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Abstract

Résumé

Michael HARRIS a défini les périodes arithmétiques automorphes pour certaines représen-
tations cuspidales de GL,, sur corps quadratiques imaginaires en 1997. Il a aussi montré
que les valeurs critiques de fonctions L automorphes pour GL,, x GL; peuvent étre inter-
prétées en termes de ces périodes. Dans la these, ses travaux sont généralisés sous deux
aspects. D’abord, les périodes arithmétiques automorphes ont été définies pour tous corps
CM. On montre aussi que ces périodes factorisent comme produits des périodes locales sur
les places infinies. De plus, on montre que les valeurs critiques de fonctions L automorphes
pour GL, x GL, peuvent étre interprétées en termes de ces périodes dans beaucoup de
cas. Par conséquent on montre que les périodes sont fonctorielles pour I'induction auto-
morphe et changement de base cyclique.

On aussi définit des périodes motiviques si le motif est restreint d’un corps CM au
corps des nombres rationnels. On peut calculer la période de Deligne pour le produit
tensoriel de deux tels motifs. On voit directement que nos résultats automorphes sont
compatibles avec la conjecture de Deligne pour les motifs.

Mots-clefs

fonction L automorphe, fonctorialité de Langlands, la conjecture de Deligne, périodes
automorphes, périodes motiviques



Abstract

Michael HARRIS defined the arithmetic automorphic periods for certain cuspidal rep-
resentations of GL, over quadratic imaginary fields in his Crelle paper 1997. He also
showed that critical values of automorphic L-functions for GL,, x GL1 can be interpreted
in terms of these arithmetic automorphic periods. In the thesis, we generalize his results
in two ways. Firstly, the arithmetic automorphic periods have been defined over general
CM fields. We also prove that these periods factorize as products of local periods over
infinity places. Secondly, we show that critical values of automorphic L functions for
GL,, x GL, can be interpreted in terms of these automorphic periods in many situations.
Consequently we show that the automorphic periods are functorial for automorphic in-
duction and cyclic base change.

We also define certain motivic periods if the motive is restricted from a CM field to
the field of rational numbers. We can calculate Deligne’s period for tensor product of two
such motives. We see directly that our automorphic results are compatible with Deligne’s
conjecture for motives.

Keywords

automorphic L-function, Langlands functoriality, Deligne conjecture, automorphic pe-
riods, motivic periods
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Introduction

Special values of L-functions play an important role in the Langlands program. Nu-
merous conjectures predict that special values of L-functions reflect arithmetic properties
of geometric objects. Most of these conjectures are still open and difficult to attack.

At the same time, concrete results on the special values of L-functions appear more
and more in automorphic settings. For example, in [I3], M. Harris constructed com-
plex invariants called arithmetic automorphic periods and showed that the special values
of automorphic L-function for GL,, * GL1 could be interpreted in terms of these invariants.

We generalize his results in two ways. Firstly, the arithmetic automorphic periods have
been defined over general CM fields. Secondly, we show that special values of arithmetic
automorphic periods for GL, * GL,s can be interpreted in terms of these arithmetic au-
tomorphic periods in many situations. In fact, we have found a concise formula for such
critical values. This is our first main automorphic result. One possible application is to
construct p-adic L-functions.

We remark that we have not finished the proof for GL,, * GL; over general CM fields
in the current article. We shall do it later. We have assumed Conjecture throughout
the text. This is one important ingredient for automorphic results over general CM fields.

The results over quadratic imaginary field follow from the ideas in [8] and some tech-
nical calculation. Over general CM fields, one can still follow such arguments and get
formulas for critical values in terms of arithmetic automorphic periods. But these formu-
las are ugly and complicated. In fact, we don’t know how to write down a formula adapted
to most cases. However, if one can show that the arithmetic automorphic periods can be
factorized as products of local periods over infinite places, then the generalization to CM
fields is straight forward.

The factorization of arithmetic automorphic periods was actually a conjecture of
Shimura (c.f. [28], [29]). One possible way to show this is to define local periods geo-
metrically and prove that special values of L-functions can be interpreted in terms of local
periods. This was done by M. Harris for Hilbert modular forms in [IT]. But it is extremely
difficult to generalize his arguments to GL,. Instead, we show that there are relations
between arithmetic automorphic periods. These relations lead to a factorization which is
our second main automorphic result.

We remark that the factorization is not unique. We show that there is a natural way
to factorize such that the local periods are functorial for automorphic induction and base
change. This is our third main automorphic result. We believe that local periods are also
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functorial for endoscopic transfer. We will try to prove this in the near future.

Although our local periods are not defined geometrically, they must have geometric
meanings. This may be done by defining certain geometric invariants and show that they
are related to our local periods with the help of special values of L-functions. It is likely
to show that our local periods are equal to the geometric invariants defined in [I1] for
Hilbert modular forms in this way.

On the other hand, Deligne’s conjecture related critical values for motives over Q and
Deligne’s period (c.f. [7]). When the motive is the restriction to Q of the tensor product
of two motives over a CM field, we may calculate Deligne’s period in terms of motivic
periods defined in [I6]. The formula was first given in [16] when the motives are self-dual.
We have dropped the self-dual condition here.

If the two motives are associated to automorphic representations of GL,, and GL,,
respectively, we may define motivic periods which are analogues of the arithmetic auto-
morphic periods. We get a formula of Deligne’s period in terms of these motivic periods.
Our main motivic result says that our formula for automorphic L-functions are at least
formally compatible with Deligne’s conjecture.

Theorems:

Let K be a quadratic imaginary field and F' > K be a CM field of degree d over K.
We fix an embedding K — C. Let X p.x be the set of embeddings o : F' < C such that
o |k is the fixed embedding.

Let E be a number field. Let {a(0)}seaut(c/i)s 10(0)}oecaut(c/k) be two families of
complex numbers. Roughly speaking, we say a ~g.x b if a = b up to multiplication by
elements in £* and equivariant under G g-action.

Let II be a cuspidal cohomological representation of GL,(Ar) which has definable
arithmetic automorphic periods (c.f. Definition . In particular, we know that Il
is defined over a number field E(II). For any I : ¥p.x — {0,1,--- ,n}, we may define
the arithmetic automorphic periods PY) (IT) as the Petersson inner product of a rational
vector in a certain cohomology space associated to a unitary group of infinity sign I. It is
a non zero complex number well defined up to multiplication by elements in E(II)*.

We assume that Conjecture [5.1.1]is true. Our second main automorphic result men-
tioned above is as follows (c.f. Theorem [7.6.1)):

Theorem 0.0.1. If conditions in Theorem are satisfied, in particular, if I1 is reqular
enough, then there exists some complex numbers P(5) (IT, o) unique up to multiplication by
elements in (E(I1))* such that the following two conditions are satisfied:

1. PO ~panx [I PUYONI,0) for all I = (1(0))oesyy € {0,1,- - ,n}orK

UEEF;K

2. and P©) (11, o) ~EB(I);K p(fﬁﬁ)
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where &1 1s the central character of 11, EE = fﬁl’c and p(gﬂ,ﬁ) is the CM period (c.f.

Section .

We now introduce our first main automorphic result. Let I’ be a cuspidal cohomo-
logical representation of GL,/(Ar) which has definable arithmetic automorphic periods.
For any o € Xp.i, we may define the split indices sp(4, I, o) and sp(k,II'; 11, o) for
0<j<nand0<k<n (cf Definition . Roughly speaking, we have:

Theorem 0.0.2. If meZ + %”/ is critical for I x I’ then

L(m, TIxIT) ~panparyr 200" ™ [T (P91, 0)#0HT2) H I, o)p(k I iIL0))

O'EZFK j=0 k=0
in the following cases:
1. n' =1 and m is bigger than the central value.

2. n>n" and m = 1/2, both II and II" are conjugate self-dual and the pair (I, II') is
in good position (c.f. Definition .

3. m =1, both II and II' are conjugate self-dual and the pair (IL,11') is reqular enough.

Our third main automorphic result says that the periods are functorial for automorphic
induction and base change. Roughly speaking, we have:

Theorem 0.0.3. (a) Let F/F be a cyclic extension of CM fields of degree | and I1x be a
cuspidal representation of GLy(Ar). We write AI(Ilx) for the automorphic induction of
[Ir. We assume both AI(I1x) and 1z have definable arithmetic automorphic periods.

Let Ir € {0,1,--- nl}*F& . We may define Ir € {0,1,--- ,n}>%K as in Lemma .
Or locally let 0 < s < nl be an integer and s(-) be as in Definition m We have:

PUPN(AI(ILF)) ~ g,y P( 19 (11 x)
or locally P (AI(I1z, 7) ~B(): K H PEO)II£, o).

olr

(b) Let wp be a cuspidal representation of GL,(Ar). We write BC(wg) for its strong base
change to F. We assume that both mp and BC(7p) have definable arithmetic automorphic
periods.

Let Ir € {0,1,--- ,n}*FK . We write Ir the composition of Ir and the restriction of
complex embeddings of F to F.
We then hawve:

P(I]:)(BC(WF)) ~E(rp);K pIF(ﬂ-F)l
or locally P (BC(np), o) ~E(rp):K PO (np, o |p).

Consequently, we know
P (BC(7r),0) ~pmp) A\ (1r, 0) P (15,0 |F).

where \®) (np, o) is an algebraic number whose l-th power is in E(mp)*
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We now introduce the motivic results. Let M, M’ be motives over F' with coefficients
in F and E’ of rank n and n’ respectively. We assume that M ® M’ has no (w/2,w/2)-class.
We may define motivic periods Q(*) (M,o) for 0 <t <nandoeXpr. Wecan calculate
Deligne’s period of Resp (M ® M') in terms of these periods. If M and M’ are motives
associated to II and II’, Deligne’s conjecture is equivalent to the following conjecture:

Conjecture 0.0.1. I[fmeZ+ "2"/ is critical for II x II' then

L(m, I x IT') = L(m + “2=2 M @ M')

~paearyx (200" T (11 QY (M, o)+ T 2) kI:IOQ(k)(M/,U)S”(k’nl;n’”))

oS j=0

We see that it is compatible with Theorem [0.0.2] The main point of the proof is to fix
proper basis. Deligne’s period is defined by rational basis. The basis that we have fixed
are not rational. But they are rational up to unipotent transformation matrices. We can
still use such basis to calculate determinant.

Idea of the proof for automorphic results:

Blasius has shown that special values of L-functions for Hecke character are related
to CM periods. The proof of our automorphic results involve this fact and the following
three main ingredients:

Ingredient A is Theorem If follows from Conjecture [5.1.1} It says that if x is a
Hecke characters then critical values L(m,II®x) can be written in terms of the arithmetic
automorphic periods of II and CM periods of x.

Ingredient B is Theorem 3.9 of [8]. It says that if II# is a certain automorphic represen-
tation of GL,_1(Ar) such that (I, II*) is in good position then critical values L(m, IIQII)
are products of the Whittaker period p(IT), p(IT*) and an archimedean factor. The ad-
vantage of the results in [8] is that we don’t need II# to be cuspidal. This gives us large
freedom to choose II#.

Ingredient C is a calculation of Whittaker period p(II*) when II# is the Langlands
sum of cuspidal representations IIy,--- ,II;. Following the idea in [23] and [8], we know
p(IT#) equals to product of p(Il;) and the value at identity of a certain Whittaker function.
Shahidi’s calculation in [27] shows that the latter is related to  [] L(1,1L; x IIf).
1<i<j<l

The proof of the case (a) in Theorem is relatively simple. It is enough to take
suitable algebraic Hecke character n of F' and calculate L(m, AI(Ilx) ® n) = L(m,IIr ®
no NA;/A;) by ingredient A.

The idea for the case (b) is similar. But we have to show that the arithmetic automor-
phic periods of BC(nr) are Galr p-invariant. This is due to the fact that BC(7p) itself
is Galr/p-invariant.

We now explain the proof for Theorem [0.0.1] and Theorem [0.0.2

Step 0: determine when a function can factorize through each factor.
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For example, let X, Y be two sets and f be a map from X x Y to C*. Then there
exists functions g : X — C* and h: Y — C* such that f(x,y) = g(z)h(y) for any z € X
and y € Y if and only if f(z,y)f(2',vy") = f(z,y)f(2',y) for any z,2’ € X and y,y € Y.
Therefore, to show that the arithmetic automorphic periods factorize is equivalent to show
that there are certain relations between these periods.

Step 1: interpret p(II) in terms of arithmetic automorphic periods.

The idea is the same as in [8]. We take IT* to be the Langlands sum of Hecke characters
X1, s Xno1- We have L(m, Il x IT#) =[] L(m,II® ;).
I<i<n—1

Ingredient B says that the left hand side equals to the product of p(II), p(IT*) and an

archimedean factor. Ingredient C tells us that p(IT#) is almost [  L(1, x; ¥ X5) which
1<i<j<l

equals to product of CM periods by Blasius’s result. Therefore, thé left hand side equals

to product of p(IT), the CM periods of x; and an archimedean factor.

We may calculate the right hand side by Ingredient A. We get that the right hand
side equals to product of the arithmetic automorphic periods of II, the CM periods of x;
and a power of 27i.

Comparing both sides, we will see unsurprisingly that the CM periods of x; in two
sides coincide. We will get a formula for p(II) in terms of arithmetic automorphic periods.
Varying the Hecke characters x;, we get different formulas for p(IT) in terms of arithmetic
automorphic periods. We then deduce relations between arithmetic automorphic periods.
The factorization property then follows.

We remark that the above procedure can only treat the case when I(o) # 0 or n for
all o. The proof for general case is more tricky (see section .

Step 2: repeat step 1 with suitable IT#.
For example, if n > n’ and the pair (IT,II') is in good position, we may take II# to be

the Langlands sum of II’ and some Hecke characters x1, x2, - , x; where [ = n—n’—1 such
that (IT, II%) is in good position. We have L(m,II x I*) = L(m,II x II') [] LII® x;).
1<i<l

Again, we calculate the left hand side by ingredient B and ingredient C. We apply step
1 to p(IT) and p(IT") and we will get that the left hand side equals to product of arithmetic
automorphic periods for IT and IT" and CM periods of xj;.

We then apply ingredient A to L(II ® x;) and compare both sides. We will get a
formula for L(m,II x II').

For the case where m = 1, we may take II# to be the Langlands sum of IT and II’C.
We know that L(1,1I x IT") then appears in the calculation of p(H#) by ingredient C.

Step 3: Simplify the archimedean factors.

Once we get a formula of L(m,II x II') in terms of arithmetic automorphic periods,
we may replace II and I’ by representations which are automorphic inductions of Hecke
characters. Blasius’s result says that L(m,II x II') is equivalent to the product of a power
of 2mi and some CM periods. On the other hand, the arithmetic automorphic periods of
IT are related to CM periods by Theorem [0.0.3] We shall deduce that the archimedean
factor is equivalent to a power of 27i if IT and II’ are induced from Hecke characters. We
can finish the proof by noticing that such representations can have any infinity type.
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Plan for the text:
In chapter 1 we introduce our basic notation, in particular, the split index.

In chapter 2 we introduce the base change theory for similitude unitary groups which
will help us understanding the descending condition in the definition of arithmetic auto-
morphic periods.

We summarize some results on rational structures in Chapter 3. They play an impor-
tant role in the proof. In particular, the ingredients B and C are introduced in the second
half of this chapter.

In chapter 4 we construct the arithmetic automorphic periods. We generalize the con-
struction of [13] to general CM fields.

Chapter 5 contains the details for ingredient A. We remark that we have made a
hypothesis here (c.f. Conjecture |5.1.1)). We will prove it in a forthcoming paper.

The motivic results are contained in Chapter 6. This chapter is independent of others.
We show that our main automorphic results are compatible with Deligne’s conjecture for
motives.

We prove the factorization of arithmetic automorphic periods in Chapter 7 (c.f. The-
orem [0.0.1)). This result itself is very important. It is also the crucial step to generalize
our results to CM fields.

In chapter 8 we prove that the global and local arithmetic periods are functorial for
automorphic induction and base change (c.f. Theorem [0.0.3). This is a direct corollary of
the ingredient A in chapter 5 and the factorization property in chapter 7.

In chapter 9 we claim our main conjecture which is an automorphic analogue of
Deligne’s conjecture. We also claim our main theorem there, namely, Theorem [0.0.2
Moreover, in the last section of this chapter, we explain why the generalization from
quadratic imaginary fields to CM fields is direct by the factorization property.

The last two chapters contain the details of the proof for Theorem The calcula-
tion is not difficult but technique.



Chapter 1

Notation

1.1 Basic notation

We fix an algebraic closure Q < C of Q and K — Q a quadratic imaginary field. We
denote by ¢ the complex conjugation of the fixed embedding K < Q.

We denote by ¢ the complex conjugation on C. Via the fixed embedding Q — C, it
can be considered as an element in Gal(Q/Q).

For any number field L, let Ay, be the adele ring of L and Ay ; be the finite part of
Ar. We denote by X, the set of embeddings from L to Q. If L contains K, we write ¥1.x
for the subset of ¥, consisting of elements which is the fixed embedding K < Q when
restricted to K.

Throughout the text, we fix ¢ an algebraic Hecke character of K with infinity type
2129 such that ¢p¢ = || - ||a, (see Lemma 4.1.4 of [6] for its existence). It is easy to see
1

that the restriction of ||-][Z 1 to Ag is the quadratic character associated to the extension
K /Q by the class field theory. Consequently our construction is compatible with that in [g].

Let F* be a totally real field of degree d over Q. We define F' := FTK a CM field.
We take ¢ an algebraic Hecke character of F' with infinity type z! at each ¢ € ¥ such

that Yy = [ - [|ap-

For z € C, we write z for its complex conjugation. For o € ¥, we define ¢ := ¢¢ the
complex conjugation of o.

Let 7 be a Hecke character of F. We define 77 := n~1¢ and 7 := n/n° two Hecke
characters of F.

Let n be an integer greater or equal to 2.

Definition 1.1.1. Let N be an integer and I1 be an automorphic representation of GLy,(AFR).
Let o be an element in Xp.i. We denote the infinity type of II at o by (zai(")é‘”(")/)lgign.
We may assume that ai(o) = az(o) = -+ = an(0) for all 0 € ¥p. . The representation
IT will be called:

1. pure of weight w(Il) if a;(c) + a;(0) = —w(II) for all 1 <i < n and all o;

2. algebraic if a;(0),a;(c) € Z+ 5L for all1 <i < n and all o;
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3. cohomological if there exists W an irreducible algebraic finite dimensional repre-
sentation of GLy(F ®g R) such that H*(gew, Fro; Q@ W) # 0 (see section for
more details);

4. regular if it is pure and a;(0) — a;y1(0) =1 for all1 <i<n—1 and all 0.

5. N-regular if it is pure and a;(c) — a;41(0c) = N for all1 <i<n—1 and all o.

Finally, let E > K be a number field. We now define the relation ~p.x.
Let {a(0)}seaut(c/i)s 10(0)}oeaut(c/K) be two families of complex numbers.

Definition 1.1.2. We say a ~g,x b if one of the following conditions is verified:
(i) a(c) =0 for all 0 € Aut(C/K),
(ii) b(c) =0 for all 0 € Aut(C/K), or

(iii) a(o) # 0, b(o) # 0 for all o and there exists t € E* such that a(o) = o(t)b(o) for
all 0 € Aut(C/K).

Remark 1.1.1. 1. Note that this relation is symmetric but not transitive. More pre-
cisely, if a ~p,x b and a ~g.k ¢, we do not know whether b ~g.x c in general unless
the condition a # 0 is provided.

2. If a ~p.x b with b(o) # 0, we see that % is contained in the Galois closure of E.

In particular, it is an algebraic number.

3. If moreover, a(c) = a(d’) for o,0' € Aut(C) such that o|g = o'|g, we can then define
a(o) for o € Xg. ik by taking any & € Aut(C), a lifting of o, and define a(o) := a(7).
We identify C¥E:K with E @k C. We consider A := (a(0))oesp. as an element in
E®gkC.

We assume the same condition for b and define B for b similarly. It is easy to verify
that a ~g.x b if and only if one of the three conditions is verified: A =0, B =0, or
Be (E®yg C)* and AB~'e EX c (E®k C)*.

We remark that our results will be in this case.

Lemma 1.1.1. We assume b(c) # 0 for all o. We also assume that a(o) = a(o’) and
b(o) =b(d") if o|lg = o'|g for any 0,0’ € Aut(C). We have a ~g.k b if and only if

for all T € Aut(C/K) and 0 € L. .

1.2 Split index and good position for automorphic pairs

Definition 1.2.1. (Split Index)

Let n and n' be two positives integers.

Let T1 and I be two regular pure representations of GL,(Ar) and GL (AFR) respec-
tively. Let o be an element of Xp.ic. We denote the infinity type of Il and II' at o by
(z0i(@)z—w=ai(0)), . ai(0) > ag(o) > -+ > an(o) and (ij(o)gfw(ﬂ’)fbj(a))Kjgn,;



1.2. SPLIT INDEX AND GOOD POSITION FOR AUTOMORPHIC PAIRS 19

bi(o) > ba(o) > -+ > by (o) respectively. We assume that a;(c) +b;(0) # —M for
alll<i<nall<j<n andadllo.
We split the sequence (a1(o) > az(c) > -+ > ap(0)) with the numbers

_W(H)ZW(HI) —b(0) > —

w(II) + w(IT')
2

—by_1(0) > > _“’(H)J;W(H/) — by (o).

This sequence is split into n' + 1 parts. We denote the length of each part by
SP(Oa H,a H7 U)a Sp(]-u H/7 Ha 0)7 T Sp(nlu Hla H) 0)7
and call them the split indices.
Lemma 1.2.1. Let n, n/, IT and II' be as in the above definition. Let o be an element in

Yp.x. Let n be an algebraic Hecke character of Ap. Let 0 < j < n' be an integer. We
have the following formulas:

:\

1. sp(i, 511, 0) = n.
0

<.
I

2. sp(3, 1111, 0) = sp(n’ — j, 14 11¢, 0) = sp(n’ — 4, 1I"V; 11V, o).
3. Foranyt,seR, sp(5,II'®]|- HKK;H,J) = sp(7, ;U] - |3 ., 0) = sp(5, 1T 1L, 0) .

4. sp(3, I @n;1L,0) = sp(j, 1;1IQn, 0) and sp(j, 1N ®@n% 11, 0) = sp(j, 1 @n~ 11, 0).
Similarly, sp(j, ;L@ 7, o) = sp(j, ;L@ 7).

The first two points of the above lemma are direct. For the remaining, we only need

to notice that calculating the split index is nothing but comparing a;(c) + b;(c) with
_ w(ID+w(IT’)
5 :

Example 1.2.1. . I[f F*"=Q,n=5,n" =4, w{l) =w(Il') =0 and

—b4>a1>a2>—b3>—b2>a3>a4>—bl>a5,

we have sp(0,1;11) = 0, sp(1,11;1I) = 2, sp(2,11;II) = 0, sp(3,11;II) = 2 and
sp(4,I1;11) = 1. We verify that sp(0, IT'; IT)+sp(1, II'; IT) +sp(2, I'; TT) +sp(3, IT'; IT) +
sp(4,I1;11) = 5 as expected by the previous lemma.

2.IfFT=Q,n =n—1,wl) =w(ll') =0 and a1 > —by—1 > ag > —by_o9 > -+ >
an—1 > —b1 > ay,, we have sp(j,I;11) =1 for all0 < j <n—1.
Moreover, sp(k,ILIU) =1 for all1 <k <n—1, sp(0,I;1I') = 0 and sp(n, IL;1T') =
0.

n’ n
We wverify that ) sp(3,11';11) = n and Y, sp(j,ILI') = n— 1 as expected.
j=0 j=0
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Definition 1.2.2. We assume that n > n’. Let II and II' be as before. We say the
pair(ILII") is in good position if for any o € ¥p.i, the n’ numbers
w(IT) + w(Il')

e —bwlo) > -

w(IT) + w(IT') w(II) + w(IT')

—by_1(0) > > — —bi(0).
lie in different gaps between (a1(c) > az(0) > -+ > an(0)).

It is equivalent to saying that sp(i,1I';11,0) # 0 for all 0 < i < n' and 0 € ¥p,x. In
particular, if n' = n—1, we know (I, IT") is in good position if and only if sp(i, 11';11,0) = 1
for alli and o.



Chapter 2

Unitary groups and base change

2.1 Unitary groups

In this section, let £ be an arbitrary number field and F/L be a quadratic extension
of number fields.

Let Uy be the quasi-split unitary group over £ of dimension n with respect to the
extension F/L. We want to know the local behavior of inner forms of Uy. More generally,
we will answer the following question:

Let Gy be a connected reductive group over L. If we are given G(,), an inner form of
Go,w over L, for each place v of £, when does G, an inner form of Gy over £ such that
Gy = G for all v, exist?

The answer is given in section 2 of [4]. We recall some results there. We also refer to
section 1.2 [I8] for further details in the unitary group case.

The isomorphism classes of inner forms are classified by Galois cohomology. Let v be
a place of L. Let L = L or L,. There exists a bijection between the set of isomorphism
classes of inner forms of Gg ; and H'(L,G&%). Therefore, the global inner form exists if
and only if the element in @ H'(L,, G&%) corresponding to the local datum is in the image
v
of HY(L,G¢) — @ HY(L,, G&).

v
We remark that if L is local then the quasi-split class corresponds to the trivial element
of H'(L,Ga%).

If we can calculate this Galois cohomology, then everything is done. Otherwise Kot-
twitz has given an alternate choice as follows.

For H a connected reductive group over L, we define A(H) = A(H/L) := the dual of
mo(Z(H)Ct where H is the neutral component of the dual group of H.

Let A= A(G¢4/L) and A, = A(G&?/L,).

Proposition 2.1.1. There exists a natural map H'(L,,G3%) — A,. Moreover, it is an
isomorphism when v is finite.

The above proposition gives a morphism @ H'(L,,G¢) — @ A, — A where the
v v
latter is given by restriction.

Theorem 2.1.1. The following sequence is exact:

HY(L,Gi - P HY L, GiY — A.
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In other words, the image of the first map equals the kernel of the second map.

By this theorem, our question turns to determine the kernel of the second map.

Let us now focus on unitary groups, namely when Gg = Uy. Clozel has calculated A,
in the case when L is totally real and F is a quadratic imaginary extension over £. We
call it the CM case. This is enough for our purpose. Let us list some facts from [4]:

e If n is odd, then A = 0. In other words, any local datum (U,)), which is quasi-split
at almost all places come from a global unitary group.

e If n is even, then

1. A=7Z)2.

2. A, = 7Z/2 if v is finite and inert. The non quasi-split unitary group corresponds
to the non trivial element of Z/2. The map A, — A is identity if we identify
both groups with Z/2.

3. Ay, = Z/n if v is finite and split. The element corresponding to the unitary
group of a division algebra generates A,. The map A, — A is the mod 2 map
from Z/n to Z/2.

4. The real unitary group U(p, q) has image (p — ¢)/2 mod 2 in A.

Remark 2.1.1. 1. The idea of the proof for the last point is to consider the surjective
map HY (R, T) — HY(R,Go) where T < Gy is the maximal elliptic torus over R.

The above calculation leads to the following theorem:

Theorem 2.1.2. Let F = FTK Let I be as before. Let q be a finite place of Q inert in
F* and split in F. There exists a Hermitian space Vi of dimension n over F with respect
to F/FT such that the unitary group U = U(V}) over F* associated to V satisfies:

e At each o €3, U is of sign (n—I(o),I(0)).

e For v # q, a finite place of F'*, U, is unramified;
—2I

e Ifn is even and Y| w

ogeEX 2
Uy is also unramified.

# 0 mod 2, then Uy is a division algebra. Otherwise

We denote by Uy the restriction of U from F* to Q and GUy the rational similitude
group associated to V7, namely, for any Q-algebra R,

GUI(R) = {g € GL(V; ®q R)|(gv, gw) = v(g)(v, w),v(g) € R*}. (2.1)

2.2 General base change

Let G and G’ be two connected quasi-split reductive algebraic groups over Q. Let G
be the complex dual group of G. The Galois group Gg := Gal(Q/Q) acts on G. We define
the L-group of G by 'G := G % Gg and we define L@G" similarly. A group homomor-
phism between two L-groups “G — LG’ is called an L-morphism if it is continuous, its
restriction to G is analytic and it is compatible with the projections of G and “G’ to Gq.
If there exists an L-morphism “G — LG/, the Langlands’ principal of functoriality
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predicts a correspondence from automorphic representations of G(AQ) to automorphic
representations of G'(Ag) (c.f. section 26 of [I]). More precisely, we wish to associate an
L-packet of automorphic representations of G(Ag) to that of G'(Ag).

Locally, we can specify this correspondence for unramified representations. Let v be a
finite place of QQ such that G is unramified at v. We fix I', a maximal compact hyperspecial
subgroup of G, := G(Q,). By definition, for m, an admissible representation of G,, we
say 7, is unramified (with respect to I';,) if it is irreducible and dimﬂg v > (. One can
show that 7.v is actually one dimensional since T, is irreducible.

Denote H, := H(G,,T,) the Hecke algebra consisting of compactly supported contin-
uous functions from G, to C which are I', invariants on both sides. We know H,, acts on
7, and preserves 7.v (c.f. [24]). Since wLv is one-dimensional, every element in H, acts as
a multiplication by a scalar on it. In other words, m, thus determines a character of H,,.
This gives a map from the set of unramified representations of G, to the set of characters
of H, which is in fact a bijection (c.f. section 2.6 of [24]).

We can moreover describe the structure of H, in a simpler way. Let T}, be a maximal
torus of G, contained in a Borel subgroup of G,,. We denote by X, (7)) the set of cocharac-
ters of T}, defined over Q,. The Satake transform identifies the Hecke algebra H, with the
polynomial ring C[ X (T,)]"* where W, is the Weyl group of G,, (c.f. section 1.2.4 of [15]).

Let G’ be a connected quasi-split reductive group which is also unramified at v. We
can define T, H! := H(G,T%) and T/ similarly. An L-morphism *G — LG’ induces

a morphism T, — ﬁ and hence a map 7, — T,. The latter gives a morphism from
C[X(T)]"* to C[X«(T,)]"* and thus a morphism from H’, to H,. Its dual hence gives
a map from the set of unramified representations of G, to that of GJ. This is the local
Langlands’s principal of functoriality for unramified representations.

