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ABSTRACT. Let K be a quadratic imaginary field. Let II (resp. II') be a regular algebraic cuspidal representation
of GL,(Ak) (resp. GL,—1(AKk)) which is moreover cohomological and conjugate self-dual. When II is a cyclic
automorphic induction of a Hecke character x over a CM field, we show relations between automorphic periods
of II defined by Harris and those of x. Consequently, we refine a formula given by Grobner and Harris for critical
values of the Rankin-Selberg L-function L(s,II x IT'). This completes the proof of an automorphic version of
Deligne’s conjecture in certain case.
Résumé. Soit K un corps quadratique imaginaire. Soit IT (resp. II') une représentation cuspidale réguliere
algébrique de GL,(Ak) (resp. GL,—1(AKk)) qui est, de plus, cohomologique et auto-duale. Si IT est une induction
automorphe cyclique d’un caractere de Hecke x sur un corps CM, on montre les relations entre les périodes
automorphes de II définies par Harris et celles de x. Par conséquent, on affine une formule de Grobner et Harris
pour les valeurs critiques de L(s,II x IT"), L étant la fonction de Rankin-Selberg. Cela compléte la démonstration
d’une version automorphe de la conjecture de Deligne dans certains cas.
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INTRODUCTION

In [ ], M. Harris has defined complex invariants, called automorphic periods, for certain automorphic
representations over quadratic imaginary field. We believe that these periods are functorial. In this note, we
treat the case when the representation is a cyclic automorphic induction of a Hecke character over a CM field.
More precisely, let K be a quadratic imaginary field and F' © K be a CM field which is cyclic over K. Let
be certain Hecke character of F' and II(x) be the automorphic induction of x with respect to F//K. We show
relations between automorphic periods of II(x) and CM periods of x. Our main result is Theorem 3.2 below.

These relations allow us to simplify a formula obtained by Grobner and Harris on the critical values for the
Rankin-Selberg L-function of IT x IT" where IT and II" are certain automorphic representations of GL,,(Af) and
GL,—1(Ak) (c.f. [GH]). We first refine the formula in the case that II and II" are both induced from characters
and then to more general cases. We see finally that our result is compatible with Deligne’s conjecture.

1. NOTATION AND CONVENTIONS

Let Q be an algebraic closure of Q in C.

Let K  Q be a quadratic imaginary field and n be an integer at least 2. Let ex be the Artin character of
Ag associated to the extension K /Q. We fix ¢ an algebraic Hecke character of K with infinity type 2120 such
that 99 = || - ||ax- The existence follows from Lemma 4.1.4 in | ].

Let F™ (resp. F'T) be a totally real field of degree n (resp. n — 1) over Q. We set F' = KF™T (resp.
F' = KF'") a CM field. We put L = F®k F'. It is easy to see that L is a CM field of degree n(n—1) over K.
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Let ¢ € Gg := Gal(Q/Q) be the complex conjugation. We may consider it as an element of Gal(F/F™) or
Gal(F'/F'"). For any number field E, let ¥ be the set of complex embeddings of E. For z € C, we write z
for its complex conjugation. For ¢ € ¥, we define & := ¢ o0 ¢ the complex conjugation of o.

Let ® be a subset of Xp. We say that ® is a CM type of F if ® U1® = Yp and ® n1® = &. Let
{o1,09, -+ ,0,} be the elements of Xy which are the identity on K. We know {o1,09, -+ ,0,} is a CM type of
F.

n
Let x be a Hecke character of F' with infinity type x«(2) = [] 0:(2)%5;(2)%. We suppose that x is algebraic
i=1

which implies that a;, b; € Z and a; + b; = —w(x), an integer independent of i, and critical, i.e. a; # b; for
all i. We can then define ®,, a unique CM type associated to x, as follows: for each ¢, o; € ®, if a; < b;,
otherwise o; € ®,. In this case, we say that x is compatible with ®,.

