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PERIODSM. Kontsevih and D. ZagierAbstrat. \Periods" is the generi term used to designate the numbers arising as inte-grals of algebrai funtions over domains desribed by algebrai equations or inequalitieswith oeÆients in Q. This lass of numbers, far larger and more mysterious than thering of algebrai numbers, is nevertheless aessible in the sense that its elements areonstrutible and that one at least onjeturally has a way to verify the equality of anytwo numbers whih have been expressed as periods. Most of the important onstants ofmathematis belong to the lass of periods, and these numbers play a ritial role in thetheory of di�erential equations, in transendene theory, and in many of the entral on-jetures of modern arithmetial algebrai geometry. The paper gives a survey of some ofthese onnetions, with an emphasis on expliit examples and on open questions.Introdution1. First Priniples1.1. De�nition and examples of periods1.2. Identities between periods2. Periods and Di�erential Equations2.1. Example 1: families of ellipti urves2.2. Example 2: hypergeometri funtions2.3. Example 3: modular forms2.4. Example 4: The Ap�ery di�erential equation2.5. An appliation3. Periods and L-funtions3.1. L-funtions3.2. Speial values: the onjetures of Deligne and Beilinson3.3. Examples oming from algebrai number theory3.4. Examples oming from modular forms3.5. The onjeture of Birh and Swinnerton-Dyer3.6. Subleading oeÆients: the Colmez onjeture4. Periods and Motives4.1. The algebra of abstrat periods4.2. Motivi Galois group4.3. Exponential periodsBibliography 1



IntrodutionAs beginning students of mathematis, we learn suessively about various kinds ofnumbers. First ome the natural numbers:N = f1; 2; 3; : : :g :Adding zero and negative numbers, we get the integers:Z = f: : : ; �2; �1; 0; 1; 2; : : :g :Then adding indeomposable frations gives the rational numbers:Q = � pq �� p 2 Z; q 2 N ; g..d.(p; q) = 1	 :Taking limits of sequenes of rational numbers, we get the real numbers. Finally, weextend the lass of real numbers adding formally a symbol \i' whose square is �1 to getthe omplex numbers: C = fx+ i � y j x; y 2 Rg :Among the many remarkable advantages oming from the introdution of omplex num-bers is Gauss's Fundamental Theorem of Algebra: Any polynomial equationa0 + a1x+ � � �+ an�1xn�1 + xn = 0; n > 0with omplex oeÆients has a solution x 2 C . In partiular, we an onsider the set ofall x 2 C suh that x satis�es an algebrai equation with rational oeÆients. In thisway we obtain the set of algebrai numbers, usually denoted by Q � C . The simplestirrational real algebrai number is p2 = 1:4142135 : : : , whose irrationality is provedin Eulid's Elements. Trigonometri funtions of any rational angle are also algebrainumbers, e.g. sin(60Æ) =p3=4 ; tan(18Æ) =q1� 2=p5 :Traditionally, numbers are lassi�ed aording to their position in the hierarhyN � Z � Q � Q\ \ :R � C (0)Numbers whih are not algebrai are alled transendental. There is a huge di�erenein size between algebrai and transendental numbers (Cantor, 1873): the set Q ofalgebrai numbers is ountable and the set of transendental numbers is unountable.This means that one annot really desribe a \generi" transendental number using a�nite number of words. A transendental number usually ontains an in�nite amountof information. Also, if we meet a number for whih there is no apparent reason to bealgebrai, then it is most natural to assume that this number is transendental.There is, however, one further important lass of numbers, lying between Q and C ,whih is missing in the above lassi�ation. This \new" lass of numbers, the periods,seems to be the next most important lass in the hierarhy of numbers aording to2