In this article, we are interested in a particular case of the Langlands’ functoriality:
the cyclic base change. Let K/Q be a cyclic extension, for example K is a quadratic imagi-
nary field. Let G be a connected quasi-split reductive group over Q. Let G’ = Resy /oG Kk-

We know G equals to GIEQl, The diagonal embedding is then a natural L-morphism
LG — LG’ The corresponding functoriality is called the base change.

More precisely, let v be a place of Q and w a place of K over v. The local Langlands’s
principal of functoriality gives a map from the set of unramified representations of G(Q,)
to that of G(K,,). We call this map the base change with respect to K,,/Q,.

Let 7 be an admissible irreducible representation of G(Ag). We say II, a representation
of G(Ak), is a (weak) base change of 7 if for almost all v, a finite place of Q, such that
7 is unramified at v and all w, a place of K over v, II,, is the base change of 7,. In this
case, we say Il descends to 7 by base change.

Remark 2.2.1. The group Aut(K) acts on G(Ag). This induces an action of Aut(K)
on automorphic representations of G(Ag). For o € Aut(K) and I1 an automorphic rep-
resentation of G(Ak), we write 17 to be the image of 11 under the action of o. It is easy
to see that if Il is a base change of w, then 11 is one as well. In particular, we have
I, ~ I1,, for almost every finite place w of K. So if we have the strong multiplicity one
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theorem for G(Ag), we can conclude that every representation in the image of base change
is Aut(K)-stable.

2.3 Base change for unitary groups and similitude unitary
groups

Recall that Uj(Ag) =~ GL,(Ap). The following result on base change comes from
Theorem 1.7 of [2I]. We also refer to Corollary 2.5.9 of [25] for the quasi-split case.

Proposition 2.3.1. Base change for unitary group

Let 11 be a cuspidal conjugate self-dual and cohomological representation of GLy(AFR).
If n is odd then II descends to a cohomological representation of Ur(Ag) unconditionally.
If n is even then it descends if I1; descends locally.

We have an exact sequence 1 — U; — GU; — Gy, — 1 which is split over K. Indeed,
by Galois descent, it is enough to define 6, a Galois automorphism on Uy r x G, x such
that the subgroup of Ur x x Gy, i fixed by 05 is isomorphic to GU;. We now define 0r as
follows:

For R a Q-algebra, note that (Ur g x G, k)(R) = GL(V;®qR) x (K ®qg R). We define

0r : GL(V[ ®Q R) X (K ®Q R) — GL(V[ ®Q R) X (K ®@ R)

by sending (g, 2) to ((¢*)~'Z, z) where ¢g* is the adjoint of g with respect to the Hermitian

form. It is easy to verify that 6 satisfies the condition mentioned above.

We then have that GUr g = Ur g X G k. In particular, GU(Ak) = GL,(Ap) x Ax.
For II a cuspidal representation of GL,(Ar) and £ a Hecke character of K, II ® & defines
a cuspidal representation of GU(Af). Conversely, by the tensor product theorem, every
irreducible admissible automorphic representation of GU(Af) is of the form II® £. The
following Lemma is shown in [I9] V' 1.2.10 and [5] Lemma 2.2.

Lemma 2.3.1. IfII is algebraic and conjugate self-dual, then there exists &, an algebraic
Hecke character of Ax such that 11 x £ is O1-stable.

Proof It is easy to verify that II x £ is @7-stable if and only if 222 = &n(z) for any

z € A} where &y is the central character of II.

We define U the torus over Q such that U(Q) = ker{Norm : K* — Q*}. We have
U(Ag) = {z | z € A%} by Hilbert 90.

Again by Hilbert 90, we have an exact sequence:

1 - Q\A% — KX\A% — U(Q\U(Ag) — 1
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where the last map sends z to

ISEEIRN]

Therefore, such & exists if and only if &7 is trivial on Aé.

Since II is conjugate self-dual, we know &y is trivial on Normy, /s, (Ax). By class
field theory, Q* Ny, /a,(Af) has index 2 in Ag. It remains to show that &y is trivial at
any element ¢ in Ag — Q" Ny, /a, (Ag).

We consider t € Aa such that ¢ = 1 at all finite places and t = —1 at the infinity place.
It is not in Q* Ny, /ay(AK)-

Since II is algebraic, we know &7 has infinity type z%Z~% with a € Z. In particular, we
have £p1(t) = 1 as expected.

U

The following proposition follows from Proposition [2.3.1] The idea is the same with
Theorem V1.2.9 in [19].

Proposition 2.3.2. Let II be an algebraic automorphic representation of GL,(Ap) =
Ur(Ag) which descends to Ur(Ap). If € is an algebraic Hecke character of K as in Lemma
then TI® & descends to an automorphic representation of GUr(Ap). Moreover, if T
is cohomological then its descending is also cohomological.

In particular, let I1 be a cuspidal conjugate self-dual and cohomological representation
of GL,(AFp). We assume moreover that 11, descends locally if n is even. Then there
always exists €& such that Il ® & descends to an irreducible cohomological automorphic
representation of GUr(Ap).






Chapter 3

Rational structures and Whittaker
periods

In this chapter, we will recall some results on the rationality of certain algebraic auto-
morphic representations and also the rationality of the associated Whittaker models and
cohomology spaces.

In particular, we will define the Whittaker period and present a way to calculate the
Whittaker period in certain cases.

3.1 Rational structures on certain automorphic representa-
tions

Let F' is an arbitrary number field and n be a positive integer.
Let II be an automorphic representation of GL,(Ar).

We denote by V' the representation space for II;. For o € Aut(C), we define another
GLy(Ap,f)-representation I3 to be V ®c, C. Let Q(II) be the subfield of C fixed by
{o € Aut(C) | II7 = IIs}. We call it the rationality field of II.

For F a number field, G a group and V a G-representation over C, we say V has an
FE-rational structure if there exists an F-vector space Vg endowed with an action of
G such that V = Vg ®g C as representation of G. We call Vg an E-rational structure of V.

We denote by Alg(n) the set of algebraic automorphic representations of GL,(Af)
which are isobaric sums of cuspidal representations as in section 1 of [3].

Theorem 3.1.1. (Théoréme 3.13 in [3])
Let II be a regular representation in Alg(n). We have that:

1. Q(II) is a number field.

2. Iy has a Q(II)-rational structure unique up to homotheties.
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3. For all o € Aut(C), 11 is the finite part of a regular representation in Alg(n). It is
unique up to isomorphism by the strong multiplicity one theorem. We denote it by
I1°.

Remark 3.1.1. Let n = ny + ne + - -- + ng be a partitian of positive integers and I1; be
reqular representations in Alg(n;) for 1 < i < k respectively.

The above theorem implies that, for all 1 < i < k, the rational field Q(I1;) is a number
field.

1— 1—ng 1—ng

71 c n—1
Let 11 = (IL|[- ][, 2 BIL|[-|[y2 BBy, )I-lls2 be the normalized isobaric
sum of 11;. It is still algebraic.

We can see from definition that Q(I1) is the compositum of Q(IL;) with 1 < i < k.
Moreover, if 11 is regular, we know from the above theorem that 11 has a Q(II)-rational
structure.

3.2 Rational structures on the Whittaker model

Let II be a regular representation in Alg(n) and then its rationality field Q(II) is a
number field.

We fix a nontrivial additive character ¢ of Ap. Since II is an isobaric sum of cuspidal
representations, it is generic. Let W (Il;) be the Whittaker model associated to Il (with
respect to ¢). It consists of certain functions on GL,(Ar f) and is isomorphic to II; as
GLy,(Af,f)-modules.

Similarly, we denote the Whittaker model of II (with respect to) ¢ by W (II).

Definition 3.2.1. Cyclotomic character R
There exists a unique homomorphism & : Aut(C) — Z* such that for any o € Aut(C)
and any root of unity ¢, o(¢) = Cf("), called the cyclotomic character.

For 0 € Aut(C), we define ¢, € (Z ®z Op)* = Or " to be the image of £(o) by the
embedding (Z)* — (Z ®z Op)*. We define t, , to be the diagonal matrix

2 o 1) € GLy(Apf)

ybo

diag(

as in section 3.2 of [26].

For w € W(Ily), we define a function w” on GL,(Afp ) by sending g € GL,(AF ¢)
to o(w(tsng)). For classical cusp forms, this action is just the Aut(C)-action on Fourier
coeflicients.

Proposition 3.2.1. (Lemma 3.2 of [26] or Proposition 2.7 of [§])

The map w — w® gives a o-linear GLy(AF f)-equivariant isomorphism from W (Ily)
to W(H‘]’Z)

For any eatension E of Q(Ily), we can define an E-rational structure on W (Ily) by
taking the Aut(C/E)-invariants.

Moreover, the E-rational structure is unique up to homotheties.
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Proof The first part is well-known (see the references in [26]).

For the second part, the original proof in [26] works for cuspidal representations. The
key point is to find a nonzero global invariant vector. It is equivalent to finding a nonzero
local invariant vector for every finite place. Then Theorem 5.1(i%) of [20] is involved as in
8.

The last part follows from the one-dimensional property of the invariant vector which
is the second part of Theorem 5.1(i7) of [20].

O

3.3 Rational structures on cohomology spaces and compar-
ison of rational structures

Let II be a regular representation in .4lg(n). The Lie algebra cohomology of II has a
rational structure. It is described in section 3.3 of [26]. We give a brief summary here.

Let Z be the center of GL;,. Let gy be the Lie algebra of GL,,(R®qF'). Let Syeq be the
set of real places of F', Scompies be the set of complex places of F'and Sy = Srear U Scomplex
be the set of infinite places of F'.

For v € Syeq, we define K, := Z(R)O,(R) € GL,(F,). For v € Scompies, We define
K, := Z(C)U,(C) c GL,(F,). We denote by K, the product of K, with v € Sy, and by
K9 the topological connected component of K.

We fix T' the maximal torus of GL,, consisting of diagonal matrices and B the Borel sub-
group of G consisting of upper triangular matrices. For ; a dominant weight of T(R®q F')
with respect to B(R®gq F'), we can define W, an irreducible representation of GL,,(R®qgF')
with highest weight pu.

From the proof of Théoréme 3.13 [3], we know that there exists a dominant algebraic
weight 4, such that H*(geo, K; Il @ W),) # 0.

Let b be the smallest degree such that H®(go., K3; o ®@ W,,) # 0. We have an explicit

formula for b in [26]. More precisely, we set r; and 7o the numbers of real and complex

embeddings of F' respectively. We have b = r; [%2] 4 7“2@.

We can decompose this cohomology group via the action of K, /KY. There exists a
character € of K.,/KY described explicitly in [26] such that:

1. The isotypic component H(go, K9 ;o ® W,,)(€) is one dimensional.

2. For fixed wey, a generator of H®(ge, K;1ly ® W,)(€), we have a GL,(AF f)-
equivariant isomorphisms:

W(Ily) = W) ® H (g, K9 e @ W) (€)
= H(go, K9 W(IL) @ W) (e)

H'(goo, K3 1@ W) () (3.1)
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where the first map sends w to w®@wy and the last map is given by the isomorphism
W (IT) = II.

3. The cohomology space H(goo, KO; TIQW,,)(€) is related to the cuspidal cohomology
if IT is cuspidal and to the Eisenstein cohomology if II is not cuspidal. In both cases,
it is endowed with a Q(II)-rational structure (see [26] for cuspidal case and [§] for
non cuspidal case).

We denote by Or1, ¢ w,, the GL,(Ap,y)-isomorphism given in 1}
W (ITf) = H'(goo, K3: 1@ W) (e).

Both sides have a Q(II)-rational structure. In particular, the preimage of the rational
structure on the right hand side gives a rational structure on W (Ily). But the rational
structure on W (Ily) is unique up to homotheties. Therefore, there exists a complex number
p(Ilf, €,we) such that the new map @%f,awoo = p(Hf,e,woo)_l@Hf@woo preserves the
rational structure on both sides. It is easy to see that this number p(Ilf, €, wy) is unique
up to multiplication by elements in Q(IT)*.

Finally, we observe that the Aut(C)-action preserves rational structures on both the
Whittaker models and cohomology spaces. We can adjust the numbers p(H?, €”,wg) for
all o € Aut(C) by elements in Q(II)* such that the following diagram commutes:

p(vaewaO)iler,é,woo

W (Il) H (9o, K3; TT® W) (€)
J p(H;7607w%)716H?,60,w% J’
W (11%) H(goo, K9; TI7 @ W) (€9)

The proof is the same as the cuspidal case in [26].

In the following, we fix €, wy and we define the Whittaker period p(II) := p(Il¢, €, we).
For any o € Aut(C), we define p(I17) := p(I1%, €7, wg,). It is easy to see that p(I1”) = p(II)
for o € Aut(C/Q(II)).

Moreover, the elements (p(I17)),eaut(c) are well defined up to Q(II)* in the following
sense: if (p'(T17)) e aut(c) is another family of complex numbers such that p’(H")_l(%Hc;’Ea’wa

0

preserves the rational structure and the above diagram commutes, then there exists
t € Q(II)* such that p/(II7) = o(t)p(I1?) for any o € Aut(C). This also follows from
the one dimensional property of the invariant vector. The argument is the same as the
last part of the proof of Definition/Proposition 3.3 in [26].

3.4 Shahidi’s calculation on Whittaker periods

Let us assume F' is a CM field in the following sections of this chapter. In this case,
K, itself is connected and hence we may omit the index e.

let I be a positive integer. Let ni, no, --- ,n; be positive integers such that n =
ny+ng+---+ng.

Let II;, Ils, - -+, II; be regular cohomological conjugate self-dual automorphic repre-
sentations of GL,,,, GLy,, ---, GLy,, respectively. We assume that they are Langlands
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sum of cuspidal representations.

We write P < GL,, for the maximal parabolic group of type (n1,n2,--- ,n;) and B < P
be the corresponding Borel subgroup.

Let II be the Langlands sum of IIy, Iy, - - -, II;.

Proposition 3.4.1. There exists a non zero complex number Q, n, ... ) (o) depending
on Il and the parabolic type of P which is unique up to elements of E(I1)* such that:

PI) ~ gy Ba)K Qngnsy ) eo) [ @) [ LOLIL x ITY) (3.2)

1<i<l 1<i<j<l

The constructions and ideas come from [23] and [8]. We give a sketch of the proof here
and will include the details in a forthcoming paper.

Sketch of the proof: For simplicity, we may assume that [ = 2.

For ¢ = 1 or 2, we denote by V; the representation space for II; consisting of cusp
forms.

We denote by W; ; the Whittaker model for II; ;. We write y; for the cohomological
type of II;. We fix w; «, a generator of Hbni (94,00, K 005 I o0 ® Wy, ) and we write ©; for
O, 4 w;-

We write H (II; @ W, )= HbY (84,00, K005 I1; @ W) for simplicity.

We use similar notation for II = II; [H11,.

We claim that there exists a commutative diagram as follows (c.f. (1.3) of [23]):

01®02

Wi ® Wy H (I @ W) @ HP? (T, @ W,) = Vi p ® Vo

J]:loc lEiS

W (IL;) © HYII@W,) > V;

We now introduce the maps which appear in the diagram:
e The map F'°° is an explicit map defined locally in [23].

e The map FEis is rational and defined by the theory of Eisenstein series which sends
Vi ®Va s to V. (c.f. Section 1.1 in [23]).

e The isomorphism V; ; =~ H%(Il; ® W,,,) is rational. The composition of this isomor-
phism and ©; is just the isomorphism between the cuspidal forms and the corre-
sponding Whittaker functions.

e The theory of Eisenstein cohomology (c.f. [9]) gives a rational embedding of V} in
HYTI®@W,).
More precisely, we write Sy, for G L, (F)\GLn(Ar)/Ke. We denote by S, the Borel-

Serre compactification of S,,. We write 05, for its boundary and dgS,, for the face
corresponding to the Borel subgroup B.

We know H°(Il ® W,,) embeds rationally in H®(S,,&,) (c.f. Section 3 of [§] and
Section 1.2 of [9]) where &£, is a sheaf on S, defined by pu. We restrict the latter to
the face S, and get a rational map H*(II@ W,,) — H®(0pS,, £,) which admits a
rational section (c.f. Proposition 5.2 of [§]).



32 CHAPTER 3. RATIONAL STRUCTURES AND WHITTAKER PERIODS

We may decompose H®(05S,,&,) as in Theorem 4.2 of [23] and we see that V; =
Indp(Vh,; ® Va t) is a rational direct summand of H*(II® W,,) — H*(0pSy,&,) as
GL,(Ap)-module. Here we should take w to be the longest element in the Weyl
group and s to be trivial in the loc.cit.

We take g1 ® g2 € Wiy ® Wa s to be a rational element. We write f1 ® fo for the
image of g; ® g2 under the map 01 ® O3. We denote by F := Eis(fi ® f2). We write
W = W(F) to be the corresponding Whittaker function (with respect to a fixed additive
Hecke character).

From the diagram it is easy to see that pl_po_ LpW is a rational element and therefore:

p(I) ~ g B,k p(I)p(Ile)W (Id) . (3.3)
Shahidi’s calculation (c.f. Theorem 7.1.2 of [27] and Corollary 5.7 of [§]) implies that:
W(Id) ™ ~gan.x Weo(lds) ™ 11 Wa(idy)™" [ LI < IO)).
w ramified places 1<i<j<l

By the arguments in Corollary 5.7 of [§]) we may choose g1, g2 such that Wy (id,) is
rational for each ramified place. At last, we conclude the proof by setting Q(,,, n,)(Ile) :=
Wo(Ids)™t. We can read from the construction that it depend onlys on I, and the
parabolic data.

U

For any partition n; + --- + n; = n, we may take II;,--- ,II; as above such that
o = (Il A - HIL)o. Hence Q... ) () is well defined. In particular, Q ;... 1)(Iyp)
is well-defined. We denote it by Q(I1,). We remark that this is the same archimedean
factor appeared in Corollary 5.7 of [§].

3.5 First discussions on archimedean factors

We will discuss the archimedean factors Q,, n, ... n,)(Ileo) defined in the last section.

)

One first observation is that

Q) (Moo) ~peyx 1 (3.4)
This can be read directly from Equation (3.2)).

We observe that if I1; is also a Langlands sum of automorphic representations, we can
furthermore decompose p(II;). We will get relations between the archimedean factors. In
fact, we have:

Lemma 3.5.1. If Il is Langlands sum of 11, Iy, ---, II; then we have:
Q1)
Q(m,ng,...m)(ﬂoo) ~E(I);K m (3.5)

1<isn
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Proof We endow P(n), the set of partitions of n, with the dictionary order. More
precisely, if (nq,---,n;) and (nf,---,n}) are two partitions of n, we say (ni,---,n) <
ny,--- ,ny) if there exists an integer s < min{l,!'} such that n; = n} for i < s and ng < n/,.
The set P(n) then becomes a totally ordered set.

We shall prove the lemma by induction on n. For each level n, we shall prove by
induction on P(n).

(1) Basis: When n = 1, we know both sides are equivalent to 1 by equation (3.4]).

(2) Inductive step: We assume that the lemma is true for n; +---+n; = n—1 with
n = 2. We shall prove it for ny + - -- 4+ n; = n by induction on P(n).

(2.1) Basis: The smallest element in P(n) is (1,1,---,1). In this case, we have
Q11,-,1) o) ~pany:x Q) by definition. Moreover, Q(IL; o) ~ ), x Q1) lio) ~pa:x
1 by equation (3.4) for all i. The lemma then follows.

(2.2) Inductive step: Let (ni,---,ny) # (1,1,---,1) € P(n). We assume that the

lemma holds for all elements in P(n) smaller than (ng,---,n;). We now prove the lemma
for (ny,---,my).
Since (n1,---,n;) # (1,1,---,1), there exists an integer 7 such that n; > 2. We take

the smallest ¢ with this property and denote it by t.

We take positive integers n;, n; such that n} + nj = ny. For example, we may take
n; = ny—1 and nf = 1. We take IT} and II} to be cohomological conjugate self-dual regular
representations of GL, (Ar) and GLy, (Ap) respectively such that II; o is the same with
the infinity type of the Langlands sum of I} and IT}.

Let I1# be the Langlands sum of Iy, - -+, IT;_1, IT}, TI¥, I 1, - - - , IT;. We apply Propo-
sition to (IMy, -, My_q, I, T1F, T4 q, - - -, IT;) and get:

p(H#) ~E);K Q( Me—1,mnE e m)(HOO)[H p(Il )] (Hg)p(ﬂz‘) ) H . L(1,T; x H]V)
14t 1<j,u#t,j#t

Ht(L(l,Hz' x 1Y) L(L,IT; x I1;7Y)) Ht(L(LHf: x I ) L(1, I x ITY)) L(IT; x II7Y)
i< j>

Similarly, we apply Proposition to (Iy, Iy, I, B IIF, T4 q, - - -, IT;) and then to
(IT}, IT}"). We will get:

p(H#) ~E();K Q(nl,---,ntfl,nngnf,ntJrl)--- HOO Hp H/.H*)
17t
[] QM=) [[La,Imx @@y L0, (@ @) < 105)
1<j,i#t,j#t i<t >t
~E(I);K Q(nlv"'7nt711”;+nf1nt+17”'ﬂl)(HOO)Q( ) H/.Ht Hp H*>
1%t
<[] LI x| [(LOLT x YL, I x ITY))
1<j,i#t,j#t i<t

x [ [(L(L I x I ) L(L, 10 = ILY)) L(I; = TIIY).

>t
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Recall that nj + ny = n;, we obtain that:

Q(nl,"' -1 my e ,nz)(HOO) ~E(ILK) Q(nl,"' M— 1, N4 1,57 ,m)(HOO)Q(n;,nf)((H; H?)OO)

(3.6)
Since (n1,- -+ ,ne—1,n}, nF nep1 -+ ) < (ng,ne2,- -+ ,ny), we may apply the hypothe-
sis of the induction step (2.2) and get:
Qo)
St W) ~rau0) Trom o Jeag,y %7

1#t

If ny = n then [ = 1 and both sides of the equation of the lemma are equivalent to 1
by equation (3.4). Hence we may assume that n, < n. Therefore, the hypothesis of the
induction step (2) is satisfied by (I}, IT¥). We get:

- Q (Ht@o)
B QI ) Q1T )

Comparing the above three equations, we finally deduce that the lemma is true for
(ITy, - - - ,II,) and complete the proof.

]
Corollary 3.5.1. IfII is Langlands sum of Iy, Ils, ---, II; then we have:
Q)
p(D) ~pa:x o | ] L) L(1,1I; x 11) (3.9)
[ Q) 1£‘[<z 1<E<l !

1<i<n

3.6 Special values of tensor products in terms of Whittaker
periods, after Grobner-Harris

Let II be a regular cuspidal cohomological representation of GL,(Ar). Let II* be a
regular automorphic cohomological representation of GL,_1(Ar) which is the Langlands
sum of cuspidal representations. Equivalently, it is a regular element in Alg(n — 1).

The arguments in section of [8] go over word for word and give the following result:

Proposition 3.6.1. We assume that (I, TI%) is in good position.
There exists a compler number p(m,Hoo,Hﬁ) which depends on m, Il and Hﬁ well

1
defined up to (E(IT)E(II#))* such that for m € N with m + 3 critical for II x TI7 , we have

1
L5 +m, 1L x %) ~ gy pa ) P(m, oo, T ) p(I)p(11#) (3.10)
where p(I1) and p(II*) are the Whittaker periods of II and II# respectively.

We remark that we don’t need II# to be cuspidal here. The above conditions are
sufficient to guarantee that a certain Eisenstein series is holomorphic.

Moreover, we remark that the good position condition is necessary so that a certain
intertwining operator exists.

We shall give a proof of this proposition in a separate article.



Chapter 4

CM periods and arithmetic
automorphic periods

4.1 CM periods

Let (T, h) be a Shimura datum where T' is a torus defined over Q and h : Resc RGm,c —
GRr a homomorphism satisfying the axioms defining a Shimura variety. Such pair is called
a special Shimura datum. Let Sh(T,h) be the associated Shimura variety and E(T, h)
be its reflex field.

Let (v, Vy) be a one-dimensional algebraic representation of T' (the representation +y is
denoted by x in [I7]). We denote by E(7) a definition field for v. We may assume that
E(v) contains E(T,h). Suppose that v is motivic (see loc.cit for the notion). We know
that v gives an automorphic line bundle [V, ]| over Sh(T, h) defined over E(y). Therefore,
the complex vector space H(Sh(T,h),[V,]) has an E(y)-rational structure, denoted by
Mpr(vy) and called the De Rham rational structure.

On the other hand, the canonical local system V) < [V,] gives another E(v)-rational
structure Mp(7y) on H°(Sh(T, h),[V;]), called the Betti rational structure.

We now consider y an algebraic Hecke character of T'(Ag) with infinity type =1 (our
character y corresponds to the character w™! in loc.cit). Let E(x) be the number field
generated by the values of x on T'(Ag ) over E(v). We know x generates a one-dimensional
complex subspace of H(Sh(T, h),[V,]) which inherits two E(y)-rational structures, one
from Mppr(y), the other from Mpg(7y). Put p(x,(7T,h)) the ratio of these two rational
structures which is well defined modulo E(y)*.

Remark 4.1.1. If we identify H°(Sh(T,h),[V,]) with the set {f € C*(T(Q)\T(Ag),C |
f(ttn)) = v Htw) f(t),tw € T(R),t € T(Aq)}, then x itself is in the rational structure
inherits from Mp(vy). See discussion from A.4 to A5 in [17].

Suppose that we have two tori T and 7" both endowed with a Shimura datum (T, h)
and (77,h'). Let u: (T',h’) — (T, h) be a map between the Shimura data. Let x be an
algebraic Hecke character of T'(Ag). We put x’ := x o u an algebraic Hecke character of
T'(Ag). Since both the Betti structure and the De Rham structure commute with the
pullback map on cohomology, we have the following proposition:
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Proposition 4.1.1. Let x, (T,h) and X', (T', ') be as above. We have:

p(X7 (T7 h)) ~E(x) p(le (T,’ h,))

Remark 4.1.2. In Proposition 1.4 of [11)], the relation is up to E(x); E(T,h) where
E(T,h) is a number field associated to (T, h). Here we consider the action of Gg and can
thus obtain a relation up to E(x) (see the paragraph after Proposition 1.8.1 of loc.cit).

For F a CM field and ¥ a subset of Xz such that ¥V n ¥ = &, we can define a Shimura
datum (Tr, hy) where Tp := RespigGm,r is a torus and hy : Resc/rGmc — TrR is a
homomorphism such that over ¢ € ¥, the Hodge structure induced on F' by hy is of type
(—=1,0) if 0 € U, of type (0,—1) if o0 € 1V, and of type (0,0) otherwise.

Let x be a motivic critical character of a CM field F. By definition, pr(x,¥) =
p(x, (Tp,hy)) and we call it a CM period. Sometimes we write p(x, ¥) instead of
pr(x, V) if there is no ambiguity concerning the base field F'.

Example 4.1.1. We have p(|| - ||a,, 1) ~g (27i)~L. See (1.10.9) on page 100 of [13].

Let 6 € Gal(F/Q). We know 6 induces an action on X by composition with §. More-
over, 6 acts on Ay, and hence acts on the set of Hecke characters of F.

The CM periods have many good properties. We list below some of them which will
be useful in the future.

Proposition 4.1.2. Let F' be a CM field. Let Fy < F be a sub CM field.

Let n be a motivic critical Hecke character of Fy, X, X1, X2 be motivic critical Hecke
characters of F.

Let 7 € ¥ be an embedding of F into Q and ¥ be a subset of S such that U N¥° = &.
We take W = V1 L Wy a partition of V.

Let 0 be an element in Gal(F/Q). We then have:

p(X1x2), ¥) ~E(1)E(x2) POX1 ¥)P(XS, ©). (4.1)
p(X, W1 1 Wa) ~pr) PO P1)p(X, Pa). (4.2)
p(X?, 9) ~ g PO, ). (4.3)
Pr(N© Nag/ap > T) ~E@) PR(M: T|Fy)- (4.4)
In particular, if we take 6 = ¢ the complex conjugation, we have:
(X, ¥°) ~py (X5 0). (4.5)

Remark 4.1.3. The first three formulas come from Proposition 1.4, Corollary 1.5 and
Lemma 1.6 in [11]. The last formula is a variation of the Lemma 1.8.3 in loc.cit. The
idea was explained in the proof of Proposition 1.4 in loc.cit. We sketch the proof here.

Proof. All the equations in Proposition come from Proposition by certain maps
between Shimura data as follows:

1. The diagonal map (Tp,hy) — (Tr X Tp, hg x hy) pulls (x1, x2) back to xixe.

2. The multiplication map T x Tr — T sends hy,, hy, to Ay, v,.
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3. The Galois action 6 : Hr — Hp sends hy to hye.
4. The norm map (T, hiry) = (Tr,, h{T|FO}) pulls  back to 70 Ny /s
O

The special values of an L-function for a Hecke character over a CM field can be
interpreted in terms of CM periods. The following theorem is proved by Blasius. We
state it as in Proposition 1.8.1 in [I1] where w should be replaced by & := w™1 (for this
erratum, see the notation and conventions part on page 82 in the introduction of [13]),

Theorem 4.1.1. Let F be a CM field and F* be its maximal totally real subfield. Put n
the degree of F* over Q.

Let x be a motivic critical algebraic Hecke character of F' and ®, be the unique CM
type of F' which is compatible with x.

Let Dp+ be the absolute discriminant of F*. We assume that D}J/f € E(x) for sim-
plicity.
For m a critical value of x in the sense of Deligne (c.f. Lemma , we have
L(X, m) ~E(x) (27”‘>mnp(>27 (I)x)
equivariant under action of Gg

Remark 4.1.4.

1. Let {o1,09, -+ ,0n} be any CM type of F. Let (077, " )i<i<n denote the infinity
type of x with w = w(x). We may assume ay = ay = -+ = a,. We define ag := +00

w
and ant1 = —0 and define k := maz{0 < i < n|a > —5} An integer m is

critical for x if and only if

max(—ar + 1L, w+ 1+ agy1) < m < min(w + ag, —ag+1) (4.6)
(c.f. Lemma .