For such y, one can define E(xs) < C, a number field, as in (1.1.2) of | ]. It is the field of definition
of Y(a;0; + b;o;) € Z¥F. We denote by E(x) the field generated by the values of x on Ap ¢ over E(xs). It is
still a number field. We assume that E(x) contains F' for simplicity of notation.

For any ¥ < X such that ¥ n (¥ = &, one can associate a non zero complex number pr(x, V) which is well
defined modulo E(x)* (c.f. the appendix of | ). We call it a CM period. Sometimes we write p(x, V)
instead of pp(x, ¥) if there is no ambiguity concerning the base field F.

The special values of an L-function for a Hecke character over a CM field can be interpreted in terms of
CM periods. The following theorem is proved by Blasius. We state it as in Proposition 1.8.1 in [ ] where
w should be replaced by @ := w™!¢ (for this erratum, see the notation and conventions part on page 82 in

[Har97]).

Theorem 1.1. Let x be as before. We denote Dp+ the absolute discriminant of F*. If an integer m is critical
for x in the sense of Deligne, we have

o 1/2 mn ~ O
(LT m))oesp0y ~B00 Dis i)™ (X7, Pye)res iy

We now introduce the notation ~g,) in previous theorem. Let E be a finite extension of K. We identify
C*# with E® C by the inverse of the map which sends ¢ ® z to (0(t)2)ges, for all t € E and z € C. This
is a morphism of algebras where the multiplication on the former is the usual multiplication through each
coordinates. Similarly, let X g,k be the subset of X g containing embeddings of £ into C which are the identity
on K. We may identify C*Z¥ with F ®g C.

Definition 1.1. Let A, B be two elements in E® C (resp. E®k C). We say that A ~g B (resp. A ~p.x B)
if one of the following conditions is satisfied: (i) A =0, (it) B =0 or (iii) A,Be (EQC)* (resp. (E®xC)*)
with AB™' € EX < (E®C)* (resp. (E®k C)*).

Note that this relation is symmetric but not transitive unless we know that everything is non zero.

Let (a(0))seq, be some complex numbers such that a(o) = a(o’) if o|g = o'|g for any 0,0’ € Gk .For
example, for E = E(x) and s a complex number, the values (L(s, X7))sec, satisfy the above condition. We
can define a(o) for 0 € ¥ by taking &, any lift of ¢ in Gk, and defining a(o) to be a(d). We consider
(a(0))ses i as an elements in C¥E:X

Definition-Lemma 1.1. Let b(0)seq, be some complex numbers with the same property as a(0)sec,- We
assume b(c) # 0 for all o € Gi. We fix 09 € Y. We then have (a(0))ses . ~E:x (0(0))oesy if and only

L aloo)  — a(og)\ _ a(roo)
T hogy @ T <b<ao>> = b(rov)

In this case, we say a ~p b equivariant under action of Gx. In particulier,

for all T € Gg.

b((;) e F for all 0 € Gg.

At last, we introduce certain notation concerning Hecke characters of K.
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Definition 1.2. For n an algebraic Hecke character of K with infinity type 2™z we define:

e 77 =n~1¢ a Hecke character of K.
1(z) = n(z)/n(z) a Hecke character of K.
no the Hecke character of Q such that nn® = (10 © Nay/ag)ll - ||a(n)+b(n),

N =n/mo o Nayjag-

2. UNITARY SIMILITUDE GROUP AND BASE CHANGE

In this section, we recall a result on base change of representations for similitude unitary groups. Let G be
a connected quasi-split reductive group over Q and G’ = Res k/QG K. Roughly speaking, the base change is a
correspondence from certain automorphic representations of G(Ag) to certain automorphic representations of
G'(Ag) = G(Ak). We refer to Section 26 of | ] for more details.