their arithmeti properties. The periods form a ountable lass and in some senseontradit the above \generi" priniple: periods are usually transendental numbers,but they are desribed by, and ontain, only a �nite amount of information, and (atleast onjeturally) an be identi�ed in an algorithmi way. Periods appear surprisinglyoften in various formulas and onjetures in mathematis, and often provide a bridgebetween problems oming from di�erent disiplines. In this survey artile we try toexplain a little what periods are and to desribe some of the many plaes where theyour.Remark. This artile is an expanded version of a talk with the same title given by the�rst author at the 1999 Journ�ee Annuelle of the Soi�et�e Math�ematique de Frane anddistributed on that oasion as part of a brohure entitled \Math�ematique et Physique".The expansion onsists in the inlusion of many more examples, the addition of a hapteron the relation to di�erential equations, and a more detailed disussion of the onjetureof Birh and Swinnerton-Dyer. The last hapter, whih is at a more advaned level andalso more speulative than the rest of the text, is by the �rst author only.Chapter 1. First Priniples1.1. De�nition and �rst examples.Here is an elementary de�nition of a period:De�nition. A period is a omplex number whose real and imaginary parts are valuesof absolutely onvergent integrals of rational funtions with rational oeÆients, overdomains in Rn given by polynomial inequalities with rational oeÆients.We will denote the set of periods by P. It is obviously ountable. In the abovede�nition one an replae the words \rational funtion" and \rational oeÆients" by\algebrai funtion" and \algebrai oeÆients" without hanging the set of numberswhih one obtains. For example, the irrational algebrai number p2 an be representedby p2 = Z2x2�1 dx ;and similarly algebrai funtions ourring in the integrand an be replaed by rationalfuntions by introduing more variables. Indeed, using the fat that the integral of anyreal-valued funtion is equal to the area under its graph one an write an arbitrary periodas the volume of a domain de�ned by polynomial equalities with rational oeÆients, sowe never need to integrate any funtion more ompliated than the onstant funtion 1.In pratie, however, we often prefer to allow ourselves more freedom rather than less,as follows: Let X be a smooth quasiprojetive variety, Y � X a subvariety, and ! alosed algebrai n-form on X vanishing on Y , all de�ned over Q , and let C be a singularn-hain on X(C ) with boundary ontained in Y (C ); then the integral RC ! is a period.(Roughly speaking, the reason that this apparently more general de�nition is equivalentto the naive one given before is that we an deform C to a semi-algebrai hain andthen break it up into small piees whih an be projeted bijetively onto open domainsin Rn with algebrai boundary.) 3



The simplest non-algebrai example of a period is the number �, the irumfereneof the irle of unit diameter: � = 3:1415926 : : : :This number, the most famous onstant of mathematis, is ubiquitous. For example,the volume of the 3-dimensional unit ball is 43� (Arhimedes). Also � appears in for-mulas for volumes of higher-dimensional balls, spheres, ones, ylinders, ellipsoids et.Trigonometri funtions are periodi with period 2�. We an express � as a period byany of the following integrals:� = ZZx2+y2�1 dx dy = 2 Z 1�1p1� x2 dx = Z 1�1 dxp1� x2 = Z 1�1 dx1 + x2 (1)or also, after multipliation by the algebrai number 2i, by the ontour integral2�i = I dzzin the omplex plane around the point z = 0. The transendene of the number � wasproved by F. Lindemann in 1882.Two other famous numbers whih have speial notations aree = limn!1�1 + 1n�n = 2:7182818 : : : ;the basis of the natural logarithms, and Euler's onstant, = limn!1�1 + 12 + � � �+ 1n � logn� = 0:5772156 : : : ;but these two numbers (onjeturally) are not periods. (However, see x4.3.) It is knownonly that e is transendental (Ch. Hermite, 1873).However, there are many examples of periods besides � and the algebrai numbers.For example, logarithms of algebrai numbers are periods, e.g.log(2) = Z 21 dxx :Similarly, the perimeter of an ellipse with radii a and b is the ellipti integral2 Z b�br1 + a2x2b4 � b2x2 dxand it annot be expressed algebraially using � for a 6= b; a; b 2 Q>0 . Many in�nitesums of elementary expressions are periods. For example,�(3) = 1 + 123 + 133 + � � � = 1:2020569 : : :4