2. D},/f is well defined up to multiplication by +1. More generally, if {z1,z2, - ,zn} is
any Q-base of L, then det(c;(25))1<ij<n ~Q D;/f

4.2 Construction of cohomology spaces

Let ¥ = Yp.g in the current and the following chapters. Fix an index I as before.
Write s, 1= I(0) and 1, :=n — I(0) for all o € 3.

Denote S := Resc/rGyp. Recall that GU(R) is isomorphic to a subgroup of [[ GU (7, s5)
o€eX

defined by the same similitude. We can define a homomorphism h; : S(R) — GU;(R) by

. zI,, 0
sending z € C to (( 0 3l )) .
o oeY

Let X; be the GUr(R)-conjugation class of h;. We know (GUy, X7) is a Shimura
datum with reflex field F; and dimension 2 Y. r,s,. The Shimura variety associated to

oeEX
(GUp, X7) is denoted by Sh;.
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Let K1 be the centralizer of hy in GUr(R). Via the inclusion
GUI(R) — [ [ GU(rs,5,) c R™* [ [U(n, ),
oeX oeX
we may identify K7 o, with
ur, 0 +ox
{(1 Oa ) | ur, € U(rs,C),vs, € U(Se,C), pe R}
o/ oceX

Us

where U(r, C) is the standard unitary group of degree r over C. Let H; be the subgroup of
K7 consisting of the diagonal matrices in Ky . Then it is a maximal torus of GUr(R).
Denote its Lie algebra by b;.

We observe that Hy(R) =~ R™* x [] U(1,C)™. Its algebraic characters are of the form

oEY

(w, (2i(0))oexs,1<i<n) — w0 H H Z,‘(U))‘i(g)

ceXi=1
where (Ao, (Ai(0))sex,1<i<n) is a (nd 4+ 1)-tuple of integers with A\g = > >} Ai(o) (mod
2).
Recall that GU(C) = C* [ [ ey, GLn(C). We fix By the Borel subgroup of GUj ¢ con-

sisting of upper triangular matrices. The highest weights of finite-dimensional irreducible
representations of Ky, are tuples A = (Ao, (Ai(0))sex,1<i<n) such that Aj(o) = Az(o) =

=N, (0), Ary+1(0) =+~ = Ap(o) for all o and Ag = >, D Ai(o) (mod 2).
ce¥i=1

We denote the set of such tuples by A(K7 ). Similarly, we write A(GUy) for the set
of the highest weights of finite-dimensional irreducible representations of GU;. It consists
of tuples A = (Ao, (Ai(0))oex,1<i<n) such that Aj(o) = Aa(0) = ---Ay(0) for all o and

M= 3 Aio) (mod 2).

oeXii=1

We take A € A(GUp) and A € A(K[ o).
Let V) and V) be the corresponding representations. We define a local system over
Shy:
W)\v = I%HGU[(@)\V/\ x X X GU](AQf)/K

and an automorphic vector bundle over Shy

En = I GUIHQ)\WVh x GUI(E) x GU (b )/ K K1z

where K runs over open compact subgroup of GUr(Ag, ¢).

The automorphic vector bundles E, are defined over the reflex field E.

The local systems Wy are defined over K. The Hodge structure of the cohomology
space H(Shr, W) is not pure in general. But the image of HZ(Shy, WY') in HY(Shr, W)
is pure of weight ¢ — c. We denote this image by H(Shy, WY).

Note that all cohomology spaces have coefficients in C unless we specify its rational
structure over a number field.
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4.3 The Hodge structures

~ The results in section 2.2 of [12] give a description of the Hodge components of
HIY(Shp, WY).

Denote by R* the set of positive roots of HLC in GU;(C) and by R the set of positive
compact roots. Define o = (0,---,0,1,0,---,0,-1,0,--- ,0) forany 1 < j < k <
We know Rt = {(aj, k,)oex | 1 < jo < ks < n} and RS = {(o, k., )oex | Jo < ko
Te OF 7o + 1 < jo < ko}.

Let 1 5 n—1n-—3 n—1
ep_2aeR+a_ 2 9 2 ) I 2 .
g

Let g, ¢ and b be Lie algebras of GUr(R), K7 o and H(R). Write W for the Weyl group
W (gc, be) and W, for the Weyl group W (€c, hc). We can identify W with [ &,, and W,

oeY
with [ &,, x &5, where & refers to the standard permutation group. For w € W, we
ey

write the length of w by l(w).

Let W! := {w € W|w(R") > R}} be a subset of W. By the above identification,
(wy)o € W if and only if wy (1) < we(2) < -+ < Wy (ry) and wy (14 +1) < -+ < Wy (n)
One can show that W' is a set of coset representatives of shortest length for W.\W.

Moreover, for A\ a highest weight of a representation of GUj, one can show easily
that w = A := w(X + p) — p is the highest weight of a representation of Kj. More
precisely, if A = (Ao, (Ai(0))oen,1<i<n), then w = A = (Ao, (w * X)i(0))sex 1<i<n) With

(w* N)i(0) = A, iy (0) + n—2i-1 — we (1) — (n ;_ L — 1) = Ay, (i) (0) — wo (7) + i.

Remark 4.3.1. The results of [12] tell us that there exists
HY(Sh;,WY) =~ P HY(Shy,Wy) (4.7)
weWwl

a decomposition as subspaces of pure Hodge type (p(w,\),q —c—p(w,\)). We now deter-
mine the Hodge number p(w, \).

We know that w = X\ is the highest weight of a representation of Ky . We denote this
representation by (pwsxn, Wuwsr). We know that pysxohilgm) : S(R) — Koo — GL(Wiysn)
is of the form z — z*p(w’)‘),E*T(w’)‘)fww*A with p(w, A), r(w, \) € Z. The first index p(w, \)
is the Hodge type mentioned above.

Recall that the map

hI|S(]R{) : S(R) — Kl,oo C R+’X X U(TL,(C)E (4.8)
Bl
z = ||zl 2] _
0 I,
|Z| ogeEX

and the map
puwix: Kroo — GL(Ww*)\)

(w, diag(zi(U))aeE,lsisn) - w H H Zi w*)\)

oeXi=1
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where diag(z1, 22, , zn) means the diagonal matrix of coefficients z1,z9,- -+ , zp.

Therefore we have:

s—r(w Z N (w i(o z w i(o
Z PNz (WA — 50 H( H (=) (wHA)ilo) H (=) (w*N)ilo)

oes) 1<i<ry 2| rot+l<i<n 2|

X=X X (wN)i(o) X X (wxd)i(o) X X (wkA)i(o)

1 1
= (Zggg) oeX 1<i<n 20€L1<isro ZoeS ro +1<isn
Since (W N)i(0) = Ay, (i) (0)—wo (i) +i and then 2, > (wxA)i(o) = 2 > (o),
oceX 1<i<n ogeX 1<isn

we obtain that:

5,
plw,)) = TEIEE =2 ) (weNilo)

ceX 1<i<ry,
ZZ 1<Z< Ai(o) = Ao
_ o€ \z\n2 o Z Z (/\wg(i)(a) — we (i) + 1) (4.9)

oeX 1<i<r,s

The method of toroidal compactification gives us more information on H%¥(Shy, WY).

We take j : Sh;y — 5’711 to be a smooth toroidal compactification. Proposition 2.2.2
of [12] tells us that the following results do not depend on the choice of the toroidal
compactification.

The automorphic vector bundle E can be extended to Sh 7 in two ways: the canonical
extension E$® and the sub canonical extension E{"’ as explained in [12]. Define:

H(Shy, Ex) = Im(HY(Shy, EX") — H*(Shr, E™))

Proposition 4.3.1. There is a canonical isomorphism

H5(Shy, WY) = HIU ) (Shy, Eyey)

Let D =2 ) ry8, be the dimension of the Shimura variety. We are interested in the
o€EY

cohomology space of degree D /2. Proposition 2.2.7 of [I3] also works here:

Proposition 4.3.2. The space PID/Z(ShI,WAV) is naturally endowed with a K-rational
structure, called the de Rham rational structure and noted by ﬁg]/g(Sh[, WY). This ra-

tional structure is endowed with a K-Hodge filtration F'Hgg(Shl,W)\v) pure of weight
D/2 — ¢ such that

FPEDZ(Shr, W) /FP U B2 (Shi, W)@k C~ @ B2 (Shy, WY).
weWl p(w,\)=p

Moreover, the composition of the above isomorphism and the canonical isomorphism
HPPE0(Shy, WY) = HPP7W) (Shy, Eysy)

1s rational over K.
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Holomorphic part: Let wg € W' defined by wo(o)(1,2, - ,76;Tos1," " ,N)oes =
(So41, - ,m;1,2,-+- ,5,) for all o € ¥. Tt is the only longest element in W1, Its length is
D)/2.

We have a K-rational isomorphism

HD/Q;wO(Sh[,WAV) = HO(ShIaE’wo*)\)' (410)

We can calculate the Hodge type of HP/%wo(Sh;, W) as in Remark
By definition we have

wp * A = (>\07 ()\sg+1(a) —Sgy 7)\n(0) — So3 >\1(0') + 7oy 7AS(7'(0—) =+ rO’)O‘GZ)' (411)

By the discussion in Remark the Hodge number

SN AN(0) Ao+ D
p(wo, )\) _ oe¥1<isn 5 _ Z ()\sg+1(0') 4+t )\n(o-))
o€

From equation (4.9)), it is easy to deduce that p(wp,A) is the only largest number
among {p(w, \) | w € W'}. Therefore

FPeoN (Shy WY) @k C = HO(Shr, Eygen)- (4.12)

Moreover, as mentioned in the above proposition, we know that the above isomorphism is
K-rational.

We call [:ID/2”f0(Sh1, WY) =~ HY(Shy, Eyysx) the holomorphic part of the Hodge
decomposition of HP/ 2(Shy, WY). It is isomorphic to the space of holomorphic cusp forms
of type (wp = \)V.

Anti-holomorphic part: The only shortest element in W' is the identity with the
smallest Hodge number

> Z Ai(o) — Ao
p(id, /\) _ 0% 1<1<n2 . Z (/\1(0-) R )\TU(O-))_

We call fIDﬂ?id(Sl}[, WY) = HP/2(Shy, E)) the anti-holomorphic part of the Hodge
decomposition of HP/2(Shr, WY ).

4.4 Complex conjugation

We specify some notation first.

Let A = (Ao, (Ai(0) = Xa(0) = -+ = A\y(0))oexn) € A(GUr) as before. We define
A= (Ao, (—An(0) = =N—1(o) = -+ = —=A1(0))sex) and AV = (=Ag, (—Ap(0) =
—An—1(0) = -+ = —A1(0))sex). They are elements in A(GUy). Moreover, the repre-
sentation V)¢ is the complex conjugation of V) and the representation V). is the dual of
V) as GUj-representation.
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Similarly, for A = (Ag,(A1(0) = -+ = A (0),Ar 11(0) = -+ = Ay(0))oex) €
A(KI,OO)v we define A* := (_A07 (_ATU (U) =z —Al(U), _An =z _Arg-&-l)er)-

We know Vj« is the dual of V), as Kj-representation. We sometimes write the latter
as Vj.

We define I¢ by [¢(0) = n—1I(0) for all 0 € ¥. We know Vie = —V; and GUje =~ GU].
The complex conjugation gives an anti-holomorphic isomorphism X; — Xje. This induces
a K-antilinear isomorphism

HPR2(Shp, WY) = HP2(Shye, WL). (4.13)

In particular, it sends holomorphic (resp. anti-holomorphic) elements with respect to
(I, \) to those respect to (I¢,\°). If we we denote by w§ the longest element related to I¢
then we have K-antilinear rational isomorphisms

cpr: HO(Shr, Buygsn) = H(Shie, Eygae) (4.14)
HPR2(Shy, By) = HP/*(Shie, Exe) . (4.15)

The Shimura datum (GUp, h) induces a Hodge structure of wights concentrated in
{(-1,1),(0,0), (1,—1)} which corresponds to the Harish-Chandra decomposition induced
by h on the Lie algebra: g = tc®pt ®p~.

Let B = tc ®p~. Let A (resp. Ag, A(z)) be the space of automorphic forms (resp.
cusp forms, square-integrable forms) on GUr(Q)\GU(Aq).

We have inclusions for all ¢:

HY(g, K105 A0 @ Vi) © HY(Shy, V) © HY (g, K105 A2) ® V)
HY P, K103 Ao @ V) € HY(Shy, Ep) © HY(B, K103 A@2) @ V).

The complex conjugation on the automorphic forms induces a K-antilinear isomor-
phism:
cg i HY(Shr, Eyysn) = HP2(Sh;, E\v) (4.16)

More precisely, we summarize the construction in [I3] as follows.

Automorphic vector bundles:

We recall some facts on automorphic vector bundles first. We refer to page 113 of [13]
and [10] for notation and further details.

Let (G, X) be a Shimura datum such that its special points are all CM points. Let X
be the compact dual symmetric space of X. There is a surjective functor from the category
of GG-homogeneous vector bundles on X to the category of automorphic vector bundles on
Sh(G, X). This functor is compatible with inclusions of Shimura data as explained in the
second part of Theorem 4.8 of [I0]. It is also rational over the reflex field E(G, X).

Let £ be an automorphic vector bundle on Sh(G, X) corresponding to &, a G-
homogeneous vector bundle on X. Let (T, z) be a special pair of (G, X), i.e. (T,x) is
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a sub-Shimura datum of (G, X) with 7" a maximal torus defined over Q. Since the func-
tor mentioned above is compatible with inclusions of Shimura datum, we know that the
restriction of € to Sh(T,x) corresponds to the restriction of & to & € X by the previous
functor. Moreover, by the construction, the fiber of £ | Sh(T,e) at any point of Sh(T, ) is
identified with the fiber of & at &. The E(&)- E(T, z)-rational structure on the fiber of &
at & then defines a rational structure of & | Sh(T,z) and called the canonical trivialization
of £ associated to (T, x).

Complex conjugation on automorphic vector bundles:

Let € be as in page 112 of [I3] and & be its complex conjugation. The key step of the
construction is to identify £ with the dual of £ in a rational way.

More precisely, we recall Proposition 2.5.8 of the loc.cit that there exists a non-
degenerate G(Ag f)-equivariant paring of real-analytic vector bundle £ ® & — &, such
that its pullback to any CM point is rational with respect to the canonical trivializations.

We now explain the notion &,. Let h € X and K} be the stabilizer of h in G(R). We
know & is associated to an irreducible complex representation of K}, denoted by 7 in the
loc.cit. The complex conjugation of 7 can be extended as an algrebraic representation of
K}, denoted by 7. We know 7’ is isomorphic to the dual of 7 and then there exists v, a one-
dimensional representation K, such that a Kj-equivariant rational paring V. ® V. — V,,
exists. We denote by &, the automorphic vector bundle associated to V.

In our case, we have (G, X) = (GUr, X1), h = hy and Kj, = K1 . Let 7 = A = wg * A
and & = FEj\. As explained in the last second paragraph before Corollary 2.5.9 in the
loc.cit, we may identify the holomorphic sections of Vj with holomorphic sections of the
dual of V. The complex conjugation then sends the latter to the anti-holomorphic sec-
tions of 1\///\ = Vjx. The latter can be identified with harmonic (0,d)-forms with values in

K® Ej\ where K = Qg/j is the canonical line bundle of Sh;.

By 2.2.9 of [13] we have K = E(o (s, ... 5,10, ro)oesy) Where the number of —s, in
the last term is r,. Therefore, complex conjugation gives an isomorphism:
cp : HY(Shy, Ey) = HP2(Shy, Exx 4o
Recall equation that
A =wo* A= (Ao, (Asy+1(0) = S0+, An(0) = 553 A1(0) + 7, -+, As, (0) + 7o )oex)-
We have
A* = (=20, (= An(0) +580, s = A5, 41(0) + 805 —=As, (0) =T, -+, =A1(0) +70)gex). (4.18)

(4.17)

—So,y s SoTo, 77’0)662))'

Therefore, A* + (0,(=Soy ", —SosTos * sTo)oex) = AY. We finally get equation
[@.16).

Similarly, if we start from the anti-holomorphic part, we will get a K-antilinear iso-
morphism which is still denoted by cp:

cp s HP2(Shy, Ex) = H(Shr, Eygsrv) (4.19)

which sends anti-holomorphic elements with respect to A to holomorphic elements for AV.
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4.5 The rational paring

Let A € A(Kjy). We write V. = V, in this section for simplicity. As in sec-
tion 2.6.11 of [I3], we denote by C, the corresponding highest weight space. We know
A* := A# — (2A¢, (0)) is the tuple associated to V, the dual of this K representation. We
denote by C_, the lowest weight of V.

The restriction from V to C, gives an isomorphism
];IOTnKLOO (V, COO(GU[(F)\GU[(AF») = HOWLH((CA, COO(GU[(F)\GU]<AF))V) (4.20)

where C*(GU(F)\GU;(AF))y is the V-isotypic subspace of C*(GU(F)\GU(AF)).
Similarly, we have

Homeo (‘7, COO(GU[(F)\GU](AF))) = HomH((C,A, COO(GU[(F)\GU](AF))‘V/) (4.21)
Proposition 2.6.12 of [I3] says that up to a rational factor the perfect paring
HomH((CA,COO(GUI(IF)\GU[(AF))V) X HomH((C,A,COO(GUI(F)\GUI(AF))‘;) (4.22)

given by integration over the diagonal equals to restriction of the canonical paring (c.f.
(2.6.11.4) of [13])

Homy, ,,(V.C*(GUI(F)\GUi(Ar))) x Homg, . (V,C*(GUI(F)\GU1(Ar)))
— Homg, ,(V® V,CP(GU(F)\GU(AF)))
— HomKIm(C,COO(GUI(F)\GUI(AF)))
L c (4.23)

We identify I'(Shy, Ep) with Homau, ; (V,C®(GU;(F)\GU;(Ar))) and regard the
latter as subspace of HomKI,OO(V,CW(GUI(F)\GUI(AF))).

The above construction gives a K-rational perfect paring between holomorphic sec-
tions of E, and anti-holomorphic sections of Fpx.

If A = wg = A\, as we have seen in Section that the anti-holomorphic sections of Ex
can be identified with harmonic (0, d)-forms with values in E)v.

We therefore obtain a K-rational perfect paring
® = &1 . HO(Shy, Eyysn) x HP2(Shy, Exv) — C. (4.24)

In other words, there is a rational paring between the holomorphic elements for (I, \) and
anti-holomorphic elements for (I, A\Y).

It is easy to see that the isomorphism Sh; — Shjc commutes with the above paring
and hence:

Lemma 4.5.1. For any f € H°(Shy, Eyysy) and g € JEID/Q(ShI,EM), we have

1A (f,9) = " (cprf, cprY).
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The next lemma follows from Corollary 2.5.9 and Lemma 2.8.8 of [13].

Lemma 4.5.2. Let 0 # f € H(Shy, Eyxr). We have ®(f,cpf) # 0.

More precisely, if we consider f as an element in HomKI,OO(YV/,COO(GUI(F)\GUI(AF)))
then by and the fized trivialization of C_,,«x, we may consider f as an element in
C®(GU(F)\GU(AFR))). We have:

B(f, cnf) = +i% f F(9)F(9)]v(9)]dg. (4.25)
GUI(Q)Zcu; (Ag)\GUr(Ag)

Recall that v(+) is the similitude defined in (2.1)).

Similarly, if we start from anti-holomorphic elements, we get a paring:
&~ = &' HP2(Shy, Ey) x H(Shy, Eyyerv ) — C. (4.26)

We use the script — to indicate that is anti-holomorphic. It is still ¢cpr stable. For
0+ f~ e HP2(Sh;, E)), we also know that ®~(f~,cpf~) # 0.

4.6 Arithmetic automorphic periods

Let 7 be an irreducible cuspidal representation of GUr(Ag) defined over a number field
E(m). We may assume that FE(m) contains the quadratic imaginary field K.

We assume that 7 is cohomological with type A, i.e. H*(g, K7 o;m® W)) # 0.

For M a GUr(Ag,r)-module, define the K-rational 7 s-isotypic components of M by

M™ = HomGUI(AFﬂf)(ResE(ﬂ)/K(Wf),M) = @ Hom(n}, M).

TGZE(W);K

Therefore, if M has a K-rational structure then M™ also has a K-rational structure.

As in section we have inclusions:
HY(PB, K103 AT @ V) € HY(Shy, Ex)" < HY(B, K7 o0; Alyy ® Va).

Under these inclusions, cp sends H?(Shy, Eygsx)™ to H’D/Q(Sh[,EAv)”v.
These inclusions are compatible with those K-rational structures and then induce K-
rational parings

" : HO(Shr, Byyen)™ x HP2(Shy, By, )™ — C (4.27)
and ® 7 : HP/2(Shy, E\)™ x H°(Shy, Eygerv )" — C. (4.28)

Definition 4.6.1. Let 8 be a non zero K -rational element of ﬁO(ShI, Eyysn)™. We define
the holomorphic arithmetic automorphic period associated to 3 by P (B,m) :=
(@3, ¢BBT))reSpimu- 1t is an element in (E(m) ®Kx C)*.

Let v be a non zero K-rational element of I:ID/z(ShI,E,\)“. We define the anti-
holomorphic arithmetic automorphic period associated to v by P(I)7_(’y,7r) =
(@77 (Y"s eBYT))respin - 1t @5 an element in (E(m) ®K C)*.
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Definition-Lemma 4.6.1. Let us assume now 7 is tempered and 7o is discrete series
representation. In this case, HO(Shy, Eywysx)™ is a rank one E(m)®x C-module (c.f. [21]).

We define the holomorphic arithmetic automorphic period of © by p) () :=
PU(B, 1) by taking B any non zero rational element in HO(Shy, EyosA)™. It is an element
in (E(m) ®x C)* well defined up to E(m)* -multiplication.

We define pU )’*(ﬂ) the anti-holomorphic arithmetic automorphic period of ©
similarly.

Lemma 4.6.1. We assume that w is tempered and 7y s discrete series representation.
Let B be a non zero rational element in 1‘_10(6%1,E]wo>,<>\)7T and Y be a non zero rational
element in HO(Shy, EY)™" .

We have cp(B) ~ () PUO(m)BY.

Proof 1t is enough to notice that ®™(8,8Y) € E(x)*.
L]
Lemma 4.6.2. If 7 is tempered and 7y, is discrete series representation then we have:
1. PU) (7€) ~B(r)K PO (7).
2. PO (7))« PO (1) ~ gy 1
Proof The first part comes from Lemma and the fact that cpr preserves rational

structures.
For the second part, recall that the following two parings are actually the same:

™" . HO(Shy, Eygerv )™ x HP2(Sh;, E\)™ — C (4.29)
and @7 : HP/2(Shy, E\)™ x H(Shy, Eygerv )™ — C. (4.30)

- We take  a rational element in fIO(ShI,EwO*)\v )7rv and v a rational element in
HP/2(Shy, E))™. We may assume that ™ (87,77) = ®7(y7,57) = 1 forall 7 € YE()K-

By definition p(7v) = (&7 (BT, ¢BBT))resp(ny - Since HP2(Shy, E))™ is a rank
one E(m) ® C-module, there exists C € (E(m) ®x C)* such that (cpf”)
C(Y")reSpmyx - Lherefore pl(nV) =C@ " (B7,77)) =C.

TEEE(W);K =

TGZE(W);K

On the other hand, since CQB = Id, we have (CB’)/T)TegE(ﬁ);K = C_l(BT)TegE(W);K. We
can deduce that pt)—(7) = C~! as expected.

U

Definition 4.6.2. We say I is compact if Ur(C) is. In other words, I is compact if and
only if I(c) =0 orn for all o € X.

Corollary 4.6.1. If I is compact then P () ~E(r):K PO~ (7). We have P (7¥) «
P(I)(ﬂ—) ~E(r);K 1.
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Proof If I is compact, then wyg = Id. The anti-holomorphic part and holomorphic part
are the same. We then have PU)(r) ~E(r)K PU:=(xr). The last assertion comes from

Lemma [4.6.2
O






Chapter 5

Special values of automorphic
L-functions: the start point

5.1 Special values of automorphic L-functions for similitude
unitary group

The method in [I3] should work for a general CM field. We state the predicted formula
in this section.

Let 7 be a tempered representation of GUr(Aq) such that 7y is discrete series repre-

sentation. In particular, the holomorphic arithmetic automorphic periods P) (m) is well
defined.

We assume that 7 is cohomological with type A = (Ao, (A1 (0) = Aa2(0) -+ = A\ (0))oexn)-
We say A or 7 is 2-regular if \j(0) — Ajy1(0) =1 foralll1 <i<n—1andall c€X.

Let x be an algebraic Hecke character of Ay with infinity type (z75)) ses. Let a be
an algebraic Hecke character of Ay, with infinity type (2")ses.

Definition 5.1.1. We set \g(0) = 400 and A\p11(0) = —00. We say m € Z is critical for
M(m,x, ) (c.f. [13]) if for allo € X,

Aras1(0) + 5(0) + 55 — 5 < <~y 11(0) — k(o) +74
and — X, (0) — k(o) + 1o <m < A\ (0) + k(o) + 55 — K.

This definition generalize the condition in Lemma 3.3.7 of the loc.cit. In the loc.cit, it
is assumed that p is self-dual. In general, the index A in that Lemma should be A(u€;r, s).

We assume the following conjecture throughout the text.

Conjecture 5.1.1. Let m be a tempered representation of GUr(Aq) such that my is dis-
crete series representation and cohomological with type A. In particular, the holomorphic

arithmetic automorphic periods PY) () is well defined. If an integer m > is critical
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for M(m, x,a) then a certain rational differential operator exists and we have

LmOt,S(m, TR X, St? Oé) ~E(m)E(x)E(a);K
(2mi) ("= (2m) =0 PO () [] (p(Rer, o)~ @p(Rer, 7)) L (5.1)

e

Recall that Y = ﬁc is a Hecke character of Ap.
X

- K
Remark 5.1.1. 1. Ifm > is critical for M (7, x, ), we have 2\, +1—2(rs+1)
”

k—2k(0)—n—2 and 2\,, —2r, = K—2k(0)—n. We see that r, = max{r | 2\, —2
Kk —2k(o) —n}.

<
=

2. We didn’t state the CM periods in the above conjecture as in Theorem 3.5.13 of [13].
Instead, the current form appears in middle steps of the proof for Theorem 3.5.13.
We refer to equation (2.9.12) or the third line in page 138 of the loc.cit.

Let us examine the condition in the above conjecture. After simple calculation, we see
n—rk+1
that such m always exists. Moreover, if A\, > A\, 11, we may have m > — In this

case, we know L™ (m,m ® x, St,«) does not vanish.

Let GU and GU’ be two rational similitude group associated to two unitary groups
over F' with respect to F'//F'" of dimension n. We know GU’ is an inner form of GU and
thus they are isomorphic to each other at almost all primes.

Let m and 7’ be automorphic representations of GU(Aqg) and GU'(Ag) respectively.
We say 7 is nearly equivalent to 7’ if they are isomorphic to each other at almost all
primes. In particular, they have the same value of partial L-functions.

We then deduce that:

Corollary 5.1.1. The arithmetic automorphic periods PY) () and PU)~ () depends only
on the nearly equivalence class of w if m is 2-reqular.

5.2 Special values of automorphic L-functions for GL, x G

Let II be a cuspidal automorphic representation of GL,,(Ar) which is regular conjugate
self-dual, cohomological. We assume moreover that II; descends locally if n is even. By
Lemma there exists an Hecke character of K, denoted by &, such that IIY ® £ is 0;-
stable. By Proposition [2.3.2] we know IIY®¢ descends to m, an automorphic cohomological
representation of GUr(Ag) with is tempered and discrete series at the infinity place. In
particular, the arithmetic automorphic period of 7 can be defined.

Definition 5.2.1. We fiz one Hecke character & as above. We denote its infinity type by
247", We define the arithmetic automorphic period for 11 by PO(IL, €) := (2r)“+* PU) (7).

If I is 2-reqular then P (IL,€) does not depend on the choice of & up to elements
in E(II). This is a corollary of Theorem . Therefore we may define PU(IT) :=
D(10,€) for any fized € in this case.
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Lemma 5.2.1. Let II be as in the above theorem.
1. For all I we have P (IT) ~B(I):K PUTI).

2. If I is compact then P(I)(HV)*PU)(H) ~pam):x 1. In particular, since I1 is conjugate
self-dual, we have PU)(IT) » PU(IT) ~g@);k 1 in this case.

Proof The first part comes from the first part of Lemma It is also a direct corol-
lary from Theorem below.

The second one follows from Corollary Let & be the auxiliary Hecke character
with infinity type 2"z" as above and 7 be the representation of GUr(Ag) with base change
IV ®¢. We know 7V is a representation of GUj(Ag) with base change IT® ¢ 1.

By definition

PO ~ gy (27)* 7 PD ()
and PO(IIY) ~papy.x 2m) P (7). (5.2)

Thus PU(I1V) + PU(II) ~ BT PO (zv) s« PU () ~ By 1

Critical points: Let n, n’ be two integers. Let II and II' be algebraic automorphic rep-
resentations of GL,(Ar) and GL,/(Ar) with pure infinity type (z%(?)z-«w(D-ai(o)),

and (z%(?z—wI=4 (U))lgjgn/ respectively.

We assume the existence of motives M (II) and M (II') associated to II and II'. Let

n+n' n+n —2

m € Z+ . We say m is critical for IIQII’ if mt———— is critical for M (I1)®@M (IT')
in the sense of Deligne (c.f. [7] or Chapter [6).

, —w(II) —w() . iy : :
If ai(0) + aj(o) # 5 for all 4, j and o then critical points always exist.

In this case, we have an explicit description for them (c.f. (1.3.1) of [7]). More pre-
w(IT) + w(Il')

2
w(IT) + w(IT')

cisely, m is critical if and only if for all i, j, o, if —a;(0) — a} (o) > then

w(Il) +w(Il') + 1 +a;(0) +aj(0) < m < —a;(0) —aj(o

o), if —a;(0) —aj(o) <
then 1 —a;(0) — aj(0) < m < w(ll) + w(Il') + a;(0) + aj(c). Roughly speaking, m should
a

j
be closer to the central point than any of the a;(o) + a(0).

, — w(Il) — w(I') o . . :
If ai(o) + a(0) = 5 for some 4, j and o then there is no critical points

(c.f. Lemma 1.7.1 of [13]).