Over a local field, this correspondence can be defined concretely for unramified representations (c.f. | )]
and is in fact a map from the set of unramified representations of G to that of G’. This allows us to give a
precise definition for global base change. For m an admissible irreducible representation of G(Ag), we say II, a
representation of G(A), is a (weak) base change of 7 if for all v, a finite place of Q at which 7 is unramified
and G is quasi-split, and for all w, a place of K over v, Il is the base change of m,. In this case, we say Il
descends to 7 by base change.

For example, if v is a place of Q split in K. Let w be a place of K above v. We know Q, =~ K,, and hence
G(Qy) = G(Ky). The local base change map is the identity.

Let r, s € N such that r + s = n. Fix ¢1, g2 two places of Q which are split in K and inert in F'". Let V be a
n-dimensional vector space over K. The calculation of local invariants of unitary groups in chapter 2 of | ]
shows that there exists a hermitian form on V' with respect to K/Q such that the associated unitary group
over Q is quasi-split at all finite places except q; and ¢o, ramified at one or two places between ¢; and go and
has infinity sign (r,s). We denote U(r, s) this unitary group and write GU (r, s) for the associated similitude
group.

One can show that GU(r,s)x = U(r,s)k X G, k. In particular, GU(Ag) = GL,(Ag) x Ag. For II a
cuspidal representation of GL,(Ak) and £ a Hecke character of K, IT® £ defines a cuspidal representation of
GU(Afk). Conversely, by the tensor product theorem, every irreducible automorphic representation of GU (A )
can be written in the form II ® £&. Moreover, II and £ are unique up to isomorphisms.

Let us consider now the base change for G = GU(r, s). Theorem 2.1.2 and Theorem 3.1.2 of | | tells us
when II ® ¢ descends to a representation of G(Ag). In this note, we start with a representation of GL,(Ak).
The following lemma will be useful (¢ .f. Lemma V'1.2.10 of | ]):

Lemma 2.1. Let II be a conjugate self-dual cuspidal representation of GLy,(Ag). We assume II is cohomo-
logical and supercuspidal at places over q1 and qo. There always exists £, a Hecke character of K, such that
II®¢E descends to a representation of G(Ag).

3. AUTOMORPHIC PERIOD

In this note, a motive M simply means a pure motive for absolute Hodge cycles in the sense of Deligne.
We refer the reader to | | for detailed definitions. We recall that an integer m is critical for M if neither
Lo(M, s) nor Lo (M, 1 — s) has a pole at s = m where M is the dual of M. In this case, we say m is critical
for M.

The Hodge type of M is defined by the set T' = T'(M) consisting of pairs (p, q) such that MP? % 0. We
assume that M is pure, namely there exists an integer w such that p + ¢ = w for all (p,q) € T(M). In | 1,
the author has determined the critical points in terms of the Hodge type of M.

Let n > 1 be an integer, K be a quadratic imaginary field and II = II; ® II, be a regular cohomological
cuspidal representation of GL, (Ax). We denote V' the representation space for II¢. For o € Aut(C), we define
another GLy(Ak,y)-representation II to be V ®c s C. Let Q(II) be the subfield of C fixed by {o € Aut(C) |
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117 =~ IIy}. We call it the rationality field of II. This is in fact a number field and II; has a rational structure
on Q(IT). In other words, there exists V', a GL,(Aq,r)-module over Q(II), such that II; = V ®q(m) C as
GL,(Ag,r)-module.

Moreover, for all o € Aut(C), 11 is the finite part of a cuspidal representation of GL, (A ) which is unique
by the strong multiplicity one theorem, denoted by I17.We know that I1° is determined by o|gm : Q(IT) — C.
Therefore, we may define 117 for any o € Yy by lifting o to an element in Aut(C). In particular, we may
define T1° for any o € Gal(Q/Q) or o € g where E is an extension of Q(II).

When II is cohomological and conjugate self-dual, M. Harris has proved that there exists a motive associated

to II of rank n over K with coefficients in a number field. By restriction of scalars from K to Q, we obtain
(cf. ] ]) that:

Theorem 3.1. There ezists E a finite extension of Q(I1) and M a regular pure motive of rank 2n over Q with

1—n
coefficients in E such that L(s, M,o) = L(s + — I17) for all o : E — C.

