Zt |
dt

+ (LU + LW )|Zt |
)

f ′ (rt )

)
Gt

+ 4
(

f ′′ (rt ) Gt + 24εmax

(
1,

1
2α

)
rt f ′ (rt )

)
rc (Zt ,Wt )

2

+ ε
(

2B − γH
(

X̄ 1
t , V̄

1
t

)
− γH(X̄ 2

t , V̄
2
t )
)

f (rt )

+ LW f ′ (rt )E (|Zt |) Gt + εLW (6 + 8λ)

(
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Synchronous coupling : when the deterministic drift is contracting, this
line alone will be sufficiently small.
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Translates the effect the Lyapunov function has in bringing back
processes that would have ventured at infinity.
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Contains the non linearity, tackled by taking LW sufficiently small.
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Calculating the dynamics

Conclude using Gronwall’s lemma.
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III. Proof of propagation of chaos
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Coupling

We consider the following coupling

dX̄ i
t = V̄ i

t dt
dV̄ i

t = −V̄ i
t dt −∇U

(
X̄ i

t
)

dt −∇W ∗ µ̄t
(
X̄ i

t
)

dt +
√

2rc
(
Z i

t ,W
i
t
)

dBrc,i
t

+
√

2sc
(
Z i

t ,W
i
t
)

dBsc,i
t

µ̄t = L
(
X̄ i

t
)

dX i,N
t = V i,N

t dt
dV i,N

t = −V i,N
t dt −∇U(X i,N

t )dt − 1
N

∑N
j=1∇W (X i,N

t − X j,N
t )dt

+
√

2
(

rc
(
Z i

t ,W
i
t
) (

Id − 2ei
te

i,T
t

)
dBrc,i

t + sc
(
Z i

t ,W
i
t
)

dBsc,i
t

)
,
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Distance

Define

r i
t =α|Z i

t |+ |Q i
t |,

H̃(x , v) =

∫ H(x,v)

0
exp

(
a
√

u
)

du

ρt =
1
N

N∑
i=1

f
(

r i
t

)(
1 + εH̃

(
X̄ i

t , V̄
i
t

)
+ εH̃(X i,N

t ,V i,N
t )

+
ε

N

N∑
j=1

H̃
(

X̄ j
t , V̄

j
t

)
+

ε

N

N∑
j=1

H̃(X j,N
t ,V j,N

t )


:=

1
N

N∑
i=1

f
(

r i
t

)
Gi

t :=
1
N

N∑
i=1

ρi
t .
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Distance

We get
dectρi

t ≤ ectK i
t dt + dM i

t

with...
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Distance

K i
t =f ′

(
r i
t

)
Gi

t

(
α

d|Z i
t |

dt
+ (LU + LW ) |Z i

t | +
(
εCf ,1 + Cf ,2

)
r i
t rc2

(
Z i

t ,W
i
t

))
+ 2cf

(
r i
t

)
Gi

t

+ 4f ′′
(

r i
t

)
Gi

t rc
2
(

Z i
t ,W

i
t

)
+ |∇W ∗ µ̄t

(
X̄ i

t

)
−

1
N

N∑
j=1

∇W
(

X̄ i
t − X̄ j

t

)
|f ′
(

r i
t

)
Gi

t

+ εf
(

r i
t

)4B̃ −
γ

16
H̃
(

X̄ i
t , V̄

i
t

)
−

γ

16
H̃(X i,N

t ,V i,N
t )−

γ

16N

N∑
j=1

H̃
(

X̄ j
t , V̄

j
t

)

−
γ

16N

N∑
j=1

H̃(X j,N
t ,V j,N

t )


+ LW

∑N
j=1 |Z

j
t |

N
f ′
(

r i
t

)
Gi

t − cf
(

r i
t

)
Gi

t − εf
(

r i
t

)( γ
16

H̄i exp

(
a
√

H̄i

)

+
γ

16
HN

i exp

(
a
√

HN
i

)
+

γ

16N

N∑
j=1

H̄j exp

(
a
√

H̄j

)
+

γ

16N

N∑
j=1

HN
j exp

(
a
√

HN
j

))

+ εLW (6 + 8λ) f
(

r i
t

)(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a
√

HN
i

)

−
γε

8
f
(

r i
t

)HN
i exp

(
a
√

HN
i

)
+

1
N

N∑
j=1

HN
j exp

(
a
√

HN
j

) .
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Thank you
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