The following theorem follows directly from Conjecture [5.1.1]

Theorem 5.2.1. Let us assume that Conjecture [5.1.1) is true. Let 11 be a regular, con-
jugate self-dual, cohomological, cuspidal automorphic representation of GLp(Ar) which
descends to Ur(Ap+) for any I (c.f. Proposition ). We denote the infinity type of 11
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at o0 € X by (20()z=@@)y ;.

Let 1 be an algebraic Hecke character of F with infinity type 249z ot o € . We
know that a(c) + b(o) is a constant independent of o, denoted by —w(n).

We suppose that a(o) — b(o) +2a;(c) # 0 for all1 < i <n and o € ¥. We define I :=
I(I1,n) to be the map on ¥ which sends o € 3 to I(c) := #{i : a(o) — b(o) + 2a;(c) < 0}.

n—1 l+w(m)
Let meZ+ — Ifm > — is critical for I1®n, we have:

L(ma nI® 77) ~E()E(n);K (27ri)mndP(I(H,77)) (H) H p(ﬁ’ U)I(U)p(ﬁ’ E)n—](a). (53)

ey

Lemma 5.2.2. Let x, a be as in Conjecture|5.1.1. Let m be a representation of GUr with

n+1
base change T1¢ x & for certain auziliary . We set n° = Xa. Let m € 7 + — Then m

n—1

is critical for I® n if and only if m + is critical for M(m, x, «).

Proof Since n° = Xa, we have b(c) = —k(0) + ~ and a(o) = k(o). Note that —w(n) =
a(o) + b(o) = k.

We write the cohomology type of m by (A, (A1(c) = -+ Ay(0))). We order a;(0) in de-

n—1 n—3
creasing order. The cohomology type of 7 is then (—u—wv; (a1 (o) — 5 = az(o)— 5 =

—1 +1
- = ap(o) + nT)geg). This gives \g = —u — v and \;(0) = a;(0) +1i — n 5

Let m € Z + Ll By the above discussion, m is critical for II ® n if and only if
ai(0) —b(o) +1 <m < —ai(o) —a(o) if a(o) —b(o) +2a;(c) <0, 1 —a;(0) —a(c) <m <
ai(o) —b(o) if a(o) — b(o) + 2a;(c) > 0. Since r, := max{i : a(o) — b(o) + 2a;(c) > 0}, we
deduce that m is critical for [I®n if and only if a,,+1(0)—b(c)+1 < m < —a,, +1(0)—a(o)
and 1 —a,, (o) —a(oc) <m < ap, (o) —b(o). It is easy to see that these two equations are
the same with those in Definition E.1.11

O

Proof of Theorem We can always choose x and « as in Conjecture [5.1.1] such
that n° = ya.

14w n—1 n4+w
Asm = ﬂ we have m + 5 = 5 (77) Moreover, the above lemma implies
n—1
that m + is critical for M (m, x, «) and then Conjecture |5.1.1| applies, namely:
n—1___
L(m + ——1IIY @ X@) ~p(r)B(x) B(a):K (5.4)

(2riynd(2m) 0 PUAD) () ] (p(Rer,0) 7 p(Rer, 7))

oEX
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Recall by definition that PUILM)N(IL, €) = (27) 2o PUILM) (7). Moreover, n° = Yo and
then p(Xa, o) ~ p(n, o) ~ p(1f,0) ! and p(Xa, @) ~ p(77,7) L. We deduce that the right
hand side of 1’ is equivalent to (27i)™4(PUIMN(IL &) T (p(7, 0)* p(37,7)" ).

oEN
We end our proof by the fact that L(m,II®n) = L(m,II° ®n°) = L(m,IIY ® Ya) =

n
Lmot (m + 5

,T® X, St, ).

O

5.3 Arithmetic automorphic periods for conjugate self-dual
representations

If we consider IT* := II®7, it is not conjugate self-dual but II* ® n~! is. We call such

representations conjugate self-dual. We want to generalize the definition for arithmetic
automorphic period to such representations.

We firstly generalize the definition for I(II,7) in Theorem

Definition-Lemma 5.3.1. Let IT* be an algebraic regular representation of G Ly, (F) with
infinity type (Zai(g)fbi(g)>1<i§n at 0 € 2. Let i be am algebraic Hecke character of F with
infinity type 24z at o € ¥. We assume that a(c) — b(o) + ai(c) — bi(c) # 0 for all o
and i.
We define I(IT*,n) to be the map sending o € 3 to #{i : a(0)—b(0)+a;(c)—b;(c) < 0}.
It is easy to see that I(I1* ming) = I(IT* ® n1,m2) for any n1, na.

We can now define the arithmetic automorphic periods.

Definition-Lemma 5.3.2.

We say a 3-regular cohomological cuspidal automorphic representation 11* of GL,(AF)
has definable arithmetic automorphic periods if there exists an algebraic Hecke char-
acter n of F such that II* @ n~! descends to unitary groups of any sign. In particular,

II* @n~"t is conjugate self-dual.

In this case, for any sign I, i.e. a map from X to {0,1,--- ,n}, we define the arith-
metic automorphic period for IT* by PU(I1*) := PU(I*@n~1) ] p(7, o) @p(i, 7)),

ex

g
This deﬁm’tz’on does not depend on the choice of n and hence is compatible with Defi-
nition [5.2.1) if IT* itself is conjugate self-duall.

Proof The last part comes from Theorem [5.2.1] In fact, for any I, let x be an algebraic
Hecke character such that I(IT*,y) = I. Since IT* is 3-regular, we may choose x such that

w +w
there exists m > 1 + (77)20() critical for IT* ® x.

Let i be an algebraic Hecke character such that IT := IT* ® ! is conjugate self-dual,
we have II* ® y = II® (nx).



54 CHAPTER 5. SPECIAL VALUES OF AUTOMORPHIC L-FUNCTIONS: THE START POINT

Since I(IT,nx) = I(IT*, x) = I, Theorem gives that:

L(m, II* @ x) = L(m, 11 ® (nx))

~paEmEecx  (2m)™ PO [ | p6ix. o) @pix, 7))

oeX
~pmemEc)x 2™ PO [, o) Opi,)" 1@ T ] p(X, o) p(x, 7))
oeX gexn

with both sides non zero.

In particular, P(I)(H* ®7771) [1 p(,0) (")p(n, )" 1)

oedl

BT )i 27” —mnd Hp v )n I(U)) lL(m,H* ®X)

ey

which does not depend on the choice of 7.

O

Remark 5.3.1. Let I1 be a 3-regular cohomological cuspidal automorphic representation
of GL,(AF) which is conjugate self-dual after tensoring an algebraic Hecke character 1.
Let q be a prime number inert in F* and split in F. If (L1 ®n), descends locally then
IT has definable arithmetic automorphic periods. In particular, this holds true if 11, is in
discrete series.

We read from the above proof that Theorem [5.2.1] can be rewritten as follows:

Theorem 5.3.1. Let II be an algebraic automorphic representation of GLy(Ar) which
has definable arithmetic automorphic periods. Let n be an algebraic Hecke character as in
Definition|5.3.1. We write I := I(I1,n).

1+ w(II) + w(n) then

—1
Let meZ + nT be critical for I®n. If m =

Lm,TT®n) ~puyp@mx (270" PYED ) [ pi, 0 (7, )" (5.5)

o€y

Moreover, there always exists such m with both sides non zero.

Remark 5.3.2. The last part comes from the fact that 11 is 3-regular. The 3-regular con-
dition is not needed to define the arithmetic automorphic periods in general. We assume it
here to guarantee that Definition[5.3.3 does not depend on the choice of . One can replace
this condition by a weaker one on the non vanishing property for certain L-functions.



Chapter 6

Motives and Deligne’s conjecture

6.1 Motives over Q

In this article, a motive simply means a pure motive for absolute Hodge cycles in the
sense of Deligne [7].

More precisely, a motive over Q with coefficients in a number field F is given by its
Betti realization Mp, its de Rham realization Mpgr and its l-adic realization M; for all
prime numbers [ where Mp and Mppg are finite dimensional vector space over E, M is a
finite dimensional vector space over Ej := F ®qg Q; endowed with:

e I, : Mp®C = Mpr®C as E ®g C-module;
e [} : Mp®Q, = M; as E ®g Q;-module.

From the isomorphisms above, we see that dimgMp = dimgMpr = dimpg,M; and
this is called the rank of M. We need moreover:

1. An E-linear involution (infinite Frobenius) F, on Mp and a Hodge decomposition

Mp®C = P MP?as E® C-module such that Fi, sends MP? to M%P.
D,9EL

For w an integer, we say M is pure of weight w if MP? = (0 for p + ¢ # w.

Throughout this paper, all the motives are assumed to be pure. We assume also
that Fi, acts on MPP as a scalar for all p € Z.

We say M is regular if dimMP? < 1 for all p,q € Z.

2. An E-rational Hodge filtration on Mpg: --- D M* > M**! 5 ... which is compatible
with the Hodge structure on Mp via I, i.e.,

Io(P M) = M'®C.

p=i

3. A Galois action of Gg on each M such that (M;); forms a compatible system of
l-adic representations p; : Gg — GL(M;). More precisely, for each prime number
p, let I, be the inertia subgroup of a decomposition group at p and F}, the geometric
Frobenius of this decomposition group. We have that for all [ # p, the polynomial
det(1 — Fp|Mle) has coefficients in E and is independent of the choice of [. We can

then define L, (s, M) := det(1 —p*SFp|MlI”)*1 € E(p—*) for whatever [ # p.
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For any fixed embedding o : E < C, we may consider L,(s, M, o) as a complex valued
function. We define L(s, M,0) = [[ Ly(s, M, o). It converges for Re(s) sufficiently large.
2

It is conjectured that the L-function has analytic continuation and functional equation on
the whole complex plane.

We can also define Lo, (s, M), the infinite part of the L-function, as in chapter 5 of [7].

Deligne has defined the critical values for M as follows:

Definition 6.1.1. We say an integer m is critical for M if neither Lo (M,s) nor
Ly (M,1 — s) has a pole at s = m where M is the dual of M. We call m a critical
value of M.

Remark 6.1.1. The notion Ly (s, M) implicitly indicates that the infinity type of the L-
function does not depend on the choice of o : E — C. More precisely, for everyo : E — C,
put MB,O’ = Mp QRF,c C.

We then have Mp®C = @ Mp,. Since MP1 is stable by E, each Mp , inherits a
o:E—C
Hodge decomposition Mp , = @ Mg’gy. We may define Lo (s, M, o) with help of the Hodge

decomposition of Mp ®g , C. It is a product of I' factors which depend only on dim Mg’f,
and the action of Fy, on MEP . The latter is independent of o since we have assumed that
Fy acts on MPP by a scalar.

It remains to show that dim Mg’fj s also independent of o. In fact, since M 1is pure,
MP9 can be reconstructed from the Hodge filtration M. Hence MP9 = @D MEL is a free

E ® C-module. One can show nga = MP1Q®p , C and hence dimMg’z is independent of
.

If F, acts as a scalar at MPP for every p then Deligne’s period can be defined. We will
only treat the case when M has no (p, p) class. Therefore, Deligne’s period can always be
defined.

Definition 6.1.2. Let M be a motive over Q of weight w which has no (w/2,w/2) class.
We denote by M7 the subspace of Mp fized by Fo,. We denote by F* (M) := F@2(M) a

subspace of Mpr. It is easy to see that I;'(F+(M)® C) equals to @ MP4,
p>q

The comparison isomorphism then induces an isomorphism.:
MEQR®C—> Mp®C = Mpr®C — (Mpgr/F*(M))®C. (6.1)
Deligne’s period ¢ (M) is defined to be the determinant of the above isomorphism with
respect to fived E(M)-bases of M and Mpgr/F*(M). It is well defined up to E(M)*,
Deligne has conjectured in [7] that:

Conjecture 6.1.1. If 0 is critical for M (see the loc.cit for the definition of critical),
then L(O,M,O') NE(M) C+(M).
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More generally, tensoring M by the Tate motive Q(m) (c.f. [7] chapter 1), we obtained
a new motive M(m). We remark that L(s, M (m),o) = L(s + m,M,o). The following
conjecture is a corollary of the previous conjecture:

Conjecture 6.1.2. If m is critical for M, then
L(m, M,0) ~pr (2mi)* ™t (M) (6.2)

where d* = dimp ) (M)

Deligne has given a criteria to determine whether 0 is critical for M (see (1.3.1) of
[7]). We observe that n is critical for M if and only if 0 is critical for M (n). Thus we can
rewrite the criteria of Deligne for arbitrary n. In the case where MPP = ( for all p, this
criteria becomes rather simple.

We first define the Hodge type of M by the set T' = T (M) consisting of pairs (p, q)
such that MP4 s 0. Since M is pure, there exists an integer w such that p + ¢ = w for all
(p,q) € T(M). We remark that if (p, ¢) is an element of T'(M), then (g, p) is also contained
T(M).

Lemma 6.1.1. Let M be a pure motive of weight w. We assume that for all (p,q) € T(M),

w
p # q which is equivalent to that p # 3

Let p1 < pa < --- < pp be some integers such that

T(M) = {(plyql)v (p2,Q2), to 7(men)} o {((h;pl)a (Q2,p2), ce 7<Qn7pn)}

where ¢; = w — p; for all 1 <i < n.

w
We set po = —0 and pp41 = +0. Denote by k := maz{0 <i<n|p; < 5} We have
that m is critical for M if and only if

max(pg + 1w + 1 — pgy1) < m < min(w — pg, pr+1)-

In particular, critical value always exists in the case where p; # q; for all i.

Proof The Hodge type of M(m) is {(p;i—m,w—p;—m) | 1 < i < n}u{(w—p;—m, p;—m) |
1 < i < n}. By Deligne’s criteria, 0 is critical for M if and only if for all 7, either p;—m < —1
and w—p;, —m >=0,0r p, —m = 0and w — p; — m < —1. Hence the set of critical values
for M are [\ ([w+1—pi,pi]ulpi +1,w—p;]).

1<isn

w
Fori <k, p; < 3 and then p; < w + 1 — p;. Therefore [ ([w+1—p;,pi] v [pi +

1<i<k
Lw=—mp])= ) [pi +1,w—pi] =[pr +1,w— pg]. Similarly we have (] ([w+1—
1<i<k k<i<n
pi, i) U [pi + Lw —pi]) = ﬂ [w+1—=pi,pi] =[w+1—pri1, per1]-
k<i<n

We deduce, at last, that the set of critical values for M is [max(py + l,w + 1 —
Pk+1), min(w — pg, pr+1)]. It is easy to verify that the latter set is non empty.

U
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6.2 Motivic periods over quadratic imaginary fields

Recall that K is a quadratic imaginary field with fixed embedding K < Q. Let E be
a number field.

Let M be a regular motive over K (with respect to the fixed embedding) with coeffi-
cients in E of dimension n pure of weight w(M).

Recall that Mp, the Betti realization of M, is a finite dimensional E-vector space. The
infinite Frobenius gives an E-linear isomorphism F,, : Mp — M§.

Since M is regular of dimension n, we can write its Hodge type by (p;,qi = w(M) —
Di)1<i<n With p1 > pa > -+ > p,,. The Betti realization Mp has a Hodge decomposition
n

Mp ®qg C = @ MP% as E ®g C-modules.
i=1

We write the Hodge type of M€ by (pf,q¢f = w(M) — p§)i<i<n With pf = gny1-i =
w(M) — ppt1—i. Note that the Hodge numbers p§ are still in decreasing order. We know
n

M§®gC = @ (M€)Pidi and Fy, induces E-linear isomorphisms: MPi% => (M¢)Prt1-iTns1i,
i=1

The De Rham realization Mppg is also a finite dimensional E-linear space endowed with
a Hodge filtration Mpgr = MP» > MP»—1 > ... o> MP!, The comparison isomorphism:

IOO:MB@)QC;MDR@Q(C (6.3)

induces compatibility isomorphisms on the Hodge decomposition of Mg and the Hodge
filtration on Mpg.

More precisely, for each 1 < ¢ < n, Iy induces an isomorphism:

I, : @ MPi9 = @Mpﬂb' = MPi®q C (6.4)

Pj=pi Jj<i

Definition 6.2.1. For any fized E-bases of Mp and Mppg, we can extend them to F®gC
bases of Mp ® C and Mpr @ C respectively. We define §P¢(M) to be the determinant of
I with respect to the fized E-rational bases, called the determinant period. It is an
element in (E ® C)* well defined up to multiplication by elements in E* < (FE® C)*.

This is an analogue of Deligne’s period ¢ defined in (1.7.3) of [7].

Let us now fix some bases. We take (e;)1<i<n an E-base of Mp. Since Fy, is E-linear

on Mp, we know (e := Fye;)1<i<n forms an E-base of M.

(2

From we see that I, induces an isomorphism MPi% = (MP1)®qpC/(MPi-1)®pC
for any 1 < i < n. Here we set MP° = {0}. Let w; be a non zero element in MPi% such
that the image of w; by the above isomorphism is in MPi(mod (MPi~1) ®g C). In other
words, I (w;) is equivalent to an element in M? modulo (MPi-1) ®q C.

Since (w;)1<i<n forms an E ® C-base of Mp ® C, we know (Iy(w;))1<i<n forms an
E ® C-base of Mpr ® C. This base is not rational, i.e. is not contained in MPE_ But
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by the above construction, it can pass to a rational base of Mpr ®g C with a unipotent
matrix for change of basis. Since the determinant of a unipotent matrix is always one, we
can use this base for calculating 67¢ (M).

We define wf € (M€)Pi% similarly. We will use (Iop(w¢))1<i<n as an E ®¢g C base of
Mpr®C to calculate motivic period henceforth.

Definition 6.2.2. Since MP9% is a rank one free E ® C-module, we know there exists
numbers Q;(M) e (E®C)*, 1 <i < n such that Fpw; = Q;(M)wg_; for all i. These
numbers in (E® C)* are called motivic period and well defined up to E*.

Since F2 = Id, we have Fowf ;= Qi(M)~'w;. We deduce that:

Lemma 6.2.1. For all 1 <i<n, Qi(M°) ~g)x Qni1—i(M)~L.

n n
We write w, = Y, Ajgei, wi = Y, AGef for all 1 < a,t < n.
i=1 =1

We know §P¢(M) = det(Aiq)i<ia<n and sPel(Me) = det(AS$;)1<it<n. This implies
that A, w; = §P4(M) AL, e;.

We denote by det(M) the determinant motive of M as in section 1.2 of [16]. We know
I (i wi) is an E-base of det(M)pr and A, €; is an E-base of det(M)p. Moreover,

Fo(Nicywi) = 1 Qi(M) NiZy i

1<i<n

We deduce that:

Lemma 6.2.2.
SPUM) ~pary.xc 67 (det (M) (6.5)
Q1 (det(M)) ~panyx | [ @i(M) (6.6)
=1

Remark 6.2.1. The determinant period 6P (M) is inverse of the period § defined in
[16]. In fact, the period (M) is defined by equation (1.2.4) of [16], namely, )\;_,e; =
§(M) Niy wi. Therefore §(M) ~ gy 7% (det(M))™ ~ gy 02 (M) 7L

Lemma 6.2.3. For all motive M as above, we have:

5Del (Mc ~BOM)K H Q 6Del )

I<isn
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Proof This follows directly from equation (6.10)).

One can also prove this with help of Lemma [6.2.2] In fact, by Lemma [6.2.2] we may
assume that n = 1. We take w € Mpg, w® € M$, and e € Mp. Then w = §P%(M)e and
w® = P (M®)e where e¢ = Fype.

By definition of motivic period, we have Fow = Q1 (M )w® and then w¢ = Q1 (M) Fow =
Q1 (M)~ E, (8P (M)e) = Q1(M)~L6Pel(M)ec. Tt follows that

5P M) ~ paryac Qu(M) 6P (M)

as expected.

Example 6.2.1. Tate motive
Let Z(1)k be the extension of Z(1) from Q to K. It is a motive with coefficients
in K. As in section 3.1 of [7], Z(1)k,p = Hi(Gm,x) = K and Z(1)k pr is the dual of

d
H} 5 (G i) with generator -y Therefore the comparison isomorphism Z(1) g p®C = K®
z
d
C - Z(\)kpr®C = K®C sends K to§ K = (2mi)K. We have 6P (Z(1)x) ~r:x 2ri.
z
In general, let M be a motive over K with coefficients in . We have

6P (M (n)) ~pansrc (2mi)"6P (M), (6.7)

Remark 6.2.2. All the determinants and the coefficients we consider here are elements
in (E®q C)*.

6.3 Deligne’s conjecture for tensor product of motives

Let E and E’ be two number fields.

Let M be a regular motive over K (with respect to the fixed embedding) with coeffi-
cients in F of dimension n pure of weight w(M). Let M’ be a regular motive over K with
coefficients in E’ of dimension n’ pure of weight w(M’).

We denote by R(M ® M') the restriction from K to Q of the motive M ® M’. Tt is a
motive of weight w := w(M) + w(M') with Betti realization Mp ® My & M§ ® M5 and
De Rham realization Mpr ® Mpp @ Mfp ® M[5g.

We denote the Hodge type of M by (p;,w(M) — p;)i<i<n With p1 > --- > p,, and the
Hodge type of M’ by (rj,w(M') —1;)1<j<n With 7y > 79 > --- > 1. As before, we define
p§ = w(M) — ppi1-; and 7§ = w(M') — 741 j. There are indices for Hodge type of M¢
and M'¢ respectively.
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We assume that R(M @ M’) has no (w/2,w/2) class. In other words, p, 4+ r, # § and
then pf +r; # $ forall 1 <a,t <n, 1 <bu<n

As in the above section, we take (e;)1<j<n an E-base of Mp and define (ef := Fioe;)1<i<n
which is an E-base of Mp. Similarly, we take (f;)i<j<n an E’-base of My and define
fi=Fofjfor1<j<n

We also take w; € MP<(M)=pi - (¢) e (M)Pi<(M=P} for 1 < i < n as in previous

section and n; € M« (M)=r;, s (M’C)TJC"“(M/)_TJC' for 1 < j < n/ similarly.

Recall the motive periods are complex numbers @Q;, 1 <7 < n and Q;, 1< j<n such
that

Fow; = in701+1—i7leL’Lj = Q;‘M%’-i-l—j' (P)
The aim of this section is to calculate the Deligne’s period for R(M ® M’) in terms of
motivic periods.

Remark 6.3.1. If we define a paring (MpRC)Q(Mp®C) — C such that < w;,ws,  _; >=
1 and < wi,wfl+1_j >=0 for j #1i then Q; =< w;, Foow; >.

Let M# = R(M ® M'). It is a motive over Q. We are going to calculate c*(M#).
We define A = {(a,b) | po + 1o > 5} and T = {(t,u) | pf +r; > §} = {(t,u) |
Pril—t + Tl < 5}

Remark 6.3.2. Keeping in mind that

(t,u) € T if and only if (n +1—t,n +1—u) ¢ A. (6.8)

Proposition 6.3.1. Let M, M’ be motive over K with coefficients in E and E' respec-
tively. We assume that M @ M' has no (w/2,w/2)-class. We then have

¢ (R(M @ M"))

~E(M)E(M):K [T QM) Quir (M) 6P (M @ M)
(t,u)éT(M,M’)

~E(M)E(M');K H Qu(M) ' Qu(M") ™ | 6PN (M @ M) (6.9)
(t,u)eA(M,M")

Proof For simplification of notation, we identify w; € Mp ® C and Iy (w;) € Mpr ® C
and similarly, we identify w®, u;, u§ with their image under I in the following.

We fixe bases for M} and M#R/FWM#) now. For M7, we know (e; ® fj + e ®
fi)1<isn,1<j<n forms an EE'-base. For MﬁR/FJF(M#), as in the above section, we con-
sider B := (w, ® tp, w§ @ pé(mod FH(M#¥)) | (a,b) ¢ A, (t,u) ¢ T) as an E ® C base
of (M#R/F +(M#)) ® C which is not rational but can change to a rational base with a
unipotent matrix for change of basis. Therefore we can use this base to calculate Deligne’s
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period.

If (a,b) ¢ Athen (n+1—a,n'+1—0b)eT by (6.8). Along with (P)), we know that
Foo(wa®mp) = QaQyuwl 1okl q_y € FT(M#)QC. Similarly, Fi (wf@us) € FH(M#)®C
for all (t,u) ¢ T.

Note that Fy, is an endomorphism on M#(B)®(C and M§R®(C. For any ¢ € M#(B)®(C
or M#(DR) ® C, we write (1 + Fi) := ¢ + Fop(9).

Recall that (M} ,/F+(M#)) ® C =~ (MgR ® C)/(F*(M#*)®C). Thus B = ((1 +
Fo)wa ® pp, (1 + Foo)wf @ i (mod FH(M#)®C) | (a,b) ¢ A, (t,u) ¢ T).

i=1 j=1
l1<ag,t<nandl1<bu<n

n’ n’/
We write w, = Z Ajgei, wi = Z ASeS, iy = > Bjpfjs tu = D, B, f5 for all
j=1

We then have

(1+ F)waps = (14 Fip) > AiaBjpei ® fj = > AiaBjn(ei ® f; + € ® [5)

1,J 4,J
and (1 + Fp)wiw;, = (1 + Fy) ZAC Bj.ei ® fj = ZA Bj,(e; ® fj + i ® f7).
irj irj

Up to multiplication by elements in (EE’)*, the Deligne’s period then equals the
determinant of the matrix

Mat1 = (Amij,AgtBju)
with 1 <i<n,1<j<n, (a,b)¢A, (t,u)¢T.

By the relation [P} we have Foowp 11—t = Qny1—1wf. We get
n
Z Ai,n+17t€f = QnJrlftwt Qn+1 t 2 Ané’
i=1
Therefore, for all 7, j, we obtain,
Af = (Qn+1—t>_1Ai,n+1—taBJc‘u = (Qlyi1—) ' Bjpi1—u- (6.10)

We then deduce that Af;Bf, = (Qn+1—t)71(Q/n/“_u)ﬂAi,n+1—tBj,n/+1—u~
Thus the Deligne’s period:

¢t (R(M @ M) ~ ek det(Matr) = [ ((Quii—o) " (@ys1-0) ") x det(Maty)
(t,u)g¢T

where Maty = (Amij,Ai,nﬂ,t’j’nlﬂ,u) with 1 <7 < n,1<j<n, (a,b) ¢ A and
(t,u)¢ T.

Recall that (t,u) ¢ T if and only if (n + 1 —¢,n' + 1 —u) € A. Therefore the index
(n+1—1t,n" 4+ 1—u) above runs over the pairs in A. We see that Maty = (AiaBj) with
both (i,7) and (a, b) runs over all the pair in {1,2,--- ,n} x {1,2,---,n’}. It is noting but
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(Aia) ® (Bjp)-

Let us back to the definition of A;,. It is the coefficients with respect to the chosen
rational bases of the map Mp ® C — Mpr ® C. Therefore (A;,) ® (Bjp) is the coeflicient
matrix of the comparison isomorphism (M @ M')p®C — (M ® M')pr ® C. We then get
det((Aiq) ® (Bjp)) = 6P¢/(M ® M’) which terminates the proof.

0

6.4 Motivic periods for automorphic representations over
quadratic imaginary fields

Hecke character case: Let n be an arbitrary algebraic Hecke character of K with
infinity type 222°. We assume that a # b.

Let M (n) be the motive associated to n (c.f. [7] section 8.) It is of Hodge type (—a, —b).

For the motivic period for M (n), we use n to indicate M (n) for simplification. For
example. 67¢(n) := 6P (M (n)).

On one hand, by Blasius’s result, c*(R(M(n))) ~pg(m);x p(7,1) if a < b;
¢ (R(M())) ~E@yx p(i,0) if a > b.

On the other hand, by Proposition we have

cH(R(M (1)) ~pyx | [ Qi(n) 67 (n) (6.11)
teA

where A = {1} if —a > —band A = J if —a < —b.

Let us assume a < b first. We have Qq(n)~ 6% (n) ~g@m):x P(1,1). We apply the
above to n® and get 07 (M (n°)) ~g.x P(1°,1) ~E@m)x P(T,1).

Notice that there is there is a rational paring: M (n) x M (n¢) — M (no)(a + b) where
1o is a Dirichlet character over Ag such that 7 = (100 Ny, /a0)|| - ||X;b. We obtain that

3P () x 6P (1) ~pyrc 67 (o) (2md) (6.12)
by equation .
We deduce by Lemma that

P () x 6P () ~E(n):K g(%)(?ﬂ'z)aﬂ’
~Bmix P00 © Nage/ags DU D™ ~ s 210 © Nasesa)ll- 1537 D7
~pix PO D) ~peyx P07 )P0, 1)

Therefore,

e ~ n
6D l(n) ~E(n);K p(ncv 1) and then Ql(n) ~EMn);K m ~E(n);K p(;a 1) (613)
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If a > b, we follow the above procedure and can see easily the last two formulas are still
true.

Conjugate self-dual case: Let II be a regular cuspidal cohomological conjugate self-
dual representation of GL,(Ak). We denote the infinity type of II by (2*Z~%)i<i<n With
ap > ag > - > ap.

We assume that there exists a motive M over K associated to II with coeflicients in

E(M) = E(II).

We know M is a reguler motive of Hodge type (—a; + %_1, a; + nT_1>1<i§n.

We define p; := —ani1-i+257%, ¢; '= n—1-p; = ani1-i++252, p§ = a;+ %52 = gny1-i,
¢ =n—1—pfforalll<i<n.

. . C 4C . . .
We define w; € MPi-% ¢ e (M€)Pi% as in the previous sections.

If II is conjugate self-dual, then M (II) is polarized. The polarization on the De Rham
realization induces an E(M )-rational perfect parings <, >:

M(ID)Pi% @ (M(H)C)piﬂquﬁﬂfi — E(M)(1 —n) ~ E(M).

We may assume that < w;,w;,,_; >= 1 by adjusting wy, ,;_; with multiplication by ele-
ments in E(M)*.

Let 1 < i < n. We write Q;(II) := @Q;(M(II)) as we did for n. The motivic period
Q;(IT) then equals < w;, Fpywy+1—; > up to multiplication by elements in E(IT)*.

conjugate self-dual case: In the general case, we write IT = IT'®n with I’ conjugate
self-dual and 7 be an algebraic Hecke character of Ag.