has the following representation as an integral:�(3) = ZZZ0<x<y<z<1 dx dy dz(1� x)yz ; (2)and more generally, all values of the Riemann zeta funtion�(s) :=Xn�1 1nsat integers s � 2 are periods, as are the \multiple zeta values"�(s1; : : : ; sk) := X0<n1<���<nk 1ns11 � � �nskk (si 2 N ; sk � 2) (3)(f. [32℄) whih have been widely studied in reent years. Speial values at algebraiarguments of hypergeometri funtions and of solutions of many other di�erential equa-tions are periods (f. x2.2). So are speial values of modular forms at appropriatearguments (f. x2.3) and of various kinds of L-funtions attahed to them (Chapter 3).The (logarithmi) Mahler measure�(P ) = Z � � �Zjx1j=���=jxnj=1 log jP (x1; : : : ; xn)j dx1x1 � � � dxnxn (4)of a Laurent polynomial P (x1; : : : ; xn) 2 Q [x�11 ; : : : ; x�1n ℄ is a period. Also, periodsform an algebra, so we get new periods by taking sums and produts of known ones.It an also happen that the integral of a transendental funtion is a period \byaident". As an example, the reader an verify thatZ 10 xlog 11�x dx = log 2 : (5)(Hint: make the substitution x 7! 2x� x2 in R 12"�"2(log(1� x))�1 dx.) Similarly, valuesof the gamma funtion �(s) = Z 10 ts�1 e�t dtat rational values of the argument s are losely related to periods:��p=q�q 2 P (p; q 2 N) : (6)(This follows from the representation of �(p=q)q as a beta integral.) For instane,�(1=2)2 = � and �(1=3)3 = 24=331=2� Z 10 dxp1� x3 : In general, there seems to beno universal rule explaining why ertain in�nite sums or integrals of transendentalfuntions are periods. Eah time one has to invent a new trik to prove that a giventransendental expression is a period.It an be said without muh overstrething that a large part of algebrai geometry is(in a hidden form) the study of integrals of rational funtions of several variables. Wetherefore propose the following priniple for mathematial pratie:Priniple 1. Whenever you meet a new number, and have deided (or onvined your-self) that it is transendental, try to �gure out whether it is a period.5



1.2. Identities between periods. In the introdution, we listed some of the mostfamiliar lasses of numbers, summarized in the diagram (0), and emphasized a majordi�erene between the two rows of this diagram: the sets in the �rst row are ountableand eah of their elements an be desribed by speifying a �nite amount of information,whereas the individual elements of the sets in the seond row do not in general havesuh a desription. Indeed, beause of this some mathematiians [27℄ would have usbelieve that we have no right to work with these sets at all! For periods the situation isintermediate and not entirely lear. On the one hand the set P is ountable and eahelement of it an be desribed by a �nite amount of information (namely, the integrandand domain of integration de�ning the period). On the other hand, a priori there aremany ways to write a omplex number as an integral, and it is not lear how to hekwhen two periods given by expliit integrals are equal or di�erent. The problem isexaerbated by the fat that two di�erent periods may be numerially very lose andyet be distint, examples being�p1633 and log(640320);both of whih have deimal expansions beginning 13:36972333037750 : : : , or, even moreamazingly, the two periods [23℄�6 p3502 and log�2 4Yj=1�xj +qx2j � 1���x1 = 10712 +92p34 ; x2 = 15532 +133p34 ; x3 = 429+304p2 ; x4 = 6272 +221p2� ;whih agree numerially to more than 80 deimal digits and nevertheless are di�erent!For algebrai numbers there may, of ourse, also be apparently di�erent expressionsfor the same number, suh asq11 + 2p29 +r16� 2p29 + 2q55� 10p29 = p5 +q22 + 2p5([22℄), but we an hek their equality easily, either by �nding some polynomial satis�edby eah number and omputing the g..d. of these polynomials or else by alulatingboth numbers numerially to suÆiently high preision and using the fat that twodi�erent solutions of algebrai equations with integer oeÆients of given degree andheight annot be too lose to eah other.Can we do something similar for periods? From elementary alulus we have severaltransformation rules, i.e., ways to prove identities between integrals. For integrals offuntions in one variable these rules are as follows.1) Additivity (in the integrand and in the domain of integration):Z ba (f(x) + g(x)) dx = Z ba f(x) dx + Z ba g(x) dx ;6