Harris has also defined automorphic periods P(®) (IT) for certain integers 0 < s < m which is a complex
number defined up to multiplication by an element in £E*. If IT is supercuspidal at each places over ¢; and g9,
the automorphic period can be defined for every 0 < s < n. More precisely, P(*) is defined when there exists &,
a Hecke character of K, such that II® ¢ descends to a representation of GU,,—s s(Ag). With the supercuspidal
condition, we know that this is true by Lemma 2.1. We assume this condition on II throughout this note.
Harris proved that special values of the automorphic L-function can be interpreted in terms of automorphic
periods:

Theorem 3.2. Let I1 be as before with its infinity type (2% Z~%)1<i<n. Let n be an algebraic Hecke character
of K with infinity type ny(2) = 2°2° such that for all 1 <i<n, b— a # 2a;.
Write n° = Ba. Here a, 3 are Hecke characters of K with aw(2) = 2 and By (2) = 2%, k,k € Z. Define
s=sn 1Y) =#{i|a— b+ 2a; <0}.
n—k mn—a—>o

For m € 7 critical for M(I1) ® M(n) and satisfies m = 5= 5 we have

L(m, M(IT) ® M(n)) ~ g e(s) () (270) ™ T"G(e) ELPO (I)[(271)"G (a0)*[(27i) p(BP) d, 1))
equivariant under action of Gx. Here G refers to the Gauss sum.

< n, there exists an algebraic

Proposition 3.1. Let II be as in Theorem 3.2. For any fixed integer 0 <
= s and L(m, M(II) ® M(n)) # 0.

s
Hecke character n and an integer m as in Theorem 3.2 such that s(n®,IIV) = s

In [GGH], the authors gave an interpretation of special values of L-function for GL,, x GL,_1 over K. Let II
and I’ be two cuspidal representations of GL,(Ak) and GL,_1(Ag) which satisfy the conditions in Theorem
3.2 and some regular conditions (c.f. loc. cit). We have

Theorem 3.3. Let m be a non negative integer. If m +n — 1 is critical for M (II) ® M (IT'), then

n—1 n—2

. |

L(m + 5, I x ) ~ gy p(ms Moo, T) Z () Z (1) [ [ POY(ID) [ [ P (IT)
j=1 k=1

equivariant under action of G .
Here p(m, o, I1.,) is a complex number depending only on m, Iy, and I, (c.f. Proposition 6.4 of loc. cit);
Z(y) (resp. Z(I1,)) is a complex number depending only on Iy, (resp. 11,,) (c.f. Theorem 6.7 of loc. cit).
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4. PERIOD RELATIONS FOR AUTOMORPHIC INDUCTION OF HECKE CHARACTERS

In this section, we consider the representation induced from Hecke characters. Let x be a regular algebraic
conjugate self-dual Hecke character of F. Here conjugate self-dual means x ! = x°.
We also make the hypothesis that:

Hypothesis 4.1. For any v a place of K over q1 or q2, Xv # XJ, for all T € Gal(F,/K,).

Under this hypothesis, II(x), the automorphic induction of x from GLq(Ar) to GL,(Ak), is supercuspidal
at all places over q; or g2 (c.f. Proposition 2.4 of | ).

Definition-Lemma 4.1. Let x be as above. We define II, := II(x) if the degree of F over K is odd;

_1
I :=1(x) ®|| - |[5 29 otherwise where 1) is a Hecke character of K defined in Section 1.
We have that 1L, is a regular algebraic cuspidal which satisfies all the conditions in Theorem 3.2.

Up to finite extension, we may assume E(II,) = E(x). We define ®, ., a CM type of F' as follows: for each
i such that a; is one of the s smallest numbers in {a;,1 < i < n}, we have o; € ®,,; otherwise g; € @, .