We take w € M (I1')P«(I1):@:(1) a5 before. Let w be a base of M (1) pr and w® be a base
of M(n°)pr. We know Fy,(w) = Q1(n)w® up to multiplication by elements in E(n)*.

Then (w; := w? ®w)1<i<n € MP»% which is equivalent to a rational element in F' i (M)

modulo FPi~1(M)® C. We have similar properties for (wf := w?’c ® w)1<i<n-

Moreover,
Foo(wi @w) = Qi(IT")Q1(n) (w11 ®W). (6.14)

The motivic period for IT then equals Q;(II) := Q;(II")Q1(n) for 1 < i < n up to
multiplication by elements in E(IT)*.

6.5 Deligne’s conjecture for automorphic pairs over quadratic
imaginary fields

Let IT (resp. II') be a regular cuspidal cohomological conjugate self-dual represen-
tation of GL,(Ak) (resp. GL,/(Ak)). We denote the infinity type of II (resp. II')
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w(H)*bj)

by (z%z-«@=a) i (resp. (297~ 1<j<n’) With @y > ap > -+ > a, (resp.

w(Il)+w(I1")
2

by > by > --- > b,y ). We suppose II x II' is regular, i.e. a; +bj # — for all 4, j.

We assume that there exists a motive M (resp. M') over K associated to II (resp. IT')
with coefficients in F(M) (resp. E(M")).

We know M (resp. M’) is reguler motive of Hodge type (—a; + 21,al + w(Il) +

2 ) 1cicn (resp. (=b; + 252 b; + w(IT) + %5 )1 <jen ).

We define p; := —anpt1—; + %5* and pf = w(Il) + n — 1 — ppy1—; = a; + w(II) + 251
for all 1 < ¢ < n. We define like this to guarantee that p; > ps > --- > p, and
pf > p§ > --- > p; as in the previous sections. Similarly, we define r; := —b,r1_; + ”Tfl,

r§:=bj+w(1'[’)+%foralll<j<n’

Proposition [6.3.1] implies that:

Proposition 6.5.1. The Deligne’s period of (M ® M') satisfies:

" (R(M(IT) @ M(T'))) ~ vy B(mr);k H QM) Q, (1)~ | P (M @ M').
(t,u)e A(M, M)
(6.15)
where the set A(M,M') = {(t,u) | pt + 14 > w(H)W(H/)JFQ("_l)J“(”,_I)}.
Recall py = —any1-¢ + "5~ Land ry, := —byy I _1 . We obtain that A(M, M") =

w(I)+w (1) }
—— s

{(tau) | Pt + Ty > = {(t,u) | Apy1—t + bn’+17u < —

w(I)+w')+(n—1)+(n'— 1)}
2

Therefore,
[T Q™ =@y #brwsmoma =5 (g
(t,u)eA(M, M) =1
In this section, we define sp(j) := sp(j,IL; IT') for 0 < j < n and sp/(k) := sp(k, II'; 1) for

0 < k < n'. Recall sp(j) are the lengths of different parts of by > by > -+ > b, separated
by —ay, — 0L e T
Therefore #{u | by11-u < _an-i-l—t_w} =#{u| by < —any1-4—

sp(t) + sp(t + 1) + -+ + sp(n), we have [T, ,yean,nrr) Q (1)1

—Qp—1 —
W(H)+UJ(H’)} -
2

= Q) sp(1)—sp(2)—-—sp(n )Q2(H)—Sp(Q)—sp(S)_..-—sp(n)”.Qn(l—[)—sp(n)
= [P Qo) TP - [Qi () T Qa(I) ™ - Qu ()17

We define Q<;(II) = Q1(I1)'Q2(II)~!--- Q;(II)~! for 1 < j < n and Q<o(I) = 1.
We define Q< (II') similarly for 0 < k < n/.

We have obtained that

n

[ Q)'Qum)™ H

(tu)eA(M,M") j=0

)sP (k). (6.17)

H::
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We define A(M(II)) = A(II) := (277@')71(7127 : (IT). In fact, let & be the central

character of II. Since A"M(II) = M(ﬁn)(—@), we have §P¢(IT) = §PL (A" M (IT)) =
n(n—1
60l () (2mi) =5

. Therefore,
A(M) ~payx 07 (€n). (6.18)

We define A(IT') similarly. We have

/

5Del(M®M/) _ 6Del<H)n’5Del(H/>n _ (zﬂ_i)—nn’(n-i-n’—Q)A(H)n A(H/>n.
Since Y] sp(i) =n' and Y] sp(i) = n’, we know:
i=0 i=0
nn/(n4+n’—2) n . n' /
PUM@M') = (2mi)~ 2z | [A@)™D [T Aaar)»®. (6.19)
§=0 k=0
At last, we define for all 0 < j < n that
QU(IT) = Q<;(IT) x A(IL) ~ gy Qu(ID) ™"+ Q;(I) 6P (&) (6.20)

We define Q%) (IT') for 1 < k < n’ similarly. Comparing (6.15) with (6.17) and (6.19),
we have

H(RIM ® M')) ~ gy (2m) =20 [ QW) (G Im) H )=p (kIS0
Jj=0 k=0

We can now state Deligne’s conjecture for automorphic pairs:

Conjecture 6.5.1. Let n and n’ be two positive integers. Let I1 and II' be reqular cohomo-
logical cuspidal representation of GLy(Ak) and GL,/ (Ak) respectively which are conjugate
self-dual. We suppose that I1Q I is regular.

We assume that there exists motives M and M’ over K associated to I and II' respec-
tively.

LetmeZ+ %"/ be critical for I II'. It is equivalent to saying that m + H”T/_Q 18
critical for M @ M'. Deligne’s conjecture predicts that:

L(m, T x IT') = L(m + “7=2 M @ M')

~ gy (270" ]_[ QU (11)*P G ILI) ﬁ QW) (1) sp(kIT5T)
k=0

6.6 The picture for general CM fields

Let F be a CM field containing K and F'* be the maximal totally real subfield of F.
Let M be a motive over F' with coefficients in F(M) of dimension n and pure of weight
w(M).

For each ¢ € ¥, we may define the motivic period §°¢(M, o) and Q;(M,o) as in
Section We write the Hodge type of M at ¢ by (pi(0), ¢i(0))1<i<n-
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We take M’ another motive over F' with coefficients in F(M’) of dimension n’ and pure
of weight w(M"). Similarly, we write the Hodge type of M’ at o by (rj(0), sj(0))1<i<n’-

w(M) + w(M')
2
Define A(M,M')(0) = {(a,b) | pa(0) + 1p(0) > ¥}

We assume that p;(o) + 7;(0) # for all o, i, j.

For any CM type ® of F, we have Respg(M QM') = (D M QM"”)® (P M7 ®
oed oed
M%),

The proof of Proposition [6.3.1] can be easily generalized to the CM field case and we
get:

Proposition 6.6.1. Let M, M’ be motive over F with coefficients in E and E' respec-
tively. We assume that M @ M’ has no (w/2,w/2)-class. We have:

¢ (Respp(M @ M')) ~pu)e(mr);K (6.21)
[ [ Qi(M,0) 'Qu(M’,0)71 | [] 6P4M @M, o)
oeV¥ \ (t,u)eA(M,M’")(o) oe¥

Let us assume that M and M’ are motives associated to certain representations IT and
IT" respectively. We still write the motivic period Q;(M(IT)) as Q;(II) for simplicity.

Qi(Il,0). We have (c.f. equation (6.17))

.

We define Q;(I1,0) :=

=1

n’

H QI ' Qu(M") ™ = ﬁng( )P LI H I, o) (IT3T0),

(t,u)e A(M,M’) (o) 7=0 k=0

(6.22)
Recall that A M (IT) = M (¢)(—2 )) We have
6PUTL, o) ~ g (2m0) T 67 (€, o). (6.23)
As before, we define
A(IL, o) == (2m0) 6P (L, o) = 6P (611, 0)
and QUM 0) := Q<;(I1,0)A(IL, 0). (6.24)
We have:
+ ' .\ znnld(ntn/—2)
C (RBSF/Q(M®M )) ~EM)E(IV);K (27TZ) 2 X
H H Q sp AILIN o H Q(k) (H/, O_)sp(k,H’;H,U)
eV j= k=0

In particular, if we take ¥ = X p.x, Deligne’s conjecture predicts that:
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Conjecture 6.6.1. Let n and n’ be two positive integers. Let I1 and II' be reqular cohomo-
logical cuspidal representation of GLy(Afr) and G L, (AF) respectively which are conjugate
self-dual. We suppose that IIQ I is regular.

We assume that there exists motives M and M’ over F associated to 11 and II' respec-
tively.

IfmeZ+ ”E"l is critical for II x II' then

L(m, I x IT') = L(m + “2=2 M @ M')

n

/ - - R n/ /.
~paearyk (200" T (11 QUL o) #GTHe) kaQ(k) (I, o) P (RIT5ILo))

O'EEF;K j:O

6.7 Motivic periods for Hecke characters over CM fields

Let 1,1 be two algebraic Hecke character of F. We assume that nn’ is critical and
then is compatible with a CM type ¥(nn’). Proposition can be rewritten as

¢ (Respp(M(n) @ M(1))) ~ @) E(m);Kk (6.25)
I1 ( I1 Q1(7770)‘1Q1(77/,0)‘1> [16P(M e M, o)
o€V \ oe¥n¥(nm’) oe¥

Fix any Hecke character . We may take n’ such that W(nn') = ¥°.
Equation ((6.25)) implies that

" (Respy)(M(n) @ M(7)) ~ ek | | 870 0) [ [ 67407, 0). (6.26)

oev¥ oeV¥

On the other hand, by Blasius’s result, we have:

" (Respig(M (1) ® M) ~ by sy P07, ¥°)
~EMmEM ) K H p(17,0°) H (1, o).

oev¥ oev¥

Let 1 vary. We get for any C'M type ¥ that:

H 6Del(77/7 U) ~E(n);K H p(ﬁ? Uc)- (627)

oev¥ oe¥

Let ¥ vary now. It is easy to deduce that there exists (4, an d-th root of unity, such
that 6P (i, o) ~ Bk Cap(7,0°) for all o € ¥.

For simplicity, we assume that E(II) contains all d-th roots of unity then we get
5P, 0) ~ @)k p(,0°) for all o € .

We can now calculate Q1(n,0). Let og be in ¥. We take " such that ¥, ,, = {o} U
(¥ — {o0})¢. Equation (6.25) implies that

¢ (Respg)(M(n) @ M(0')) ~gwmee):x @1(n,0)1Q1(n,0) " x

H 5Del<777 U) H 5Del(77/’g> % 5Delta(777 00)5Delt“(17/, UO)-
oe(Y—{o0}) oe(¥—{oo})
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Blasius’s result implies that

c*(Respig) (M) @M 1)) ~pmypwyx (D ] pnr,o0%) xp(nr', 00). (6.28)
oe(¥—{o0})

Along with equation (6.27)), we obtain that

C

Ql(na UO) ~E(n);K p(ﬁv U(():)p(rﬁa UO)_l ~E(n);K p(ﬁa UO)' (629)






Chapter 7

Factorization of arithmetic
automorphic periods and a
conjecture

We want to show that the arithmetic automorphic periods can be factorized as products
of local periods over infinite places. We may assume that II is conjugate self-dual in this
Chapter. The essential conjugate self-dual case then follows by Definition and the
fact that the CM periods is factorable.

7.1 Basic lemmas

Let X, Y be two sets and Z be a multiplicative abelian group. We will apply the result
of this section to Z = C*/E* where F is a proper number field.

Lemma 7.1.1. Let f be a map from X x Y to Z. The following two statements are
equivalent:

1. There exists two maps g : X — Z and h :' Y — Z such that f(xz,y) = g(x)h(y) for
all (z,y) e X x Y.
2. Forall z,2' € X and y,y' €Y, we have f(x,y)f(2',y") = f(z,y)f(2,y).

Moreover, if the above equivalent statements are satisfied, the maps g and h are unique up
to scalars.

Proof The direction that 1 implies 2 is trivial. Let us prove the inverse. We fix any
yo € Y and define g(x) := f(x,yp) for all x € X. We then fix any z¢p € X and define

f(xo,y)  f(@o,y)

h(y) := = .
W= g0 Flow)
For any z € X and y € Y, Statement 2 tells us that f(z,v)f(zo,v0) = f(z,y0)f(x0,y).
Therefore f(z,y) = f(x,y0) X M = g(z)h(y) as expected.
f(z0,y0)
L]
Let n be a positive integer and Xi,---,X,, be some sets. Let f be a map from

XixXgx---x X, to Z.

The following corollary can be deduced from the above Lemma by induction on n.
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Corollary 7.1.1. The following two statements are equivalent:

1. There exists some maps fr : Xy — Z for 1 < k < n such that

f(xlax?f"vxn): H fk(xk)

1<k<n
for all x, € X, 1 <k <n.

2. Given any x;, w; € X for each 1 < j <n, we have

f(wlafo" 7xn) X f(:l?ll,xé, 71‘%)
/

= f(xla"' 7xk717$;caxk+laxn) X f(xg_a : 'xgg—bxkvx?{;-i-l" o 7xn)

for any 1 <k < n.

Moreover, if the above equivalent statements are satisfied then for any A1, -+ , A\n € Z such
that \1--- A, = 1, we have another factorization f(z1,---,zn) = [] (Nifi)(zi). Each
1<i<n

factorization of f is of the above form.

We fiz a; € X; for each i and c1,--- ,¢n, € Z such that f(ay,--- ,an) = c1---cp. If the
above equivalent statements are satisfied then there exists a unique factorization such that

fila;) = ;.

Remark 7.1.1. If #X; = 3 for all k, it is enough to verify the condition in statement 2
of the above corollary in the case x; # x; foralll <j<n.

In fact, when #Xy = 3 for all k, for any 1 < j < n and any yj,y;- € X;, we may take
xj € X such that xj # y;, xj # Y.

We fix any 1 < k < n. If statement 2 is verified when x; # x; for all j then for any
Yk # Y., we have

f(y17y27"' 7yn)f(y/17yéa 7y7/1)f($1>x2>"' 7xn)
= f(y17y27"' 7yn)f(yiv'"yllc—17xk7y;g+1a"' ayfn)f(xh 7$k—17yllmxk‘+17"'xn)
= f(ylayQa"' ,yn)f(mlv"' 7$k—1>y;mxk+1a"'xn)f(yia”'yllc—laxkvy;c—i-la"' 73/;1)
= f(yla ayk—lay;cayk-‘rlv"' ayn)f($17"' y Th—15Yk> Tht1, " amn) X

FWL Yoty Ty Yhs1s -+ 5 )
= f(ylv ayk—luy;wyk-‘rlv'” ayn)f(yi7'”y;c—laykay;»ﬁ»lu'” 7y;1,)f(x1)x2)"' 7:1377,)'

We have assumed yy, # yj. to guarantee that each time we apply the formula in Statement
2, the coefficients satisfy x; # xg foralll < j<n.

Therefore if yi # .,

f(y17y27"' 7yn) X f(yllayé7 7y’:1)
= U, Yk Yo Ykt 1 Un) X S Yk 1 Yo Yha 1 ) (T21)

If yr, = y,., this formula is trivially true.
We conclude that we can weaken the condition in Statement 2 of the above Corollary

to xj # :E; for all1 < j < n when #Xi = 3 for all k. We will verify this weaker condition
in the application to the factorization of arithmetic automorphic periods.
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7.2 Formula for the Whittaker period: even dimensional

Let IT be a regular cuspidal representation of GLy(Ap) as in Theorem 5.2.1] with infinity
type (2%(9z79(9)), ;. at o € ©. We may assume that a;(c) > az(c) > --- > a, (o) for
all 0 e 3.

Recall that we say II is N-regular if a;(0)—a;+1(0) = N foralll <i<n—lando € X.

For 1 < u < n-—1, let x, be an algebraic conjugate self-dual Hecke character of F
with infinity type zF«(@)z=ku(0) at o e X,

1
Let us first consider the case n even. In this case, a;(0) € Z + 3 forall 1 <i<mnand

all 0 € 3. We assume the following hypothesis:

Hypothesis 7.2.1. Even dimensional
For all 0 € X, the numbers {k,(0) | 1 < u < n — 1} lie in the n — 1 gaps between
—ap(0) > —apn—_1(c) > -+ > —ay(0).

We define II# to be the Langlands sum of x,, 1 < u < n — 1. It is an algebraic
regular automorphic representation of GL,_1(Ar). It follows by the above hypothesis
that (I, II#) is in good position. By Proposition we have

1
L(5 +m, 1L x %) ~ gy e )i PIDp(IF )p(m, Ty, %) (7.2)

where p(m, I, Hﬁ) is a complex number which depends on m, Il and 7.

1
Simplification of L(5 +m, I x II7):

Since II# is the Langlands sum of y,, 1 < u < n — 1, we have

1 1
LG+mIxI#) =[] L(5+mIIx xu).

2 I<usn—1
We then apply Theorem to the right hand side and get:

1 1
L(5 +m, 1T x m#) = ] L5 +m, 1T X Xu)

I<usn—1

. m+3i)n m ~ ul(o ~ —\n—1I,(o
~ E(IN) E(TT#); K H [(27”)d( T2)n pU(Ix ))(H) HP(XuaU)I ( )P(Xma) Tu )]

1<usn—1 o€y

Here we write I, for I(IL, x,). In particular, I,,(c) = #{i | —a;(0) > ky(o)} for o € X.

Note that x, is conjugate self-dual, we have p(Xu,o) ~pu#)x (XS, 0) ~E(IT#):K

p(Xat 0) ~pa#yx P(Xu,0) . We deduce that:

1 A d(m+1)n(n— > o)—n

L(§+m,H x IT%) ~ BN B(IT#); K (2mi)dmF2)n(n=D) H [P (11) HP(XMU)QI"( )]
I<usn—1 oeY

(7.3)



CHAPTER 7. FACTORIZATION OF ARITHMETIC AUTOMORPHIC PERIODS AND A
74 CONJECTURE

Calculate p(II#): By Proposition there exists a constant Q(IT%) € C* well defined
up to E(II#)* such that

P(H#) ~E(II#);K Q(HO#B) H L(LXuX;l)' (7.4)

1<u<v<n—1

By Blasius’s result, we have:

L(lv XuX;l) ~YEM#);K (27”;)d H p(XuXv_lv U,)
o€y

If k() < k(o) we have o’ = o and p(xuxy ") ~ By )ik P(Xas 0)p(Xor 7).

Otherwise we have o’ = & and p(xuX; ', ') ~E(xu):k P(Xu> o) 'p(Xs, ).
Therefore, we have the Whittaker period p(IT%)

~ g @r) @) [ [ o, o)k @k # ik (@) <ku())
1<usn—10eX
(7.5)
We know #{v | ky(0) < ky(o)} =n—2—#{v | k(o) > ky(0)}.
Moreover, by Hypothesis we have #{v | ky(0) > ky(o)} = #{i | —a;(0) >
ky(o)} —1 = I,(0) — 1. Therefore,

#{v | ky(0) > ky(0)} — #{v | ky(0) < ky(0)} = 2L, (0) — n (7.6)

1
We compare equations lb 1) 1’ and || If L( §—|—m, II x II#) # 0, we obtain
that:

d(n—1)(n—2)
2

d(mt Dn(n— » .
(27”)[1( T)n(n-l) H pt )(H) ~E(I)E[I#);K (2mi) P(H)Q(Hi)P(mvﬂw,H§)~

I<usn—1
(7.7)
Hence we have

d(n—1)(n—2)

p(IL) ~ g B, k) (27Ti)d(m+%)n(n71)f 2 Q(IIE) 'p(m, I, 11%) 7 H ().

_d(n—=1)(n—-2)

If we take Z(m, Iy, I, ) = (2md) 40+ 2)n(n=1) === 0 (1% ) ~1p(m, T, IT%) ! then
p(I) ~ gyt a0y Zm, Iy, 10L,) [T PU(ID). We see that Z(m,I1y,11,;) depends

1<ugsn—1
only on Ily.

We may define:

Z(TLp) 1= Z(m, Teg, T,y = (2d) 10+ 901~ 5820 (11 ) m, T, TTH) .
(7.8)
It is well defined up to elements in E(IT)*.
We deduce that:
p(ID) ~pan k) Z(w) H (). (7.9)
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7.3 Formula for the Whittaker period: odd dimensional

Let n be an odd positive integer. We keep the notation in the above section We have
ai(c) € Z for all 1 <i < n and all 0 € ¥. We assume that:

1
Hypothesis 7.3.1. Odd dimensional For all o € &, the numbers {k, (o) + 5 | 1<u<

n — 1} lies in the n — 1 gaps between —an(0) > —ap—1(0) > -+ > —ay(0).
Recall that 1 is an algebraic Hecke character of F' with infinity type z' at each

_1
o € ¥ such that py)§ = || - ||a,. We take IT# to be the Langlands sum of x,p|| - ||, 2,
1 <u<n-—1. It is an algebraic regular automorphic representation of GL,,—1(Ar). The
conditions of 3.6.1] hold.

We repeat the above process for IT and II# and get

1
L(§+ m, II x IT%)

~pmypmyx  (2r)eD T [PUMavo) T p(ie, )20 ~"] x

I<usn—1 oEY

H(p(%’ )21<u<n 1 (¢F ,O’) 1<u<n—1("—lu(0))) (710)

oeX
where I, := I(II, xu,¥r) with I,(0) = #{i | —a;(0) > ku(0) + ;}

It is easy to verify that Hypothesis [7.2.1] or [7:3.1] is equivalent to the following hypoth-
esis:

Hypothesis 7.3.2. For all o € X, the (n — 1) numbers I,(0), 1 < u < n —1, run over
the numbers 1,2,--- ,n — 1.

Wesee ] Iu(o)= M and X ., 1(n— L(0)) = M
1<u<n—1 2 SUS 2
We then have
[ [, o) Ersuans lp(h", o) Kisuan-sln=Tulo)))
oeEX
—_— n(n—1) n(nfl) . dn(n—1)
TE@Wr)K Hp(wa%aU) 2 E@Wr);K Hp ||AF’ 2 ~Ep)K (2mi) ™ 2z .

oeEY oeEY

We verify that the equation ([7.5)) and ([7.6|) remain unchanged. We can see that equa-
tion ([7.9) still holds here.

Let us start from the numbers I,,(c). If we are given some numbers I,(0), o € X,
1 < u < n—1, such that Hypothesis is satisfied, we can always choose k, (o) € Z

such that I,(c) = #{i | —ai(c) > ky(0)} if n is even, I,(0) = #{i | —a;(c) > ky(o) + ;}
if n is odd.

We may then take yu, 1 < u < n—1 with infinity type z¥+(©)z=#(?) at ¢ € ¥, Equation

tells us that
p(ID) ~pane Z(1) [ ] P (7.11)

I<usn—1
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provided a non vanishing condition of the L-function, for example, if II is 3-regular.

Theorem 7.3.1. Let I,(0), 1l <u<n—1, 0 € X be some integers such that Hypothesis
is verified. There exists a complex number Z(Ily) such that if a non vanishing
condition of a global L-function is verified, in particular, if I1 is 3-reqular, then:

(1) ~pane Z() [ PO (1), (7.12)

1<u<n-—1

7.4 Factorization of arithmetic automorphic periods: re-
stricted case

We consider the function []{0,1,---,n} — C*/E(II)* which sends (I(0))sex to

ey
PO(II).
The motivic calculation predicts that:

Conjecture 7.4.1. There exists some non zero complex numbers P(®) (IT,0) for all 0 <
s <nand o € ¥ such that PO(II) ~pay. [ POV 0) for all I = (I(0))ses €
o€y

{0,1,---,n}>.

In this section, we will prove the above conjecture restricted to {1,2,--- ,n— 1}2.
More precisely, we will prove that

Theorem 7.4.1. If n = 4 and II satisfies a global non vanishing condition, in particular,

if II is 3-regular, then there exists some non zero complexr numbers P(S)(H,a) for all

1<s<n-—1, oeX such that PU(II) ~pm:k 11 PUONIL, o) for all I = (I(0))ges €
ogeY

{1,2,--- ,n—1}>,
Proof Forall 0 € X, let I1(0) # I2(0) be two numbers in {1,2,--- ,n — 1}. We consider
I1, I as two elements in {1,2,--- ,n — 1}*.

Let 0¢ be any element in ¥. We define I7, 15 € {1,2,--- ,n — 1}* by I{(0) := I(0),

IL(0) := Iz(0) if o # o9 and I1(00) := I2(00), I5(00) := I1(00).
By Remark it is enough to prove that

p) (H)p(fz) (1) ~ Bk pUD) (H)p(fé) (I0).

Since I1(0) # Iz(o) for all o € ¥, we can always find I3,--- , I, 1 € {1,2,--- ,n — 1}*
such that for all o € X, the (n — 1) numbers I,(0), l <u<n—1runover 1,2,--- ,n—1.
In other words, Hypothesis is verified.

By Theorem we have
p(I) ~ gk Z(I1,e) PU(11) PU2) (1) H P ().
On the other hand, it is easy to see that If, I}, I3,--- , I, also satisfy Hypothesis
[7.3.2l Therefore
p(0) ~panx Z(Me) PAIIPEIam) [T PU (),

3<usn—1



7.5. FACTORIZATION OF ARITHMETIC AUTOMORPHIC PERIODS: COMPLETE CASE 77

We conclude at last PU1)(I1) PU2)(11) ~B(I)K PUD(I1)PU2)(T1) and then the above
theorem follows.

O

7.5 Factorization of arithmetic automorphic periods: com-
plete case

In this section, we will prove Conjecture[7.4.1when II is regular enough. More precisely,
we have

Theorem 7.5.1. Conjecture is true if 11 is 2-reqular and satisfies a global non
vanishing condition, in particular, if 11 is 6-reqular.
Corollary 7.5.1. If II satisfied the conditions in the above theorem then we have:

P ~pmx ZMe) [ ][] PO 0) (7.13)

ce¥ 1<isn—1

If n = 1, Conjecture [7.4.1] is known as multiplicity of CM periods. We may assume
that n > 2. The set {0,1,--- ,n} has at least 3 elements and then Remark can apply.

For all o € 3, let I;1(0) # Iz(0) be two numbers in {0,1,--- ,n}. We have I}, €
{0,1,2,--- ,n}>.

Let ¢ be any element in ¥. We define I7,I, € {0,1,2,--- ,n}> as in the proof of
Theorem [7.4.1]

It remains to show that

PO PU2(IT) ~ gy PUD (ID) PU2)(1T). (7.14)

Let us assume that n is odd at first. Since II is 2-regular, we can find x, a conjugate
self-dual algebraic Hecke character of F' such that I(I1, x,) = I,, for u = 1,2. We denote
the infinity type of x, at o € ¥ by zF(@)z=Fu(?) 4 — 1,2, We remark that k;(c) # ka(o)
for all o since I (o) # I2(0).

Let IT# be the Langlands sum of II, x] and x5. We write the infinity type of
I# at 0 € ¥ by (2%(Dz7%(9)) ;1o with bi(0) > ba(0) > --- > buya(o). The set
{bi(0),1 <i<n+2}={ai(o),l <i<n}u{—ki(o),—kao)}.

Let II® be a cuspidalconjugate self-dual cohomological representation of GLp13(AF)
with infinity type (26(9z=¢(9) ;.13 such that —cpy3(0) > bi(0) > —cpya(o) >

bo(o) > -+ > —c3(0) > byia(o) > —ci(o) for all 0 € £. We may assume that II¢
has definable arithmetic automorphic periods.

Proposition is true for (IT¢, TI#). Namely,

1
L(5+m, ¢ x %) ~ poyparsyx pIC)p(I )p(m, TG, TTE). (7.15)



CHAPTER 7. FACTORIZATION OF ARITHMETIC AUTOMORPHIC PERIODS AND A
78 CONJECTURE

We know
1 S # 1 & 1 & c 1 % c
L(§+ m, 1Y x II7) = L(§+ m, 11V x H)L(§+ m, 11V x X1)L(§+ m, IV x x5) (7.16)
For uw =1 or 2, by Theorem and the fact that y, is conjugate self-dual, we have

1
L(5 +m, IO X xy)

. l m n (o n
~ oy B (2m1) (3 HMA+3) pIII®x) (1) [ p(Xe0)” AWM X)) +(n+3) (7.17)
oe

Proposition [3.5.1] implies that
P(IT#) ~ gy QL) (I L(1, T @ x1) L(L, T ® x2) L(L, x1X5) (7.18)
where Q(Hi) is a non zero complex numbers depend on I17%.

By Theorem again, for u = 1,2, we have

LT % ) ~ gy (2mi)™ PO T (i, o) xd@=n, (7.19)

oY

Moreover, L(1,x1x3) ~paeyx (2mi)" [1 p(¥1,0)")p(5,0) ) where (o) = 1 if
oeX
ki(o) < ka(o), t(o) = =1 if k1(0) > ka(o).
Lemma 7.5.1. For all 0 € X,
—2I(T1°, x$)(0) + (n + 3) = 2I(II, x1)(c) — n + t(0),
—2I(T1%,x5)(0) + (n + 3) = 2I(T, x1)(0) — n — t(0).

Proof By definition we have
I, x9)(0) = #{1 <i<n+3]| —ci(0) > —ki(0)}.

Recall that —cp13(0) > bi(0) > —cpp2(0) > ba(o) > -+ > —ca(0) > bpia(o) >
—ci1(o) and {bi(0),1 <i<n+2} ={a;(0),1 <i<n}u{—ki(o),—ka(o)}.

Therefore

(% xH)o) = #{
= 7

+2|bi(0) > —ki(0)} + 1
| ai(0) > —ki(0)} + 1 ks (0)>—ky (o) + 1.

3 3

By definition we have
IIL x1)(0) = #{l <i<n|—ai(o) > ki(0)} =n—#{l <i<nlai(o) > —ki(0)}.

Therefore, I(II°,x§)(0) = n — I(IL,x1)(0) + 1_jy(0)>—ky(o) + 1. Hence we have
—2I(T1%, x§)(0)) + (n+3) = 2I(IL, x1)(0) = n+ 1 =204y (0)>ky (o)-

It is easy to verify that 1 — 21 _y,(5)>—k, (s) = t(0). The first statement then follows
and the second is similar to the first one.
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O
1
We deduce that if L(§ +m, I® x TI#) # 0, then
1 C C
L( -+ m, T19 x 1) (2i) (H 2 3) pIAE D (119) PHXE (1) ~ g0 v i
(2 ) ([T )T Y p(om, T, TT) P00 () P (). (7.20)

Now let x}, x5 be two conjugate self-dual algebraic Hecke characters of F' such that
X0 = X1,0 and X5, = X2,0 for 0 # 00, X} 5y = X2,00 A0d X5 5 = X1,00-

We take I1## as Langlands sum of II, x}¢ and x5°. Since the infinity type of II## is
the same with II#, we can repeat the above process and we see that equation ([7.20) is
true for (ITI®, TI##). Observe that most terms remain unchanged.

Comparing equation (7.20) for (II,1T#) and that for (II®, TI##), we get

PLI® X (I10) LU x5 (I19) PIIXY) (1) PIIXG) (17)
PIIE X5 (110) pIIC x5) (o) PUNEADK pI(a) (1) PITLx2) (TT)

(7.21)

By construction, I(II, x,) = I, and I(II, x},) = I}, for u = 1,2. Hence to prove (7.14]),
it is enough to show the left hand side of the above equation is a number in F(II¢)*.

There are at least two ways to see this. We observe that
I(1%, X1)(0) = 1%, x1)(0), (11, x5°) (0) = I(I1, x2°)(0) for o # 00
and I(I1%, X%)(00) = I(I1%, x2°)(00), I(I1%, x5°)(00) = I(IL?, x1°)(00).
Moreover, these numbers are all in {1,2,---, (n+3) —1}. Theorem gives a factoriza-

tion of the holomorphic arithmetic automorphic periods through each place. In particular,
it implies that the left hand side of (7.21)) is in E(II®)* as expected.

One can also show this by taking II¢ an automorphic induction of a Hecke character.

1
We can then calculate L(§ +m, II® x x¢) in terms of CM periods. Since the factorization

of CM periods is clear, we will also get the expected result.

When 7 is even, we consider IT# the Langlands sum of IT, (x1¢r||-||~"/?)¢ and (x21r||-
||=1/2)¢ where 1, Y2 are two suitable algebraic Hecke characters of F. We follow the above
steps and will get the factorization in this case. We leave the details to the reader and just
remark that as in section [7.3], some CM periods of ¥ r appear but they will be eliminated
at the end.

7.6 Specify the factorization

Let us assume that Conjecture is true. We want to specify one factorization.

We denote by I the map which sends each o € ¥ to 0. By the last part of Corol-
lary it is enough to choose ¢(I1, o) € (C/E(I))* which is Gx-equivariant such that
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po)(11) ~pa)x 1] ¢(Il,o). Then there exists a unique factorization of PO(IT) such that
oeY

POXI1,0) = ¢(I1, 0) . We may then define the local arithmetic automorphic periods
PG)(I1,0) as an element in C* /(E(r))*.

In this section, we shall prove P0)(II) ~B(IT):K p(gﬁ,i) ~pa:k 11 p(gﬁ,ﬁ). There-

—_ oeY
fore, we may take ¢(Il,0) = p(&11,7).

More generally, we will see that:

Lemma 7.6.1. If I is compact then PY)(II) ~p:k 11 p(gﬁ,ﬁ) x |1 p(gﬂ,a).
I(0)=0 I(o)=n

This lemma leads to the following theorem:

Theorem 7.6.1. If Conjecture[7.4.1] is true, in particular, if conditions in Theorem[7.5.1]
are satisfied, then there exists some complex numbers P(5) (IT, o) unique up to multiplication
by elements in (E(I1))* such that the following two conditions are satisfied:

1. P(I)(H) ~E(I);K l_[ P(I(U))(Hva) fOT all I = (I(J))UEE € {Oa 1a T 7n}27

cex
2. and PON(II, o) ~ B(I): K P(gﬁaa)

where &1 1s the central character of 11.
Moreover, we know

P(n) (Ha U) ~E(I);K p(gﬁ,U)

or equivalently
PONIL, o) x PU(IL,0) ~ gy 1.

Proof of Lemma [7.6.1; Recall that D/2 = >} I,(n — I,) = 0 since I is compact.

e

Let T be the center of GU;. We have T(R) = {(z,) € (C*)* | |z| does not depend on o}.
We define a homomorphism Az : S(R) — T'(R) by sending z € C to ((2)(0)=05 (2)1()=n)-

Since I is compact, we see that hy is the composition of hr and the embedding T" —
GU;. We get an inclusion of Shimura varieties: Shy := Sh(T, hy) — Sh;r = Sh(GUy, hy).

Let & be a Hecke character of K such that IIY ® & descends to w, a representation
of GUr(Ag), as before. We write A € A(GUr) the cohomology type of m. We define

M= (o, (X Xi(0))gex). Since  is irreducible, it acts as scalars when restrict to 7.
1<i<n

This gives 7!, a one dimensional representation of T(Ag) which is cohomology of type
AT We denote by Vyr the character of T'(R) with highest weight AT

The automorphic vector bundle E) pulls back to the automorphic vector bundle [Vyr]
(see [I7] for notation) on Shy.

Let 3 be an element in H°(Shy, E\)*. We fix a non zero E(r)-rational element in
and then we can lift § to ¢, an automorphic form on GU(Ag).
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There is an isomorphism HO(Shr,[Vir]) — {f € CP(T(Q)\T(Ag),C | f(tty)) =
71 (te) f(t),ter € T(R),t € T(Ag)} (c.f. [IT]). We send 3 to the element in HO(Shr, [Vyr])™
associated to ¢|p(ay)-

T

We then obtain rational morphisms

HO(Shr, E\)™ = HO(Shy, [Var])™ (7.22)
and similarly  HO(Shy, Exv )™ > HO(Shy, [Vyr )™ (7.23)

These morphisms are moreover isomorphisms. In fact, since both sides are one di-
mensional, it is enough to show the above morphisms are injective. Indeed, if ¢, a lifting
of an element in H°(Shr, E))™, vanishes at the center, in particular, it vanishes at the
identity. Hence it vanishes at GUj(Aq,f) since it is an automorphic form. We observe
that GUr(Ag,r) is dense in GU(Q)\GUr(Ag). We know ¢ = 0 as expected.

We are going to calculate the arithmetic automorphic period. Let 8 be rational. We
take a rational element 3Y € HY(Shy, Exv ™ and lift it to an automorphic form ¢¥. We
have cp(@) ~p(r):K PU(7m)¢" by Lemma

For the torus, by Remark we know
O Ir(ng) ~ Bk PSA(T, hy), 7)) 7 (Gl ag)

Recall that cg(¢) = +i*0¢||v(-)||*. Therefore (cB(®))|T(ag) = ii)‘o(qﬁ]T(A@))_l. We
then get
2P (1) ~pioy.i P(SM(T, hr), 77). (7.24)

We now set T# := ResggTk. We have T# ~ Resg9Gm x RespigGm. In particular,
T#(R) =~ C* x (R®g F)* = C* x (C)~.

We define hp# : S(R) — T#(R) to be the composition of hy and the natural em-
bedding T(R) — T#(R). We know hp# sends z € C* to (2%, (2)1(0)=05 (F)r(o)=0)- The

embedding (T, hy) — (T#, hy#) is a map between Shimura datum.

We observe that 77°# := || || 720 x &' is a Hecke character on T#. Tts restriction to T
is just 77. By Proposition we have p(Sh(T, hr), 7)) ~ p(x). i p(Sh(T*, hT#),ﬂ'T#).

By the definition of CM period and Proposition we have

p(Sh(T#ahT#)77TT#) ~E(r);K (27Ti)>\0 H p(gﬁl’a) H p(gﬁl’ﬁ) (725)
I(o)=0 I(o)=n

Since &7 is conjugate self-dual, we have p(¢;', @) ~ gk P, o).
By equation ([7.24]), we get:

P2 PI(7) ~pyic @ri) [T péatso) T] plén,o). (7.26)
I(o)=0 I(o)=n
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Recall that by definition PU)(II) ~ gy (2m) 20 PU) (), we get finally

POM) ~pamx  [] pa'o)x ] »€n o)

I(o)=0 I(o)=n
~E()K 1_[ p(m, o) X H p(m, o).
I(o)=0 I(o)=n

The last formula comes from the fact that &7 is conjugate self-dual.

O

We recall that the arithmetic automorphic periods can be defined for essential conju-
gate self-dual representations. More precisely, let II be conjugate self-dual as in Theorem
let  be an algebraic Hecke character. By Deﬁnition we have defined P() (MI®
n) as PO ] p(7,0) @p@7,7) 1),  As we showed above that P (II) ~B()K

oeEY

[T PY)(I1, 0), it is natural to define:

oeY

Definition 7.6.1. We define local arithmetic automorphic periods for conjugate
self-dual representations by

POII®n,0) = PYIL0)p(i, o) p(i, )" "), (7.27)
Remark 7.6.1. If s = 0, we see that
P(O) (H @, U) = P(O) (H) U)p(ﬁa E)n ~E(ILK) p(gﬁvﬁ)p(ﬁa E)H (728)
~pair) PEnN™, o) ~pauk) P(€ney, o)

Therefore, if I1 has definable arithmetic automorphic periods and regular enough, we
still have

1. PO ~ gy [T PYON I, 0) for all I = (I1(0))sex € {0,1, -+ ,n}>,

oeY
2. and PO(II, 0) ~E(I);K p(gﬁ,ﬁ)~

Moreover, these two properties determine the local periods.

Remark 7.6.2. Ifn = 1 and Il = n is a Hecke character, we obtain that: PO (n, o) ~E(m)K
p(ﬁa E) and similarly p) (77, U) ~E(n);K p(ﬁa U)'



Chapter 8

Functoriality of arithmetic
automorphic periods

8.1 Period relations for automorphic inductions: settings

Let F' be a CM field containing K as before.
Let F/F be a cyclic extension of CM fields of degree .
Let I1x be a cuspidal representation of GL,(Ar).

By Theorem 6.2 of [2], there exists IIr, an automorphic representation of GL,;(Ar)
which lifts ITr. We assume moreover that Iz % I1% for all g € Gal(F/F) non trivial. We
can read from the proof of Theorem 6.2 in the loc.cit that IIr is then cuspidal.

We want to compare the arithmetic automorphic periods of IIx and Il if they are
defined. For this purpose, we assume that IIr has definable arithmetic automorphic peri-
ods as in Definition In other words, Il r is 3-regular, cohomological and descends to
unitary groups of any sign after tensoring by an algebraic Hecke character.

We write the infinity type of Iz as (2%(9)z%(7)); ), at 0 € X7 ;c. We remark that

n—1
ai(U),bi(U)EZ-‘r 5

The restriction of embeddings gives a map:
Vrp:YrKk — YFK.

For 7 € ¥p.g, the infinity type of IIF at 7 is (2 (@) zbi(0)) 1 (- We assume in

(r

FIF

this chapter that for any 7 the nl numbers a;(0), 1 <i<nando € \I/]__.} (7), are different.
We assume moreover their differences are at least 3. Hence Ilp is also 3-regular.

1<i<n,oeV¥

If [ is odd or n is even, we know Il is algebraic and then cohomological. We write
T’ := Il in this case.

If [ is even and n is odd, Il is no longer algebraic. We define I} := Ilp|| - Hg;ﬂ. It is
then a cuspidal cohomological representation of GL,;(Ar). It is conjugate self-dual after
tensoring by an algebraic Hecke character. To see this, we take ©¥r an algebraic Hecke
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character of F with infinity type 212° at each infinity place such that ¥ p1% = ||-||a,. We

1/2

remark that the Hecke character || - |[, /" ® ¢ is conjugate self-dual.

We also assume that II%. descends to unitary groups of any sign after tensoring an
algebraic Hecke character. Therefore, II% has definable arithmetic automorphic periods.

Let I be a map from Yp.x to the set {0,1,--- ,nl}. We want to relate PUr)(IT%) to
arithmetic automorphic periods of IIx in the following sections.

We take n an algebraic Hecke character of F' such that I(Ilg,n) = Ip. We take m as
in the last part Theorem We assume that Conjecture [5.1.1]is true and we have:

L(m,H};@n) ~ B(ILp) () K (ZTFZ)mnldP Ir) H/ H p 77) IF(T ( )nl Ip(7) (81)

’TEEF K

with both sides non zero.

8.2 Relations of global periods for automorphic inductions

The case [ is odd or n is even: In this case, I, = Il is the automorphic induction
of II F.

We know L(m,IIp ®n) = L(m,Illr ®no NAX/AX). It is easy to see that m is also
F/OF
critical for IIr ®n o NA;/A;. We can apply Theorem to (Ilx,no NA;/A;).

We write Ir := I[(IlF,no NAX/AX) and get:
FIF

L(m,p ®n) = L(m,Tr @m0 Nyx ) ~E11,) Bk
(27ri)mndlp(lf) (ILr) II »(no NA;/A;> U>IF(U)p(77 © NA;/A;aEwiIF(U)- (8.2)

UEE}';K

We first calculate Ir = I(Ilx,no NA;/A;). We write the infinity type of n at 7 € Xp.
by 2T)Zb(7).

For 0 € Y7k, the infinity type of 7o Ny /s, at o is then 20 (Vrp(@)zb(Vr (o)
We have by definition that
Ir(0) = #4i |1 < < n,a(Wr/p(0)) — bW r/p(0) + aslo) —bi(0) <0} (8.3)

Recall that the infinity type of Iy at 7 is (2%:(7)zb(?)) We have:

1<i<n,oce¥ I<isn’

]_./F(T)

Ip(r) = I(Ilp,n) (1) = #{(i,0) | 1 <i<n,o€ \Il]__/F( 7),a(T) — b(7) + a;(c) — bj(c) < 0}.

(8.4)

We observe that Ir is uniquely determined by Ir. More precisely, it is easy to show
that:
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Lemma 8.2.1. The integer Ix(o) is the number of elements in {a;(0) | 1 <1i < n} which
is one of the I'p(7)-th smallest numbers in the set {a;(c’) |1 <i<mn,o’ € \I’;_-}F(T)} where

T = \I/]:/F(J)

Moreover, it is easy to see that

O’E\I/;_}F (T)

By Proposition [4.1.2] we get

H p(77 OFA’;}./A;?U)I}-(O) ~ B K H p(ﬁ, \I,J__/F(O.))I}‘(O)

UEE}‘;K UGE}‘;K

2 Ir(o)
O'E\Ili}F<T)

~E(n);K 1_[ p(ﬁaT) > ~E(n);K H p(’h/a T)IF(T) (86)

TEX P K TEX P K

Similarly, we have

H p(nONA;/A;ﬁ)"_If(”) ~E(n)K H P(ﬁaT)nl_]F(T)- (8.7)

0EXF K TEX P K

Comparing the above two equations with equations (8.1) and (8.2)), we deduce that:

PUR(IIp) ~ g1 PU7 (1), (8.8)

The case [ is even and n is odd: In this case IIz is no longer algebraic and we consider
O =Hr®||-|712

1 1
We know L(m,II ® n) = L(m — 5,Hp®7’]) =L(m — 5,H_7.‘®7]ONA;/A;).

As in the previous case, we get:

1 1
L(m =5, p®n) = L(m — 5, ILr @10 Nyx ux)

A (m—2)n ~N o N =\n—Ir(c
~ BBk ()2 PUA M) [T p(no Nyx o, 0) 7 Op(no Ny, )" 17(0)

ceNp F/AF F/AF

-\ (m—1)n e T) (> =\ d—Ip(T

~ B Bk (2m) MM PUR T E) [T p(, )IF O, 7)n—1e ()

TEEF;K
We conclude that:
P M@ |- ||72) ~paip)x (2mi) = PUP)(I15). (8.9)

8.3 Relations of local periods for automorphic inductions

Recall that the arithmetic automorphic periods admit a factorization (c.f. Theorem
7.6.1) PO (1) ~pak 11 PU@)(IL, ) such that

oedl

PO, 0) ~pax PET ) ~px p(m, o) (8.10)



86 CHAPTER &. FUNCTORIALITY OF ARITHMETIC AUTOMORPHIC PERIODS

We will discuss the functoriality of local periods in this section.

Let 7 be an element of X . k.
It is easy to see from Lemma or equation (8.5)) that if Ir(7) = 0 then Ix(c) =0
for all o € X . over 7.

Fix any 19 € Xp.x and an integer 0 < so < n. We define I such that Ir(79) = so and
IF(T) =0for7T#1H€ EF;K-

The case [ is odd or n is even: Recall PUP)(AI(IIf)) ~ By )K PUF)(TI£) in this
case. We get

P Ip,7) [[ POME7) ~papx || P Mr00) [[ [[POWr0

T#TOELF, K ool|To T#TEL P, K O|T

(8.11)

For 7 # 79, we have P(O) (I, 1) ~p(y):k P& 7)1 Similarly, we have P(O)(I1 £, o) ~E(Lz): K

p(fl_[].-: J>71'

Let g be a generator of Gal(F/F). From the construction in [3] we know Iy has base

-1
g g :
change IIx x II% x --- x II= . In particular, we know &, o NA;/A; = o |<|l lfnf
7

We fix any o1 € X,k over 7. We know
p(é-HF’T) ~E(z);K p(é-HF o A]X:/Alf,»Jl)

~E(IF);K H p(ﬁlg{fa 1)

0<i<i-1

~E(F):K H P&y Ui]ﬂ)

o<i<l-1

~E(x);K Hp(fnr» o

olr

Equation (8.11)) then gives:
P(SO)(HF,TO) ~EF) K H P(I‘F(UO))(H]—',UO) (8.12)

oolTo

We can read from Lemma that Ir(og) depends only on Ir(9) = so.

It is natural to define:

Definition 8.3.1. Let 0 < s < nl be any integer. Let T € Y. . For any o € X, over
T, we define s(o) to be the number of elements in {az( ) | 1 < i < n} which is one of the

s-th smallest numbers in the set {a;(c’) |1 <i<n,o’ € ‘11]__}},( T)}.
Equation (8.12)) can be rewritten as
PO I, 7) ~paiyx | [PEO) (T, 0). (8.13)

olr
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The case [ is even and n is odd: In this case, we have:

@ —nl/2
Si ONA;/A; = H &y x| ap ” (8.14)
0<i<i-1
We repeat the above procedure and get:
POAIME) @] [|7V2,7) ~ppyu @ri)~ % [[PEO (r0).  (8.15)
olr

We conclude the functoriality of arithmetic automorphic periods for automorphic in-
duction:

Theorem 8.3.1. Let F o K be a CM field of degree d over K.

Let F/F be a cyclic extension of CM fields of degree | and 1z be a cuspidal represen-
tation of GL,(Ar) which has definable arithmetic automorphic periods.

We assume that Ix % 11% for all g € Gal(F/F) non trivial. We define AI(ILF) to be
the automorphic induction of r. It is a cuspidal representation of GLy(AF).

We assume that AI(IIx) (resp. AI(Tlx) ® || - [|7Y2) also has definable arithmetic
automorphic periods if | is odd or n is even (resp. if l is even and n is odd) (c.f. Section

.

Let Ir be any map from Y. to {0,1,--- ,nl}. Let Ix be the map from Yr.k to
{0,1,--- ,n} determined by Ir and IIx as in Lemma|8.2.1. Or locally let 0 < s < nl be

an integer and s(-) be as in Definition|8.3.1|
If | is odd or n is even, we have:

P(]F)(AI(Hf)) ~B(ILp) K P(If) (I1F)
or locally P (AI(IlF), T E(lLr):K HP N(Ilx, o)

olr

Otherwise we have:

nld

PUDAIWF) @ |- [177%) ~pip)x (27”')7713(#)(11?)
or locally PW(AI(ILF) @||-||7Y2,7) ~B(g)K (2m8)7 HP N(1lf, o

olr

8.4 Period relations under Galois action

We are going to prove period relations for base change. Before that, we first prove
that arithmetic periods are equivariant under Galois actions.

More precisely, let F' > K be a CM field and IT be a cuspidal representation of G L, (Ar)
which has definable arithmetic automorphic periods.

We fix any I : ¥p,x — {0,1,--- ,n} and take n, an algebraic Hecke character of F’
such that I(II,n) = I. Assuming Conjecture and Theorem gives:

L(m7H®77) E(I)E(n);K P 1_[ p 777 777 )n 1) (816)

O'EEF K

for a critical point m with both sides non zero.
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Let g € Gal(F/K). We observe that L(s,II®n) = L(s, 119 ® n9).

We then get:
L(m,1T®@n) = L(s, I ®7°) (8.17)
~ppeyx PYT@09) T o0, o) 1@ p(g, g)r =1 00)
O'EZF;K

It is easy to see that I(I19,19)(0) = I(H,n)(agil).
1

Moreover, by Proposition we have p(19, o) ~Em:k P(1,09 ).

We obtain:

~ - — 0_71
[T p0@, )@@ ok [ plie ) e )

oEX K €SPk
~paix | (o) ), (8.18)
O'GEF;K
Similarly, [ p(,2)" /) <0 T plig. )0,
OEXFK oY r. K

We write I9 := I(I19,79). Then I9(c) = I(¢9 ). Compare with equation (8.16) and
equation (8.17)), we deduce that:
PO ~ gy PU(I). (8.19)

We can moreover get relations of local periods. Let us fix 09 € ¥p,x and 0 < s <n an
integer.
We set I(0g) = s and I(0) = 0 for o # 0¢. Then [9(cf) = s and I9(c) = 0 for o # 0.
By the results in Section we have
PO ~ gy PO o0) [ [ PO 0) ~panx PP, 00) [ ] pém o)™ (8:20)
o#0oo og#0oQ
and similarly:
PUDA) ~ gy POM9,08) [ pléns, o)t (8.21)
o#of

Again by Proposition we have
H p(gngﬂj)il ~E(I);K H p(gl‘gbg)il

g g
oF0 galord

~pak | | (&, 09 )7

J#Ug
~E(I);K 1_[ p(ém, o)~ (8.22)
oF#00
We conclude that:
PE(IL, 00) ~ gy, P (119, 0F). (8.23)

Theorem 8.4.1. Let F 5 K be a CM field and 11 be a cuspidal representation of GLy,(AR)
which has definable arithmetic automorphic periods. We assume that Conjecture 18
true. Let g€ Gal(F/K), 0 € ¥p.x and 0 < s < n be an integer. We have:

PO ~ gy, P (I19) (8.24)
or locally  PY)(I1,0) ~pn.c P19, 09). (8.25)
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8.5 Relations of global periods for base change

Let F/F a cyclic extension of CM fields of degree [ as before. Let mp be a cuspidal
representation of GL,(Ap). The strong base change of mp exists. We denote it by 7x or
BC(mF).

By the class field theory, we have (FXNA;/A;A]X_-)\AX ~ Gal(F/F). Since Gal(F/F)
is cyclic, its dual is also cyclic. We fix any generator of Hom(Gal(F/F),C*) which gives
nr/r a Hecke character of F'.

We remark that nr/p is an order [ Hecke character. In particular it has trivial infinity
type. It is also unitary and thus conjugate self-dual.

We assume that 7p ® 77} /P # 7 for all 1 <t <1 —1. Then I is cuspidal (Théorem
4.2 of [2]). We want to compare the arithmetic automorphic periods of IIx to those of 7p
if they are defined.

We assume that wp has definable arithmetic automorphic periods. In other words, it
is 3-regular, cohomological and descends to unitary groups of any sign after tensoring an
algebraic Hecke character. We know Il is also 3-regular and cohomological. We assume
that IIx also descends to unitary groups of any sign after tensoring an algebraic Hecke
character.

Let Ir be any map from Yp.x to the set {0,1,---,n}.

We take n an algebraic Hecke character of F' with I(wp,n) = Ip such that (7p,n)
satisfies conditions in Theorem Let ' :=no N AX/A be the base change of 1 to F.

There is a relation between the L-function of mx and that of mr, namely:

-1

L(Saﬂ-}—®nl) = HL(87WF®T,77?7:/F) (826)
1=0

We write Ir := I(mr,n'). For any 7 € ¥p,x and any o € Xz, with o | 7, it is easy to
see that [r(0) = Ir(7). In other words, I is the composition of Ir and ¥ r/p.

We assume that Conjecture [5.1.1] is true. We can interpret both sides in terms of
arithmetic automorphic periods and CM periods and then deduce period relations.

More precisely, for a certain critical point m we have:

L(m,7r ®0) ~pap)smyx (218" PU) (15) H HP@CU)If(a)p(ﬁ’f)nflf(a)

TGEF;K a'lT
(8.27)
with both sides non zero.

Since ' = no Ny px, we have (1), o) = p(i,o |F). Moreover, Ir(o) = Ip(T)ifo | T.
FIAR
Therefore,

L(mvﬂ-]——®n/) ~E(rp)E(n);K (QWi)mnldP(I]:)(W}—) H p(ﬁ? T)UF(T)p(ﬁv?)l(n_IF(T))‘ (828)

’TEEF;K
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On the other hand, we apply Theorem to (mp, nn}/F) and get:

L(m,mp @ 1'5/p) (8.29)
~ B(rp) B(n): (27T,L')mndP(IF)(7rF) H p(yma_/F,T)IF(T)p(nng__/F’?)anF(-r)
’TEEFK
~peem @ (2r)™ PI ) @) T pl,m)Op,7)mr )
’TEEF’K
% (%77)iIF(T) (n;}F,T)i(anF(T))
~pam Bk ()™ PI ey T p(f,m)Op(i,7)" = O p(nzp, )2 )=n
’TEEFK

Comparing equation (8.26)), (8.28) and (8.29)), we get:

-1
PUP (xz) ~papyc 07 (we) [ | [pOiz7e, )2 e

TGEF;K =0

NE(ﬂ'p);KpIF(ﬂ—F)l H p(TTF_//FaT>

TEEF;K

W=D Ip(r)=l(-1)n/2 (8.30)

—_—

Since p(?ﬁﬁ:ﬁ)l ~KK p(nlf/F,T) ~k.Kk 1, we have:

P(I}_)(W}-) ~E(rp);K pIF (’/TF)l H pOF//FaT)_l(l_l)n/g' (831)

TGEF;K

If [ is odd, we have p(nz/p, 7)~W=0n2 L ke 1. Otherwise we assume that p(?ﬁ//pl/z, T)€E
E(mp)* for simplicity.
We conclude that:
PUA(rx) ~papyx P (7). (8.32)

8.6 Relations of local periods for base change

There are relations between local periods of 7 and those of 7wr.
Let 0 < sg < m be an integer. We fix 79 € Xp,x. We take Ir to be the map which
sends 79 to sp and T # 79 to 0. Equation (8.32) then becomes:

H plso) (7, 00) H HP (mr,0 “E(WF)KP 7TF 70) H D 7TF, L (8.33)

oo|mo T#T0 o|T TH#T0
Recall that for o | 7, we have:

Erpr0) ™!

PO rr,0) ~papx P
~Erp)K  P&rp © Nyx ]_./AX )"
p(&

1

~E(rp);K s T )
~E(rp);K P(O) (ﬂ-Fa T)' (834)
We deduce that:
[[PY (77 0) ~Bapix P (e, 7). (8.35)

olTo
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We observe that 7mr is Gal(F/F)-invariant. The local periods are then Gal(F/F)-
invariant.

Indeed, for any g € Gal(L/K), we have 7% =~ mz. Theorem implies that
PO (1r,0) ~ppyx PO (1%, 09) ~pirpyre PO (15, 09). (8.36)

Recall that Gal(F/F) acts faithfully and transitively on the set {o : o | 7}. We fix any
oo | 7 and then:

[[PY@rro)= ] PYrr0f) ~pmex PP (r 00) (8.37)
o|r geGal(F/F)

Comparing equation ({8.35)) and equation (8.37)), we conclude that for any o € ¥ r.x:
PO (rr,0) ~gipyx PO (r, 0 |p) (8.38)

Consequently, there exists an algebraic number A\(*)(75.0) with A(0)! € E(np)* such that
PO (nz,0) ~E(rr) MO (g, 0) PO (1,0 |F).

It is expected that A®) (7p, o) is equivariant under Galois action. But we don’t know
how to prove it at this moment.

We summarize the above results on period relations for base change as follows.

Theorem 8.6.1. Let F/F be a cyclic extension of CM fields of degree . Let mp be a
cuspidal representation of GL,(Ar). We denote by BC(mF) its strong base change to F.
We assume that mp ®n§_-/F % 7p foralll <t <1—1 and then BC(Ilg) is cuspidal

(Théorém 4.2 of [2]). We assume that both mp and BC(nr) have definable arithmetic
automorphic periods.

Let Iy be any map from Xp.i to {0,1,--- ,n}. We write Ir the composition of Ir and
Vrp.
We then have:
PUR)(BC(r)) ~pp)k pF(1p) (8.39)
or locally P (BC(rp), o) ~pipyx P (tr, 0 |p) (8.40)
Consequently, we know
PO(BC(np),0) ~pimp) N (np, o) PO (15,0 |p). (8.41)

where X&) (g, o) is an algebraic number whose I-th power is in E(wp)*.






Chapter 9

An automorphic version of
Deligne’s conjecture

9.1 A conjecture

Conjecture 9.1.1. Let n and n’ be two positive integers. Let II and II' be cuspidal
representations of GL,(Ar) and GL,/(Ap) respectively which have definable arithmetic

automorphic periods.
/

n+n
Let meZ + be critical for IQII'. We predict that:

n TL
L(m, TIxIV) ~ gy paryr (200)™ ™ [T (] [ PO AL 0)#0H) TT PR (11, o) e kIT50)),

oe¥p.k j=0 k=0

Example 9.1.1. (Known cases for the above conjecture:)
Let F = K be the quadratic imaginary field. Then the above conjecture is already
known in the following cases:

1. ' =1 and m is strictly bigger than the central value. This is the main theorem
in [13]. We keep the notation as in Therem . Let II' = n. 1t is easy to
verify that sp(0,ILTI') = n — s, sp(1,II;I1) = s, sp(i, I;II') = O unless i = s and
sp(s, IGIT) = 1.

Recall that PO (n) ~ p(77,1) and PM(n) ~ p(i7,1). The formula in the above conjec-
ture is the same with the formula in Theorem [5.3.1].

2. n/ =n—1, 10, Il" conjugate self-dual in good position and m > % orm = % along

with a non vanishing condition.