Theorem 4.1. Let n be an integer. Let F' = FYK with F' a totally real field of degree n over Q and K a
quadratic imaginary field. Assume that F is cyclic over K. Let x be a regular conjugate self-dual algebraic
Hecke character of F' satisfying Hypothesis 4.1. We have that the automorphic period of Il = 1L, satisfies:

PO ~ g DY2G () B Ip(x, @) if m is odd

PE(TD) ~ gy ) D2 (2m6) 5 G(ex) (X, @y )p(1)p(4°)"* if n is even

equivariant under action of G .

This is the main result of this note. The idea is simple. We fix 0 < s < n an integer. We take n and m as
in Proposition 3.1. When n is odd, we have L(m,Il, ® n) = L(m,x ® 7o Ny, /s, ) by automorphic induction
and with both sides non zero. We may simplify the left hand side of this equation by Theorem 3.2 and the
right hand side by Blasius’s result. The CM periods of 1 appeared in both sides unsurprisingly coincide and
we then deduce the above result.

5. APPLICATION: SIMPLIFICATION OF ARCHIMEDEAN LOCAL FACTORS

We can now refine the Archimedean local factors in 3.3 first in the case where II and IT' come from a Hecke
character and then for general II and II'.

We take y and Y’ two algebraic regular conjugate self-dual Hecke characters of F' and F’ who satisfy
Hypothesis 4.1 and some regular conditions. We may apply Theorem 3.3 to II, x H;(. Our main result
Theorem 4.1 allows us to replace the automorphic periods by CM periods and we get:

(st Dyn(n—
p(m, T, 1) Z (Teo) Z (1) ~KE(xo)E(xy) (27rz)( +3)n(n—1)

provided that L(m + %, IT x IT") does not vanish. This is always true when m > 0 since in this case, m is in the
absolutely convergent range.
Note that the above result concerns only the infinity type. The following lemma allows us to generalize it.

Lemma 5.1. IfII is an algebraic cuspidal representation of GL,(K) then there exists x an algebraic Hecke
character of F' which satisfies Hypothesis 4.1 such that 1o = II, . Furthermore, if I1 is conjugate self-dual,
we may have in addition that x is conjugate self-dual.

Note that an extra condition on the non vanishing of L-function will be needed when m = 0:
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Hypothesis 5.1. For Il and IT' conjugate self-dual algebraic cuspidal representations of GL,(Ak) and GL,_1(Ak),
there exists Hecke characters x and X' of F and F' such that x and X' are as in the previous lemma and

1
L5 Ty x TL) # 0.

Theorem 5.1. Let IT and 11 be cuspidal representations of GLy(Ak) which are very regular, cohomological,
conjugate self-dual, supercuspidal over at least two places of Q that split in K.
Let m = 0 be an integer such that m +n — 1 is critical for M(I1) @ M (II'). If m = 0, we assume moreover
Hypothesis 5.1.
We then have the following equation equivariant under action of G :
p(m, oo, 11,) Z (Moo ) Z(I1,) ~ g p(11,) E(IT,) (27Ti)(m+%)n(nfl)-

Consequently, we have, equivariant under action of G,
1 / +3)n(n—1) — T (k) (11
L(m + 5,11 x I) ~ gy (2m) 2000 ]:[ (1) U PMT).

Remark 5.1. The above result is compatible with the Deligne conjecture and M. Harris’s calculation on the
Deligne period.
Recall that the Deligne conjecture predicts

Lin—=1+m, MII) @ M(IT')) ~ ¢t (M) @ M(IT')(n — 1 +m))
where ¢t (-) is Deligne’s period defined in | ].

The equation (4.12) of [GH] gives
(M) @ M(IT)(n — 1 +m)) ~ (2mi)mF2)nn=1) ]‘[ H
7j=1 k=1
(see chapter 4 of [C1] for the notion). From the discussion after Theorem 4.27 in [C1] we see that P() ~ P
N our case.
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