In this case, we have —a, > by > —ap_1 > by > - > b, 1 > —ay. Equivalently we
have sp(k,II';II) =1 for all0 < k <n—1; sp(j,H Iy =1 forl <n—1 and
— 0 for j = 0 or n. Recall that P )(H’) B(T):K PO=DIr)-1, Above conjecture is
equivalent to that:

n—1 n—2
L(m, 1T x ') ~paypavyx (200" [T PO [ [ P®
j=1 k=2

This is Theorem 6.11 of [8] and Theorem 5.1 of [22].
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The shall prove the following special cases of the above conjecture in the next chapters:

Theorem 9.1.1. We assume that 11 and II' are 6-regqular if F # K to guarantee the
factorization of the arithmetic automorphic periods. We know Conjecture[9.1.1] is true for
the following cases:

1. n >/, the pair (IL,IU') is in good position (see Definition[1.2.2), m is strictly bigger
than the central value, or m equals to the central value along with a non vanishing
condition and moreover

(i) I, IU' conjugate self-dual if n # n'(mod 2),
(i) 11 conjugate self-dual, TI' ®¢;1 conjugate self-dual if n = n'(mod 2).

2. Any n, n' and any position for 11, Il | the pair (IL,I1') is very regular and
moreover:

(i) m =1, I}, Iy conjugate self-dual if n = n'(mod 2);
(i) m = %, Ty, I, ®w;1 conjugate self-dual if n # n'(mod 2).

9.2 Compatibility with Deligne’s conjecture over quadratic
imaginary fields

One see easily that Conjecture is formally compatible with Conjecture [6.5.1]

Deligne’s conjecture for automorphic pairs. For this, it is enough to compare the arith-

metic automorphic period P (II) with the motivic period Q) (II) where II is an conjugate
self-dual representation.

When F' is not K, this is difficult since we don’t have geometric meanings for our local
periods P() (I1,0). But for the case when F' = K, this is already discussed in Section 4 of
[8]. We now give a detailed explanation here.

First, let II be conjugate self-dual. In the construction of the arithmetic automor-
phic period, we have chosen &, an algebraic Hecke character of Ak, such that IV ® &

descends to a similitude unitary group. It is easy to verify that &g = ? (c.f. Theorem

VI.2.1 or VI.2.9 of [19]). The arithmetic automorphic period is defined to be the Pet-
terson inner product of a rational class in the bottom stage of the Hodge filtration of
a cohomology space related to AJM(II¢) @ M(€). In other words, PUY)(II) is related to

Qn—j+1(I1°)Qn—j+2(11°) - - Qn(II) x Q1(§).
By Lemma we have Qn—i+1(I1°) ~ g Q;(IN)~! for all 1 < i < n.
By equation (6.13)), we see
€C C \C/ e
Q1(8) ~p(e)x P(z, 1) ~peex PEL D ~pe)x PETL L) ~BEnx 677 ().

We deduce that:

Qn—j1(I1) - Qu(I1%) x Q1(£°) ~pmm(e)x @17 'Q2(ID) ™" - Qj(ﬂ)15Del(€n()- |
9.1
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Recall equation 1' the right hand side of the above formula is just Q(j)(H) as
expected.

Remark 9.2.1. We can also deduce the above result without passing to the motivic period
of II¢. In fact, we can also consider PY) (IT) as Petterson inner product of a rational class
in the bottom degree of a cohomology space related to A"~J M (I1) ® M (£°). It should be

related to Qj+1(INQj+2(I1) - - Qn(IDQ1(£°).
Lemma |6.2.5 implies that

8PN &) ~ponr ([T @167 (én).

1<i<n
Therefore,
QU = ) Q)" - Q) "6 (¢n)
= Qj+1(IDQj42(I1) -+ Qu(I)7 (¢fy).

We can deduce the comparison by the fact that

~

& -
Q1(8°) ~E@e):x P(gv 1) ~peyr P&, 1) ~peyx 079 (&)
For the general cases, we write II = II'’ ®  with II' conjugate self-dual. For the
automorphic part, we see from Definition-Lemma ([5.3.2)) that

For the motivic part, we have Q;(Il) = Q;(II')Q1(n) and A(IT) = A(H/)(SDel(n)n‘
Therefore QU)(I1) = QU)(I1')Q1 (1)~ 62 ().

~
C
)

By (6.13)) again, we see at first that Q1(n) ~g(,);x P((Tlv 1)) and §7¢ (n) ~E(n):K p(17e, 1).
p\n,

We obtain finally:
QI ~ gy QY (I)p(37, 1) p(i7, 1) .

We have already related PY)(II') to QU (II'). The relation for the general cases then
comes.

Remark 9.2.2. We believe that the above comparison also works over general CM fields.
However, the local periods P(®) (I1, o) are not defined geometrically. It is expected that their
geometric meaning can be obtained by comparing special values of L-functions.

9.3 Simplify archimedean factors

We observe that in Conjecture [0.1.1] the right hand side only concerns arithmetic au-
tomorphic periods and a power of 2mi. Sometimes we will get a formula of L(m,IT® IT)
which also involves archimedean factors as in Theorem 6.10 of [§]. We need to show that
the contribution of these archimedean factors is equivalent to a power of 27i:
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Proposition 9.3.1. Let II and II' be as in Conjecture . We assume that either the
critical value m is strictly bigger then the central value, either it is equal to the central
value along with a nonvanishing condition on a certain L-function that we shall see in the
proof.

If there exists an archimedean factor a(m, Iy, I1.)) depending only on m, Iy and 11,
such that

L(m, II x II') ~E(EN);K (9.2)
a(m’ o, H,oo) H (ﬁ P(l) (H, O.)sp(l,l'[;l'[/,a) (' P(k) (H,, O.)sp(k,H’;H,o)) 7
UEZF;K =0 k=0

then we have a(m, Iy, I1,) ~pany.x (2mi)™™' ™, In particular, Conjecture then
follows.

Sometimes it is possible to calculate the archimedean factors directly.

A simpler way is to take II and II’ as representations induced from Hecke characters.
Then we may write the left hand side of equation in terms of a power of 27i and
products of CM periods. For the right hand side, note that we have already related the
arithmetic automorphic periods of a representation induced from Hecke characters and
the CM periods by Theorem [8.3.1]

We shall deduce that the archimedean factor a(m, I, II.,) is equivalent to a power of
271 if IT and II” are induced from Hecke characters. But such representations can have any
infinity type. The only non trivial point is that if II is conjugate self-dual then we may
take a conjugate self-dual Hecke character such that its automorphic induction has the
same infinity type as II. We prove this in the lemma below. Hence the above proposition
is true for any II and II'. This is the idea of the proof of Theorem 5.1 in [22].

Lemma 9.3.1. Let L © F be a cyclic extension of CM fields of degree n. We assume that
n is odd. If II is a conjugate self-dual representation of GL,(Afr) then there exists x a
conjugate self-dual algebraic Hecke character of L such that o, =~ AI(X)ep-

Proof We denote by L™ the maximal totally real subfield of L.

We may take an algebraic Hecke character x' of L such that I, =~ AI(x')s (c.f.
Lemma 4.1.1 and paragraphs before Lemma 4.1.3 in [0]).

Since II is conjugate self-dual, we see that y,, is conjugate self-dual. In particular,
X'|p+ is trivial at infinity places. By Lemma 4.1.4 of [6], we may find ¢ an algebraic Hecke
character of L with trivial infinity type such that ¢¢¢ = x'x’¢. Put x = x’¢~!. It is then
a conjugate self-dual Hecke character with Iy, = AT (x)q.

O

We now give the details of the proof for Proposition [9.3.1

Proof For simplicity, we assume that both n and n’ are odd. For general case, we have
to twist AI(x) or AI(x') by ||-||~*?4F as before. The following proof goes through as well.

We take L © F (resp. L’ © F') a CM field which is a cyclic extension of F of degree n
(resp. n'). We assume that L and L’ are linearly independent over F. Let £ := LL'. Tt is
then a CM field of degree nn’ over F.
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We may take y (resp. x’) an algebraic Hecke character of L such that I, = AI(x)s
(resp. I, = AI(x')o) where AI(x) (resp. AI(X')) is the automorphic induction of x
(resp. X') from L (resp. L') to F. Moreover, we may assume that AI(x) and AI(Y’') are
cuspidal and have definable arithmetic automorphic periods.

For 0 € ¥p.i, we write o1, -+, 0, for the elements in ¥7.x above o and of,--- , 0/,
for the elements in X7/ above 0. Let 1 < i < nand 1 <j <n/. We write 0;; for the
only element in ¥, g such that o, ; [= 0; and 0y ; |/= ;

We write z%(7)z=«(D=ai(@) for the infinity type of AI(x) at o; and 2% (@ )z=w(Il)=b;(2)
for the infinity type of AI(x) at o7 .

Then II has infinity type (2%(?)z=«(D=ai()), , and I’ has infinity type
(ij(U)g*W(H’)*bj(U))Kjén, at o.

By equation (9.2)), we have
L(m, AI(x) x AI(X)) ~ () E():K (9.3)

a(m, T, T,) [T (TT POAT(), )P0 [T PO(AT (), 0) 10 T1))
k=0

O'GZF;K =0

On one hand, we have L(m, AI(x) x AI(x")) = L(m, (x © Na,ja,) (X' © Na,/a,,))-
We observe that the infinity type of (x o Na,/a,)(X' © Na,/a,,) at oij € Yok is
@i (0)+b;(0)z—w(II)—w () —ai(o)—bj (o)
IT) + w(Il'
We denote J, := {(i,7) | ai(0) + bj(0) < —M}

2
We write xz = (X © Na,/a,)(X © Na,/a,,)- By Blasius’s result,

L<m7AI(X) x AI(X/)) ~E(x)E(X );K (2ﬂ,z~)mnn’d H H p(izvo'@j) H p(ﬁ?@)
0€Xr K (1,5)€Je (4,9)¢Jo
(9.4)
We need to assume that we may choose y and X’ such that L(m, AI(x) x AI(x)) # 0.
When m is strictly bigger then the central value, this is always true. When m is equal to
the central value, we assume this as a hypothesis.

Recall that the CM periods are multiplicative and functorial for base change. Hence

p(Xz:0ij) ~ECOEN): K P(X°Naga,,0i)p(X 0 Nayja,,, 0ij)
~EX)E(X);K p(%, Ui)P(X'aO'j)- (95)

We have deduced that

L(m, AI(x) x ALI(X")) ~E()E(N):K (9.6)
@ri)™ TT TT (X, 00X, 7)™ ) TT (o) p(x 75" )
JEEF;K 1<isn 1<]<n/

where s;(0) = #{1<j<n'|(i,j) e J,} and tj(0) = #{l <i<n| (7)€ Jo}.

On the other hand, for 0 <[ < n, we have

POAI(x),0) ~E(ILF);K H PO (y o)) (9.7)

1<isn
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where u;(l) = 1 if a;(0) is in the [-th smallest numbers in the set {a;(c) | 1 <i < n} and
u;(l) = 0 otherwise by Definition [8.3.1}

We order a;(c) and bj(o) in decreasing order. We have u;(1) = 1 if and only if
it=2n—101+1. We get
PYO(AI(X),0) ~ i, H PO (x,0:) H PW(x,0:) (9.8)
1<isn—I n—l+1<i<n

Recall that PO (x,0:) ~px p(X,07) and PU(x,0:) ~pu)k p(X,0i) by Remark
[.6.2l We obtain that:

POAI(x),0) ~E(ILF): K H (X, %) H (X, 04) (9.9)

1<i<n—lI n—Il+1<i<n

Comparing equations (9.3), and , we observe that it remains to show:

n

Z sp(L,IGIT o) = si(0) (9.10)
l=n—i+1
and Z sp(LIGT o) = n' — s;(0). (9.11)
=0

n

Since Y. sp(I,IL;II';0) = n’ by Lemma [1.2.1, We see the above two equations are
=0

equivalent. We now prove the first one.

Recall by definition that sp(l,II;II', o) is the length of the I-th part of the sequence

IT) + w(Il’ II) + w(Il'
bi(o) > ba(0) > -+ > by (o) split by the numbers —W()Qw()—an > _w()Qw()_
w(IT) + w(Il')
Up-1 >0 > =" —ay.
n II) + w(Il
Therefore, Y, sp(lL,ILII,0) = #{j | b; < _w()Qw() — a;}. This is exactly
l=n—i+1

si(o) as expected.

O

Remark 9.3.1. Roughly speaking, the above proposition tells us that if we have a formula

like equation then the archimedean factor must be equivalent to a power of 2wi. If

one can show that the CM periods p(x,T), T € X,k s algebraically independent, we can

moreover prove that the power of arithmetic automorphic periods must be the split indices.
More precisely, the following statement is true:

If there exists an archimedean factor a(m, 11y, 11,)) depending only on m, Iy, and IT,,
and integers b(j, ;1 0), c(k, I, ;p,0) for 0 < j <n,0<k<n and o € Tpx
depending on My, 1., such that

Lim, I x II') ~pan pary:x (9.12)

~

a(m, e, 1) ] (ﬁ p(j)(H7U)b(j,Hw;Hgﬁo) ﬁ P(k)(H/’O—)C(k:H/owHOO:U))) 7
O'EZF;K j:D k=0
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then we have b(j,Uy; 1., 0) = sp(j, I, 0) and c(k, 11, ; 1y, 0) = sp(k,II';11,0) pro-
vided that the local CM periods are algebraically independent. In particular, Conjecture
then follows.

The proof of the above statement is the same as proof for Proposition|9.5.1. We remark
that the indices for the arithmetic automorphic periods are determined by equation .

This statement is very powerful. Sometimes it is easy to show that there exists a for-
mula in the form of equation but difficult to calculate the exact indices. In fact,
one can explain in several lines that there exists such formulas for the cases in Theorem
[9:1.1 But we have devoted the next two whole chapters to calculate the precise indices.

Unfortunately we don’t know how to prove the algebraically independency of the CM
periods. So the calculation in the next two chapters are inevitable at the moment.

9.4 More discussions on the archimedean factors

As discussed in the previous section, one can leave the archimedean factors to the end
of the proof and show that they contribute as a power of 2.

In our situation, we happen to be able to calculate the product of the archimedean
factors directly. Let us first recall some archimedean factors.

Let IIy, (resp. Ho#o) be an algebraic regular generic representation of GL,(F ®g R
(resp.GLy—1(F ®g R)). We have defined:

1. Q(IIy) which appears in the calculation of Whittaker period (c.f. Section 3.4).

2. p(m, 11y, II,)) which appears in the calculation of critical values for automorphic
representations of GL,, x GL,_; (c.f. Proposition [3.6.1)).

3. Z(Ily,) defined in equation ((7.8) by

n—1)(n—2)
2

Z(ILy) = (2mi) 3= Q) p(m, Lo, 1) .

Lemma 9.4.1. The archimedean factors satisfy:

d(n—1)(n—2)
) doie-2)

A dn(n—1)(m+31
Z (oo ) QI )p(m, s, I, ~E(le) E(I ); K (2m)d (n=1)(m+3
for allm = 0.

We now take II and II# to be cuspidal conjugate self-dual representations of GL,(AF)
and GL,,_1(Ar) respectively such that (II, IT#) is in good position. We assume that they
all have definable arithmetic automorphic periods.

By Proposition [3.6.1], we have

1
L(§ +m, I x H#) ~E(I)E(II#);K p(m, g, Hﬁ)p(ﬂ)p(ﬂ#) (9.13)

_

for some critical 3 +m = 7
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Recall from equation (7.5.1]) that:

p(1I) ~E(M)E#;K) Z (1) H H P(i)(ﬂ)‘ (9.14)

O'GEF;K 1<i<n—1

We have a similar formula for IT# since IT# is also cuspidal. We then deduce that:

1
L(5 +m, T x %) (9.15)

~papa P L THZ(L)Z@E) [ ( [] PO(Le) [] PY@#0)

0€¥p, x 1<is<n-—1 1<j<n-—2

~E(I)EI#);K P(m7Hw7H§)Z(Hoo)Z(Hi) H ( H P(i)(l_[,a) H P(j)(H#vU))-

0eXp, g 1<i<n—1 0<j<n—1

Here we have used the fact that PO (II#, o) P(*~1)(I1#, 5) ~pa#);x 1 by Theorem m

Proposition then gives the following result on the archimedean factors:

Proposition 9.4.1. The archimedean factors satisfy:
p(m. Moo, ) 2 (1) Z(TT) ~ pan e o (2i) 020700

provided m = 1 or m = 0 along with a non vanishing condition for the central value of
a certain L-function.

This is Theorem 5.1 of [22] when F' = K is a quadratic imaginary field.

Comparing Lemma and Proposition we change the notation II# to II and
deduce that:

Corollary 9.4.1. We write r = n — 1. For Il an algebraic and generic representation
of GLy/(F ®g R), we have

d(n—1)(n—2) d(r—1)r
2

Z(HOO)Q(Hoo)il ~E(y); K (2mi) = (2mi)” 2

provided m = 1 or m = 0 along with a non vanishing condition for the central value of
a certain L-function.

In the following, we assume that m > 1, or m = 0 along with a non vanishing condition
for II.

9.5 From quadratic imaginary fields to general CM fields

We shall prove Theorem [0.1.1] in the following two chapters over quadratic imaginary
field. The proof only requires little change for general CM fields. This is because the
automorphic arithmetic periods and the CM periods are all factorable. We now explain
the details for the first case of Theorem [9.1.1] in the current section.

Let IT and IT’ be cuspidal conjugate self-dual representations of GL,,(Ar) and GL, (AF)
which has definable arithmetic automorphic periods. We assume that (II,1I') is in good
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position and both IT and II' are regular enough. For simplicity, we also assume that n is
even and n’ is odd.

Let | = n—n' — 1. We take some conjugate self-dual Hecke characters x1,- -, x; such
that if we write IT# for the Langlands sum of II' and x1,- - - , X» then (I, II#) is in good
position. By the assumption on the parity of n and n’ we know that II# is algebraic.

We may assume that for each o € Xk, the first index of the infinity type of x; is in
decreasing order. Therefore, I(II, x;)(o) is determined by the infinity type of IT and II' at
.

As explained in the introduction, the proof requires three main ingredients.

Ingredient A: Theorem [5.3.1]| says that for certain Hecke characters n and critical points
m we have:

L(m, TL@n) ~ sy (2mi)™ PID(IL) T pr, o) B0 p(i7, o)1), (9.16)

oY

where I(I1,7)(c) depends only the infinity type of IT and 7 at o.
By Theorem we may rewrite the above equation as:

L(m,I®n) ~pmypm;x (27)™ [ [[PYIEDENIL, 0)p(i, o) 0@ p (57, a)n— L TLm@)],
ey

(9.17)

1
Ingredient B: Proposition [3.6.1]says that if m > 0 and m + 3 is critical for II x IT# then

1
L(5 +m, 1T x %) ~ gy pa ) P(m, oo, T )p(I)p(11F) (9.18)
where p(IT) and p(II7) are the Whittaker periods.

Ingredient C: Corollary implies that

gﬁﬁfﬁi [ ramexy) [ L(xxx)) (9.19)

0/ 1<l 1<i<j<li

pM*) ~ gy p(IT)

Moreover, by Corollary [7.5.1], we have

(M) ~payx Z0) [T [ PP(ITL,0) (9:20)
ceX 1<i<n—1
M) ~paix Z0,) [T ] PYAT,0) (9.21)

ceX 1<j<n/—1

1 1
On one hand, note that L( +m, IT x TI7) = L(§+m,HxH’) I L(§+m,H><XZ~).
We replace i by x; in equatlon (9.17)) and will get:

1
L(§+m,HxH#)=L(f—|—m,HxH’)x (9.22)

T [ 11 P(I(H%z‘)("))(r{’U)p()\(’i7O—)I(H%z‘)(")p()\(’i’E)H*I(H%i)(a)]

UEEF;K 1<i<l
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On the other hand, apply equations (9.19)), (9.20) and (9.21]) to the right hand side of
equation ((9.18]), we get:

1
L(§+ m,]:[ X H#) ~E)E(#);K ao(m,Hoo,H,oo)X (923)
[1[ I PO(MLo) [] PYUI,0)] [] LLIW®xY) I L(Lxixx))
oeX 1<i<n—1 1<j<n’/—1 1<i<l 1<i<j<li

where ag(m, Iy, IT)) is a non zero complex number depending only on m and the infinity
type.
We apply equation (9.17) to (I, x;) and Blasius’s result to L(1,x; x X} ), we get:

1
L(5 +m, 1T x ) (9.24)
~panEm#)x  a(m, oy, 1) H[ H PO(IL, o) H PUNIT, o) x
oeY 1<i<n—1 1<j<n/—1
[T PUOEO AT, 0)p(xi, o)1 ) p(x;, ) 2] (9.25)

1<i<l

where a(m, o, II.,) is an archimedean factor as before, I; (I1, II') (o) and I»(IL, I1I') (o) are
two integers which depend only on the infinity type of IT and IT" at o.

The first thing we need to show is that I;(II, x;) (o) = I(IL, x;) (o) and Iy (11, x;)(0) =

— I(I1, x;)(o). Since we have ordered the first index of the infinity type of x; at o in

decreasing order, we know that both sides only concern the infinity type of IT and IT" at
the fixed place o. So the proof is the same with the quadratic imaginary case.

We then deduce a formula in the following form:
I/(’)’)/L7 IT x H,) ’\E(H) (H/).K (926)

a(m, Iy, II,) ] (H PUO(IL, o)l 1e0iTes ) H PE(IT, o) (kI M0,0) )
O'EEFK j k=0

where b(j, [Ioo; 1., 0) and ¢(k, ;I , o) are integers which depend only on j, k and the
infinity type of Ily, and II/, at o.

If we know the CM periods are algebraically independent then we can finish the proof
by Remark [0.3.1] Unfortunately this is hard to prove and hence we need to calculate
b(j, ;1. 0) and c(k, ;1T , 0) explicitly. Again, since they only concern infinity
type of I, and II/ at o, we may repeat our calculation for the quadratic imaginary field
case for the fixed place o. We shall see that the indices are just the split indices.

Finally we may show that the archimedean factor a(m, Ile, IT,) ~gmparyx (270)™"" d
by Proposition [0.3.1] and complete the proof.



Chapter 10

Special values of L-functions for
automorphic pairs over quadratic
imaginary fields

10.1 Settings, the simplest case

In the current and the following chapters, let IT and IT' be conjugate self-dual cuspidal
representations of GL,(Ax) and GL,s(Ak) respectively which have definable arithmetic
automorphic periods. We will interpret the critical values for L(s,II ® IT') in terms of
arithmetic automorphic periods when (II,II') is in good position (see Definition .

We write (2%Z~%)j<i<, for the infinity type of IT and (2%2 %)<, for the infinity
type of II. We may order a; and b; such that a1 > az > --- > a, and by > by > --- > byy.

We assume n is even and n’ is odd at first. Then the numbers a;,1 < i < n are half
integers and the numbers b;,1 < j < n’ are integers.

We assume the pair (II,II') is in good position, namely, each b; are included in one

of the intervals | —a;4+1, —a;[, 1 < j <n—1 and each such interval contains at most one b;.
Let w(l) > w(2) > --- > w(n) be the integers such that a,_,u > —byi1-; >
Apg1—w(i) forall 1 <@ < n’. More precisely, we have:

ap > > an_y(1) > by >

Appl—w(l) = 0 Ap—w(2) = —by_1 >
> > Ap_gy(n/41—i) —b; >
> A,y >~ >

Apti1—w(n/) = > An. (10.1)

It is easy to see:

sp(0, T T0) = n — w(1), sp(n’, H"H) = w(n')
sp(j, ;1) = w(j) —w(j+1) forall 1 < j <n' —1. (10.2)
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Hence we have

nl

w(j) = Z sp(k,IT;10) for all 1 < j < n'. (10.3)
k=j
We put | = n—n' — 1. Let x1,x2, - ,x; be conjugate self-dual algebraic Hecke
characters of Ag of infinity type z¥1z7%1, zF2z=k2 ... 2kiz=F regpectively. We assume that
ki > kg > --- > k; lie in different intervals | — aj41, —a;[ which do not contain any of b;.
More precisely, we have

ki >ky>---> kw(n’)—l > b >
> kw(n/) > kw(n/)+1 > > kw(n’—l)—Q > by >

Kwm ro—iy—it2 > kw@mr2—i—it3 > > kyi-i—i > b >

kw(2)—n'+2 > kw(2)—n’+3 > kw(l)—n’ > by >

Ew)—n'+1 > Kw()—nig2 > -+ > ki (10.4)
and the above [ + n’ = n — 1 numbers lie in different gaps between the n numbers
—a, > —ap_1 > -+ > —ai. Note that in this case, the n — 1 numbers above are in-

tegers and the (a;)1<i<n are half integers.

Let II# be the Langlands sum of II’ and x1, x2,--- , x;- It is a generic cohomological
conjugate self-dual automorphic representation of GL,—1(Ak).

Let m = 0 be an integer. By Proposition we know that if m + % is critical for
II x IT#, then

1
L(5 +m, 1L x %) ~ gy ey PP )p(m, Ty, 1) (10.5)

We shall simplify both sides of the above formula. We first calculate the left hand side.

1 !

We know L(% + m,II x IT#) = L(i—i—m,H x 1) HlL(% +m, II® x;).
j:

For each j with 1 < j <[, we apply Theorem to II® x; and get:

1 ~(m ln Ss ~ Sa ~ n—s;
L(5 +m @ x;) ~ sy (2mi) ™2 PO I)p(RG, 1) p(RG, )"~

-\ (m+3)n p(s; =~ si—n
~ BBk (2m1) T PED(I)p(R, 1)
where
sp=#{l<i<n|k<-a}=j+#{1I<i<n'[bi>k} (10.6)

By equation ((10.4]), we see that
§1 = 1782 = 27 T 73w(n’)71 = w<n/) - 17

Swn') = w(n’) + 1, Swn)+1 = w(n’) +2,--- s Sw(n/—1)—2 = w(n’ — 1) —1,

Sw)—n+1 = W) + 1, sy1)—prpa = w(1) +2,--- ,sy =1 +n" =n—1.
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Shortly, s1 < s2 < --+ < s are the numbers in {1,2,--- ,n — 1}\{w(n),w(n —

We then deduce that:

1 1
L(5 +m I x %) ~ gy pary g L+ m, 10> IT') (2 (Mt 2)nt

n—1 n’ l
[ o T e o
i=1 k=1 j=1

where E is the compositum of E(y;), 1 < j <

10.2 Calculate the Whittaker period, the simplest case

By Corollary we know that

p(IT#) ~ g QUE)P(I)QAT) ™ ] LA, W@ [[ L1 xi ®x5)-

1<j<i 1<i<j<l

Recall that x; = xj since x; is conjugate self-dual.

Calculate [] L(L,II'®x5):

1<j<l

For 1 < j <, applying Theorem 1| to IT" x Xj, we get

L(LTU @ X§) ~ g i)k (278)" PU)(IT)p(x5, 1) p(xG, o)™

~ BBk (2m)"™ P (I1)p(3G, 1) 2
where t; = #{1 <1i <n' | b; — k; < 0}. The last step is due to the fact that X§ = Xjfl‘

It is easy to verify that 1 is critical for II’ x Xj by considering the Hodge type and the
original definition by Deligne. Recall that II’ is of infinity type (2%Z7%);<j<n and X5 is
of infinity type z*izki.

Compare with (10.6), we see that t; = n' —#{1 <i <n'|b; > k;} = n'+ j—s;. Then
n' —2t; =2s; —n' —2j.

Therefore, we have deduced that:

l

!
H L(1,10 ®X]) ~par ek (2m)" H ’)Hp(zjl)%rn —2j

1<j<l : j=1

Calculate [[ L(1,x;i ®Xj):
1<z<]<l
For 1 <i < j </, since k; > kj, we have

L(la Xi ® X;) ~E(x;);K (27’(2)]9()2-)(/5, [’) ~E(x;);K (27-(2‘)]7()\&7 1)_1]?(;(;, 1)

by Blasius’s result.
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Therefore, we know that

!
z(z 1)
H L(1, xi ® X5) ~E;x (271) H p(X;, @ (10.7)

1<i<j<l
Since (2s; —n' —2j)+ (2 —1—1) =2s; —n' =1 —1 = 2s; — n, we get finally

!
23j7n

_ r l(l 1)
(IT#) ~ B E;K QI ) p(I)QIT., )~ (2mi) ™+ H P (1) H
j=1 =

10.3 Calculate the arithmetic automorphic periods and con-
clude, the simplest case

Since IT and IT' are cuspidal, we may apply Corollary and get:

n—1
p(I) ~pry;x Z(Ile) H (10.8)
i=1
and  p(Il') ~ gy Z(I1) H (10.9)
Therefore, the right hand side of equation ((10.5])

p(I)p(IT#)p(m, T, TTF)
1(1-1)

X

~E(E(I)E;K Z(Hoo)Q(H#)Z(H/) (1T ) p(m, Hoo:1_1#)(27”)NJr
n'—1

l
Hp(z 253 n H P(z H /) H P(tj)(l—[/
j=1 = j=1

Recall that by lemma [9.4.1) we have

Archimedean factors:
1y (n=1)(n—2)
2

Z(HW)Q(HO%)p(m7H007H§) ~EM)E(IV)E;K (27’[‘@) (n—1)(m+3)

By corollary we know
n/(n'—1)

Z(M)QL) ™ ~paryk (2mi) 2

1(1-1)
2

Therefore Z (I, )Q(I%) Z (1T, ) QI ) L p(m, T, T2 ) (2703) 1+

/ /
(n71)2(n72) +n (n271) -‘r’I’L,l-‘rl(lgl) .

~E()E(I')E;K (QWi)”(”—l)(m+§)_

nfl)

Note that n — 1 = [ + n/ and hence ( 9 ( ) +In + ( ) we obtain that

l(l 1)

Z (Moo )QIT) Z (I )LL)~ p(m, T, T ) (2) 1

\n(n— m l
~pm ek (271) (n=)(m+3),
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Arithmetic automorphic periods:
At last, we have to determine the value of ¢t; = #{1 <i<n'|bj—kj<O0}forl <j<lLl
For fixed 1 < k < n/ —1, from the equation ([1 , we see that the number of 1 < j <l
such that t; = k is w(k) — w(k + 1) — 1, the number of 1 < j < such that t; = r is
w(n') — 1, and the number of 1 < j < such that t; =0isn — 1 —w(l).

For example, we see t1 =ty = -+ = tyy(_1)-1 = 1/, Ly =+ = by—1)—2 =1’ — 1,
oy tw(n 42—i)—it2 = 0 = twmiri—i)—1 =1 — i+ 1, - and tyy g1 = =14 = 0.

We then deduce that

n'—1 l n'—1
1_[ P(k) H/) H P(tj)(l—[l) _ P(k:) (H/)w(k)—w(k+1)P(O) (H/)n—l—w(l)P(n’) (H/)w(n’)—l
k=1 j=1 k=1
n'—1
~ B(I) pk) (H/)w(k)*w(’fﬂ)p(o) (H/)n*w(l)p(n )(H/)w(n )
k=1

:\

- P (11)sp(e11510)

x>
Il
=}

by the fact that PO(IT') x P")(IT') ~par) 1 and equation 1)

Finally, we get p(I)p(I1#)p(m, T, T1%)

n—1
E(IN)E(IT)E;K (271’2)"(” 1)(m+3 )Hp X, 1) 2s;—n H p() H P(k sp(kH )
J=1 i=1

Final conclusion, simplest case:

When L( +m, I x IT#) # 0, we have that

3\

1 n—I1 )
L( +m, I x ') (2md) ™+ 207 [T PO (1)

i=1

:]

B
Il

1
l —1 n'

2 ; k‘ I1;11

~ B e K (28" H p(;, )™ " ) [ [ P )1,

!
PO~ ] [o(G, 1)
j=1

3

.

We deduce that

~

1 - (m+L)nn’ s o s
L(G +m, I x ') ~ pan gy (2mi) "2 [ 1:[ ) (I )P,
We can read from ) that for 0 < ¢ < n, sp(i,ILI) = 0 unless i € {w(k) | 1 <k <

n’}. Moreover, if i € {w( ) |1 <k < n’} then sp(i, ILI') = 1. We can then write the
above formula in a symmetric way:

1 ~mlnn’n i si"n/ s "
L(i + m,H X H,) NE(H)E(H/);K (27T'L>( +2) EP( )(H) p( ’H’H) H P(k)(H/) p(k‘,H 7H).
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1
Remark 10.3.1. If L(§ +m, Il x IT') = 0, then the above formula is automatically true.

1 1
Otherwise the condition L(§ +m, IT x TI#) # 0 is equivalent to that L(§ +m,II x x;) #0

foralll < j <l. Form > 1, we can always choose k;j and x; such that the above is true,
see Section 3 of [1)]. For m =0, we don’t know how to prove it at the moment. We will
assume this is true henceforth.

10.4 Settings, the general cases

Let n > r be arbitrary integers. We still want to apply the previous strategy to
get special values of L-function for II x II. But if we take II# to be Langlands sum of
IT" and some algebraic Hecke characters, it may be no longer algebraic. For example, if
n—1 % n/(mod 2), we know the Langlands parameters of II" are in Z+ % But the Lang-

lands parameters of an algebraic representation of GL,_1 should be in Z + "Tfl =7+ %l

_1
In order to fix this, we will tensor the character || - |[, 21, a Hecke character of infinity

type (%, —%), when necessary.

When n — 1 = r(mod 2), we write 77 = 0 and we will expand II' to an algebraic

representation of GL,_1 as previously. When n — 1 # r(mod 2), we write T} = % and

_1
we will expand IT' x || - || 4. Y to an algebraic representation of GL,_1. In both cases, we
assume the pair (IL, IT') is in good position, namely,

each b; + T; are included in one of the intervals | — a1, —a;[,1 <j<n-—1

and each such interval contains at most one b;. (10.10)

Let w(1) > w(2) > --- > w(n) be the integers such that
—Opt1—w(s) > b1 + 11 > — (i) (10.11)

forall1 <i<n.

Let x1,x2, -+, x; be conjugate self-dual algebraic Hecke characters of Ay of infinity
type zFiz—k1 gkez—he ... kiz=ki respectively. These characters will help us expand I’ or
1

el - ||;f(1/1 to an algebraic representation of GL,_1. Similarly, we will tensor them by
1

|4 29 if n # 0(mod 2) to settle the parity issue. We write 75 = 1 in this case and 0
Ag 2
otherwise.

We assume that k1 + 15 > ko + 15 > -+ > k; + Ty and lie in different intervals
| — @41, —a;[ which doesn’t contain any of b; + T7.

More precisely, we have
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k1+T2>]€2+T2>-">k‘w(n/)_1+T2> by+1T7 >
> kw(n’) + 15 > kw(n’)+1 + Ty > - > kw(n’—l)—Z +T> bo+1T7 >

kwmrv2—iy—ive + T2 > kygrio—iy—it3 T T2 > > kyi1—gy—i + To > bi+T1 >

kw(2)—n/+2 + 15 > kw(2)—n’+3 + 15> --- kw(l)—n’ +T5> by +17 >
kw(l)—n’+1 + 15 > kw(l)—n’+2 + Ty >--- >k + 15 (10.12)

and the above [ + £ = n — 1 numbers lie in the gaps between the n numbers —a, >

n n—1
—Qy—1 > --- > —aj. Note the above n — 1 numbers are in Z + — when q; € Z + for
all 1 <7< n.

There are four cases:

(A) nis even and n’ is odd, then T} = 0 and Ty = 0. We set II¥ = II'@x; Ex2H---Hx:
as in previous sections.

1
(B) n is even and n’ is even, then T} = % and T = 0. We set IT* = (II' ® || - [a2%)

2
X1EHx2H---Hxi-

1
(C) nis odd and n' is even, then T} = 0 and Ty = 5. We set IT# = B[y ¢)E

(e ® R2¢) BB a®ll - n2%)-

N[ —

(D) n is odd and n' is odd, then T} = % and Th = % We set IT#* = (I Ax1 Hx2H- -
1
X)) ® || g 0

In all cases, IT# is a generic cohomological conjugate self-dual automorphic represen-
tation of GL,—1(Ak) and Proposition m gives us that if m + % is critical for IT x I1#,
then

1
L(5 +m, Il x %) ~ pan ey PP )p(m, o, TTE). (10.13)

Again, we shall simplify both sides of this equation.

10.5 Simplify the left hand side, general cases

For the left hand side of equation (|10.13)), we know by construction that:

1 !
(A) LG +m.I1xI¥) = L(G + m, < 1) [T L(3 +m. @ ;)
j:

1 _1 l
L(3 +m, I x [I#) = L(§+m7HX(H/®||.HA;¢)) HIL(%er,H@Xj)
(B) } =
= L(m, I x (I'®)) [T L(z +m, 1@ x;)
j=1

J
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1 1 l 1 _1
L(3 +m, I x IT#) = L(5+m I x 1) [T L(5 +m 0@ (x; ® ] - lla )
=1
(€) 1 o
= L(z+mIx10) [ L(m.I1® (x; @)

7j=1

(D) L(} +m T x ) = L(3. T x (X @) [1 L(m. 110 (x; © )

J=1

Weset s; =#{l<i<n|kj+Th<—a;}=j+#{1<i<n'|bj+T1 > kj+T>} and
ti=#{1<i<n'|(b+T1)— (kj +T2) <0} as before. Recall that s; +¢; = n' + j for
all 1<j<l.

If n is even (case (A) and (B)), we have for all 1 < j <

1
L
(2

If n is odd (case (C) and (D)), we have for all 1 < j <

+m, TT® ;) ~pn By (278) 2P (M)p(3], 1)2 7",

Lm, TL® () @) ~pianmxyyiac (2)™ P (G, 12" p(0, 1) ¥ p(ih, o).

Therefore for cases (A) and (B), we have

l n—1 n’ l
1_[ + m, 1@ x;) ~pm s (28) 3™ [[P®an [[P“™an=" ] [p(g, 1)
j=1 k=1 k=1 j=1

!
For cases (C) and (D), we put s := »; s; and then we have:
j=1

l
-H1 L(m, 1@ (x; ®¥)) ~papew):K
je

miy o T PO TT PO 15 1290, 1) 7

k=1 k=1 J

10.6 Simplify the right hand side, general cases
Calculate p(IT#):  Apply Corollary we get

(A) p(IT#) ~ gy QL)L) [] LA ®xG) [T LLxi ®x)

1<yl 1<i<j<l

(B) p(IT#) ~ g yoc QIL)p(IT)QT,) [T L(L, (H’®H-H§§¢)®X§) [T L(1x®

1<j<! 1<i<j<l

X5)

(C) p(I#) ~EI#)K Q(Hﬁ)p(H,)Q(H, I LI (Xj@”'”&éqﬁ)c) [T L(1L,xi®

1<j<i 1<i<j<l

X5)

(D) p(IT#) ~ gy QML) [T LA xS [T L xi ®x5)

1<yl 1<i<j<l
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Here we have used that:

Lemma 10.6.1. If 7 is a conjugate self-dual Hecke character then:

rI'®n) p(Il')
AW @n),) " QL)

Proof By Corollary we have:

P @) ~payEmix Z(T ®n)w) [[ PO 7). (10.14)

1<ig<n/—1

By the definition of arithmetic automorphic period (c.f. Definition-Lemma [5.3.2)), we
know P ("' ®n) ~paryem):x PO, 1)%p(7,0)"~%. The latter is equivalent to p(7, 1)%~—"
since 7 is conjugate self-dual.

We see that:
[T PO ®n) ~pavyeeyix [ [ (PO @), D* "] ~paryemyx || PO AT).
1<isn 1<isn 1<i<n

(10.15)
By Corollary This will imply that:

prI'®n) p(Il')
Z((IW@n)) PP Z (1T, )

Ien! —1

But we know by Corollary (9.4.1fthat Z(I1,) ~ g k) (279) 3 )Q(H’OO) and a similar
formula for (I' ® 7). The lemma then follows.

U

By Theorem [5.2.1] for all 1 < j <[, we have
L(LI' ® X§) ~ear)E(;)iK (2mi)™ PU) (I )p(X5, 1)™ 2.
Similarly, we have
_1 . 1 .
L, (T[] - [[49) @ x5) = L(5, I'® (¥x35))

~ sy By (2m)E PO, 17 20p(8, 1Y p(, 0" 5

1 1
and LA @@ [lae¥)) = L5 TT'® (i ®¥)°)
~E)E(x;)E@);K (ZWi)%P(tj)(H/)p(ija 1)n/_2tjp(@z, 1)n1_tjp(ll L)tj-

Along with equation (10.7)), we get

1(1—1)

(A) and (D): p(IT*) ~ g EE@):K QIT)p(I1)Q(IT, )~ (2md) "+ 7 x

! l
Pl [ [ (x5, 1)
j=1 j=1
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n'l | 1(1—1)

(B) : p(IT#*) ~ pary g () QI )p(I1)Q(IT) " (2mi) 7+ 7 x

l
H 1)25 7 p (), 1) p(h, )"

':]N

<.
Il
—_

n'l (=1

(©) + p(IT#) ~ gy ey x QIE)p(IT)QIL,) 7 (2mi) T+ 2 %

17

=1 J

(X5, 1) p(, 1) (8, 1)

::]N

1

.

! ! I(l+1
where t = th:Z(n +j—s])—nl+ ( 5 )
7=1

We then apply equatlons and Lemma 9.4.1] m Corollary - 9.4.1] to get:
(A) PP )p(m, Thoo, TTE) ~ iy mqar s (20"~ D0m3)x

— S.

l n—1 n’

Hp(%7 1)23j7n H 1_[ H/ sp(k,IT’ H)

j=1 i=1 k=0

(B) p(I)p(I1#)p(m, I, 1T ~E(I)E(IV)EE($);K K (2mi)m = Dmt3)=%t

n'

l
[ 125, 1> (8, 1)'p(5, )"~ tﬂpﬂ H PO (1 ysp(k I @),
7j=1

n'l

(C) pIDp(I#)p(m, Moo, 1) ~ iy ar e (2m)" 0D 4277

P (177ysp(k @)

=

l n—1
H p(G, 1> " p(h, )™ p(, )t [ [ PO (1)
j=1 =1

k

Il
o

(D) p(I)p(IT#)p(m, op, 1) ~ gy p(r mE)x (270)" Dm+3)
n—1

lL[ X]) 25]-—71 H ln_[ sp (k,IT H)

=1

10.7 Compare both sides, general cases
At first, observe that

p(P, Dp(h, 1) ~E@)K p(, 1)p(¢e, 1) ~Bw);k PV 1) ~pw)x P HK}@ 1) ~ () 2mi.

We can then conclude:

(A) L

5+ m, I x ') ~pany paryx

n n’

(27ri)(m+%)”"’ p(w(k))(H) H pk) (H/)sp(k,r[';n)
k=1 k=0
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(B) Since n(n—1)(m+3)— %L —(m+3)nl = (m+3)n(n—1-1) =5 = (m+ 3’ — ! =

mnn’ + ”7”/ — %l, we have
L(m, I x (I ® ) ~pm e ew):x (27" S (10.16)
n’ n’
[ [P POy 2SI 1) (3, 1)1
k=1 k:O

nn’ _n/l n' _nll ~ n' _nll

Since (27) 2 "2 ~py) P, 1) =5 p(h, )% %, and

nn'  n'l nn'  n'l (1+1) nn'  n'l U(1+1)
- 4 = = 2 1 )= = 4+ _
5 5+ 5 5 + ('l + s) 5t T s
RS
T2 2 fT Ty T T
—1
SCET N TS
'l "ol I(+1
B S+Lﬁ_(n’+l+1)l
a 2 2
= S+nn/—n—n/—n—l
a 2 2
= s+nn’—n(n2_1)

We get L(m, 11 x (IV @ ¢)) ~papr)sw)x (27)™™

' n’ s n(n—l)_s ~ s nn/_n(n—l)
[P ) [T PW )Ty (), 1) =5 —p(ah, o)+ =5
k=1 k=0
(C) Since n(n—l)(m+ )—%q—mnl = n(n—l)(m—l—%)—%l—(m—i—%)nl—&-% =
(m+ $)nn/ + % — %l, we have
1 / (m-‘r )nn’-‘rll_L/l
L(§ + m, H X H ) NE(H)E(H’)E(¢) (27TZ) 2 2 X (1017)

n/

H P(w(k))(H) H pk) (1—[/)sp(k,l'[’;l'[)p({p'7 l)n’l—t—sp({b’7 L)t—i—s—nl
k=1

k=0
Moreover, we know ¢ + s = n'l + l(lH), we have 2(t + s) = 2n'l + (I + 1)l =
nl+(n +1+1)l=n'l+nl. Thusn'l—t—s=t+s—nl= %—%l We then get
nl_nl ol nl
p(, )M p(ah, )t = p(p @Y, 1)F T E = (2mi)T 7 E,
Therefore:
1 - (m+L)nn’ = w = s "
L(§+ m,H X H/> NE(H)E(H/);K (27'('2)( +2) H P( k) H p(kI1 H)

k=1 k=0
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(D) Similarly, since n(n—1)(m+ 3) —mnl = n(n—1)m+ w —mnl = mnn' + %,
we have
[] Pt H ) (1) PO V@I ] 1)—”‘";”—519(1;, L)s+nn'—7”<";“
k=1 k=0
It is easy to verify that s —nl+ n(n D =s—nl+nn—1)— "(n;l) =s+nn — @
10.8 Final conclusion: general cases
Before concluding, we notice that in case (B) or (D),
n—1 . n/ n(n o 1) !
s= >, 8= 0 2wl =5 =) uw)
1<j<n—1 j=1  j=1 j=1
Recall that w(j) = sp(k, TI' ® ;1) for all 1 < k < n' by (10.3). Therefore:
k=j
n(n—1) u o :
( Z = Z sp(§, T @; TT) = Y &+ sp(k, I @ 1); IT)
=1 =1 k=1
= >k sp(k, I @ v I0); (10.19)
k=0
/ n(n — 1) / g /
and s + nn’ — — 5 = nn— Z k # sp(k, 1" ® ¢; IT)
k=0
= 2 (B, T @ ¢;TT) — ) j # sp(k, T @ ¢b; 1)
=0 k=0
= Z k)sp(k, I ® 1; IT)

n/

by Lemma [1.2.1{ which says that Y sp(k,II' ® ¢;II) = n
k=0

Therefore, we get

!

3

~ n(n—1)
2

pk) (H/)sp(k,ﬂ’@)w;ﬂ)p(d)’ 1)

7 n(n—1)
T2

—sp(d)’ L)s+nn

i
(=)

3\

(0’ —k)sp(k,IT' @np;1T)
0

T

. ~ % kxsp(k, V@) o
~E(T)E(4) PO (117 Pk IOV (4, 7)o p(, )

i
o

3\

sp(k,I1'@q;1T)

~eavype | ] (PO, 18,07 F)

B
Il
o

Recall that P®) (I @ ¢) := P& (IT)p(4h, 1)*p(h, 1)~ by definition, we obtain that:
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Theorem 10.8.1. Let n > n' be two positive integers. Let K be a quadratic imaginary
field. Let II and II' be cuspidal representations of GL,, and GL,s respectively which are
very regular, cohomological, conjugate self-dual and supercuspidal at at least two finite split
places. We assume that (IL, 1) is in good position in the sense of Definition .

(i) If n # n'(mod 2), then for any critical value m + 5 for MM I such that m > 1, or
m = 0 along with a non-vanishing condition, we have

1 , n . n
L(*-"-m,HXH/) ~ B(I) E(I1):.K (271_1)(m+%)nn HP('L)( sp(3,ILIT) H H/ sp(k,IT H)

2 =0

(ii) If n = n'(mod 2), then for any critical value m for IR such thatm =1, orm =0
along with a non-vanishing condition, we have:

L(m, 1 x (I ® 1))

~ BB B (2™ T] PO @IS0 T] pl) ([T @ ) I'ew,
=0 k=0






Chapter 11

Special values at 1 of L-functions
for automorphic pairs over
quadratic imaginary fields

11.1 Settings

Let r1 and r9 be two positive integers.

Let IT; and I be two cuspidal representations of GL,, (Ax) and GL,,(Ak) respectively
which has definable arithmetic automorphic periods. We assume they are also conjugate
self-dual.

We write the infinity type of IIy (resp. II) by (2%727%)1<j<p, (vesp. (2%Z7%)1<har,)-
We see that bjeZ—l—% for all 1 < j <y (resp. ckeZ+% for all 1 <k <rg).

(A) If 71 = 1o = 0( mod 2), we write II# = II; EII§. We define T3 = Ty = 0.

1 1
(B) If r; = ro = 1( mod 2), we write II* = (II; ®|| - o z0) B[ |[5 . 9). We define
Ty =T, = 3.
(C) If 71 # ro(mod 2), we may assume that r; is even and 73 is odd. We write IT#* =
1
(I ®|| - ||, 2¢) BTS. We define T3 = § and Ty = 0.

It is easy to see that II# is an algebraic generic representation of GLy, v, (Ag) with
infinity type (22 +T3z=bi=T5, et Tazen=Ta), o I<hgry-

We assume that II7 is regular, i.e. for any 1 < j < 7 and any 1 < k < 73, we have
bj + T3 # —cp + Ty.

Set n =11 +ry+ 1. Weseethat {b; +T5 |1 <j<r}u{—c+T4|1<k<r} are
n — 1 different numbers in Z + ”7_2 We take a1 > a9 > --->ap, €Z + "T_l such that the
n — 1 numbers above are in different gaps between {a; | 1 < i < n}. Let II be a cuspidal
conjugate self-dual representation of G L, (Ax) which has arithmetic automorphic periods
and infinity type (z%z7%).
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Our method also requires Il to be 3-regular. To guarantee this, we assume that
|(bj +T53) — (—cp+Tu)| =3 forall 1 <j<r;,1<k<r. (11.1)

In this case, we say the pair (II1,Ils) is very regular. We can then take a; as above such
that 1+ 1 is critical for Il ® II#. Moreover, results in [I4] show the existence of II as
above, such that L(1 + 1, I @ II#) # 0.

We fix such II and m = 1, then m + % is critical for IT x II# and moreover

1
L(5 +m, 1l x %) ~ pan s PA)pIF)p(m, Mo, TTE) (11.2)

with both sides non zero.

In the end of this section, let us show some simple facts on the split index. We can
read from the construction of a; that

sp(j, Il @ 213, 10) = sp(j, I @ ¥*T5; Tl ® (¥)*74) + 1 for all 0 < j <7y

and similarly, sp(4, 115 @ v* T 1) = sp(j, (I ® (¥°)*™)% (I @ 1)) + 1
= sp(ra— j, I ® (¥°)?T4); T @ ?**) + 1 for all 0 < j < 7o

Here we have used Lemma [[.2.1]

Moreover, for each 1 <4 < n — 1, one of sp(i, II; IT; ® (1°)?73) and sp(3, IT; 1§ ® 1»271)
is 1 and another is 0. We also know that sp(0, IL; IT; ® ¥?73) = sp(0,11; 11§ ® *74) = 0
and sp(n, IT; I} ® 1?13) = sp(n, IL; TI§ @ ¥?73) = 0.

11.2 Simplify the left hand side

We are going to simply the left hand side of equation ((11.2)) now.

(A) In this case we have L(m + 5,11 x II#) = L(m + §,11 x II;) x L(m + 3,11 x IIS).
By Theorem [10.8.1} we know that

1
L(§ +m, I x 1) ~pan e,k (11.3)

(2i)(mt$)nr T PO ()L [T U (I, )l i)

1=0 ]:0

and similarly L(§ + m, IT x IIS) ~E()E(Ile); K

(i) m+3)mrz T PO (IT)EIL5) [T PR (T15)spe 115311
i=0 k=0

Therefore, since sp(i, I1;I11) + sp(i, II; II§) = 1 for all 1 < i < n — 1, we obtain that
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1
L(m + 5,H x T17) (11.4)

~ B(I) E(I) E(T ). K (27”’ )n(n—1) HP(Z sp(i,H;Hl)-i-sp(i,H;Hg)

1—1[ PO (11, )70 H P ([1,)sp k151D
3=0 k=0

~E(E(M)EL);K (27” mtgin(n= I)HP

1—1[ PO (11, PG H PO (15 (RIS
j= k=0

(B) In this case, we have L(m + 1,II x II#) = L(m,II x (I} ® 1)) x L(m,II x (II§@)).

Applying the second part of Theorem we have
L(m + 1,11 x I1#) (11.5)

n—1 1
~ B(m B B(T);K (2m) ™ Hl PO(II) H G) (11 ) Pl The@v:I)

L o sp(F, L1 @; 1)+ ) kxsp(k,IIS@;11
1—2[ P &) (115)spRI5@UI 4y (4], 1)20]* PU M@V zjo Font )
k=0

(RIS

(r1— )G I @I + 3 (ra—k)ssp(k.TIS@u:TI)

xp(th, 1)1~

Lemma 11.2.1. We have:

T1 T2
D dxsp(G T @ s T) + Y &+ sp(k, TI§ @ 43 T1)

7=0 k=0
n' 9

= (=) #sp(, T @;T0) + Y (r2 — k) + sp(k, TT§ @ ; T0)
j=0 k=0

~ n(n—1)

B 2

Proof We set w(j, 11 ®;1I), 1 < j <7 (resp. w(k I5®1;I0), 1 < k < 1g) to be
the index w(yj ) for the pair (II, IT; ®1) (resp. (IL IIS®7)))) as in - We see from

10.19) that Z Jxsp(7, 1 ;1) = le w(j, [T} ®1); IT) and Z kxsp(k, I ®1; 1) =

Jj=0 j=1

2 w(k, 15 @ ¢; II).
k=1
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Recall that w(j, I ®; IT) (resp. w(k,II§®1);1I)) is the position of the infinity type
of IT} ® ¢ (resp. 11§ ® ¢) in the gaps of the infinity type of II. It is easy to see that
the n — 1 numbers w(j, I} ® ¢;II), w(k,II§ @ ;1I1) for 1 < j <rp and 1 <k < ry
runs over 1,2, --- ' n — 1. We then deduce the first formula of the lemma.

The second equation follows easily from the first one.

From the lemma we see that

T

T2
 n(n—1) - Z Jxsp(g, L@+ 37 kxsp(k,IIS@y;IT)
(2mi) " ~pEyx (Y, 1)7=° k=0 X

nl 7‘2
o 2 (r1=3)*sp(,I1 @I+ 3} (r2—Fk)*sp(k,IT5@1p;1T)
=0 k=0

p(, 0y (1L6)

We thus obtain that

n—1
. Ly (ne ;
L(m + 3,10 x 1) ~ gy pam s (2m0) 720D [T PO
T1

HO PO (11, )G ®YID) kﬁo P ) (115)sp(k:TT5@u:T)| (11.7)
j= =

In this case, we have L(m + 3,11 x II#) = L(m, II x (II; ® 1)) x L(m + 3,11 x II5).

Similarly, we get:

L(m + %,H x II7) ~E(I)E(I)E(2); K

nr n—1 . T . . r
(27”')(er%)n(n*l)*71 [T P% (1) 1_1[ PO (11, )P @;1) 1_2[ PF)(115)sp(k-T15:TD) 5
i=1 j=0 k=0

S jrsp(iIL @) (r1—3)*sp(i 1L @I

(e, 1)7=° p(eh, 1)1=0 : (11.8)

RIES

11.3 Simplify the right hand side

By Corollary and Corollary for cases (A) and (B), we have:

p(IT%) ~pa#yr QITE)p(I) QI o)~ p(I) Q(y0) ~ L(1, Ty x IIp)

~partyk QIIE) Z (I 00) QI 00) ™ Z (1g,00) Q(,00) T L(1, 1Ty x TTp) x

ri—1 ro—1
[T PP [T P® )
j=1 k=1

ri—1 ro—1
Q(ITF ) L(1L, I x ) H PU)(IIy) H PM(II3).
j=1 k=1

(r1=1)ry , (rg—1)ro
. 7_}'_7
~pa#yk  (2mE) 2 3
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Therefore, for cases (A) and (B), we obtain that:

p(I)p(IT#)p(m, T, TT%)
2 Q) Z (T )p(m, T, TTE)

n—1 r1—1 ro—1

s i [ [P0y [T P [T P
i=1 j k=1
m+1 ) n(n 1)+('r1 1)r1+(r2 1) ro

(r1— )1+(

~E(I#);K (2mi)

~par#yr (2mi) D L(1,10; x IIy) x

n—1 ri—1 ro—1
[1POa [T PO [T PO
i=1 j=1 k=1

n—1
~ gy (2md) DD LT« TL) [ PO() x
=1
T1 T2

[ P9 ) [T PW(ms5) (11.9)

Jj=0 k=0

We have used Lemma [9.4.1} the fact that ( ;) = (") =

( + (TQQ) + 7179 and also the
. kPO P ~ sy 1, POMEPOE) ~y 1

1

2

2
(I ®) x II3) in the above
formula.

11.4 Final conclusion

Comparing ((11.4) and (11.9)), we get for case (A):

T1
L(1, 1L x IIy)  ~pa)ean)x  (2m0)"" Hp(j)(ﬂl)Sp(j’Hl’ -1 H PR (115)sp kT35~

7=0 k=0
~EB(L)E();K (2mi)™? H pU )sPU- T T2) H P (115 sp(kI5II)
~TE(L)E(Il); K (27a)"" H pPU sP(j’Hl;HQ) 1_[ plra—k) (H2)sp(r2—k,1'{2;l'[1)
k=0
~E(IL)B(IL); K 277-@ rirz H P Sp (4,115112) H P sp (k Hg,l‘[l)

Comparing (11.7) and (11.9)), we get for case (B):

L(1,11; x II)
T1 T2
~ BBk (2m) 1T H p(J)(Hl)sp(J,m@w;HQ@wc) H pk) (H2)sp(k,H2®zpc;H1®q/;)
3=0 k=0
T1 ()
~ () BT ): K (2mi)17 H P(J)(Hl)sp(J,Hl;Hz) H pk) (Hg)sP(k’Hz;Hl),
J=0 k=0

Here we have used that sp(j, II; ®1; [Ia @) = sp(j, 11 ®1; Mo @~ = sp(j, ;1)
by Lemma [1.2.1
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Similarly, for case (C), comparing (11.8)) and ((11.9)), we obtain that:
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1
L (M @v) x11)
1 T2
~ B(IL) B(La) E(¥).K (2mi)r 23 H PO (11, )G @iTl2) 1_[ P#)(I1,)sp (kT2 @) o
j=0 k=0

L Y HepUIMeEI) ) 3 ()*(sp(L®TIa+1))
p(h,1)7=° p(t,0)7=°

1T T KA rl - . T2
~ () E(IL) E(): K (277@')7172*% H PO (11 )P Th@wiTl2) H PF) (11, ) sk T2 Th @)
j=0 k=0

rl T ™ T‘l . . ™ T
Y Gesp(IL@eiTly)+ T S () s (T @ T )+ LD

p(,1)7=° p(¢,1)=°

T1 T2
~ D) E(IL) E(6).K (2mi) 2 H PO (11, )G @ill2) H P#) (11, spk @) o
j=0 k=0
s Y eGImenT) X (m—)esp(L @)
p(h, 1)7=° p(th,0)7="

T1 T2
~ BB Eeyx (2m) 2 | [ PO @) e m@vill) TT pl) (g1, sp(klaihew)
j=0 k=0

The last step is deduced by definition of P*)(II; ® 1) (c.f. Definition-Lemma [5.3.2).

Theorem 11.4.1. Let r1 and ro be two positive integers. Let 111 and Ils be two cuspidal
representations of GLy, (Ax) and GL,,(Ak) respectively which are very regular, cohomo-
logical, conjugate self-dual and supercuspidal at at least two finite split places. Assume
that the pair 111,y is very reqular in the sense of .

(Z) If = rg(mod 2), then L(].,Hl X Hg) ~E()E(ILL); K

(277)"172 1_1[ pU (HI)SP(j7H1§H2) 1_2[ pk) (H2>sp(k7H2;H1).
Jj=0 k=0

(ZZ) If T $ TQ(mOd 2)7 then I/(%7 (Hl ® ’(/J) X HQ) NE(H1)E(H2)E(’¢);K

(2mi) 72" 1_1[ PU(IT, @ ) PO T@I) 1_2[ PO (I1,)sp (kLI @),
3=0 k=0
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