Z ba f(x) dx = Z a f(x) dx+ Z b f(x) dx :2) Change of variables: if y = f(x) is an invertible hange of variables, thenZ f(b)f(a) F (y) dy = Z ba F (f(x)) f 0(x) dx :3) Newton-Leibniz formula:Z ba f 0(x) dx = f(b)� f(a) :In the ase of multi-dimensional integrals one puts the Jaobian of an invertiblehange of oordinates in rule 2) and replaes the Newton-Leibniz formula by Stokes'sformula in rule 3).A widely-held belief, based on a judiious ombination of experiene, analogy, andwishful thinking, is the followingConjeture 1. If a period has two integral representations, then one an pass from oneformula to another using only rules 1), 2), 3) in whih all funtions and domains ofintegration are algebrai with oeÆients in Q .In other words, we do not expet any miraulous oinidene of two integrals ofalgebrai funtions whih will be not possible to prove using three simple rules. Thisonjeture, whih is similar in spirit to the Hodge onjeture, is one of the entralonjetures about algebrai independene and transendental numbers and is related tomany of the results and ideas of modern arithmeti algebrai geometry and the theoryof motives.Conjeture 1 suggests a useful adjunt to the priniple stated at the end of x1:Priniple 2. When you wish to prove a onjetured identity between real numbers, �rsttry to express both sides as periods (Priniple 1) and then try to transform one of theintegrals into the other by means of the rules 1) { 3).Whenever the �rst part of this priniple applies, i.e., when we have already expressedthe identity to be proved as an equality between two periods and \merely" have toverify that Conjeture 1 works, we will speak of an aessible identity. We will givea simple example at the end of the setion, and several others later in the paper.Returning to the questions disussed at the beginning of the setion, we an state:Problem 1. Find an algorithm to determine whether or not two given numbers in Pare equal.Note that even a proof of Conjeture 1 would not automatially solve this problem,sine it would only say that any equality between periods possesses an elementaryproof, but might not give any indiation of how to �nd it. Problem 1 therefore looksompletely intratable now and may remain so for many years. Nevertheless, we anask for more. For the lass of rational or algebrai numbers, one annot only test theequality of two given elements of the lass, as already mentioned, but an even test7



algorithmially whether a given number, known only numerially, belongs to the lass.(To reognize whether a numerially given real number � is rational, one omputes itsontinued fration expansion and heks whether there is a very large partial quotient.To hek whether it is the root of a polynomial equation of degree n with not-too-largeintegral oeÆients, one uses a lattie redution algorithm like \LLL" to determinewhether there is a vetor (a0; : : : ; an) 2 Zn+1 r f0g for whih the quadrati form(an�n+ � � �+ a1�+ a0)2+ "(a20+ � � �+ a2n) is very small, where " is a very small positivenumber.) By analogy with this, we an set the presumably impossibly hard:Problem 2. Find an algorithm to determine whether a given real number, known nu-merially to high auray, is equal (within that auray) to some simple period.Here the \simpliity"|the analogue of the height in the ase of algebrai numbers|should be measured in terms of the dimension of the integral de�ning the period andthe omplexity of the polynomials ourring in the desription of the integrand anddomain of integration (or, if one wishes, simply by the amount of ink or the number ofTEX keystrokes required to write down the integral).Finally, we state a problem whih is in some sense the onverse of Problem 2:Problem 3. Exhibit at least one number whih does not belong to P.Of ourse suh numbers exist, sine P is ountable. Solving Problem 3 would be theanalogue of Liouville's ahievement in the 19th entury when he onstruted the �rstexpliit example of a number whih ould be proved to be transendental. Even moredesirable, of ourse, would be to emulate the ahievements of Hermite and Lindemannand prove that some spei� numbers of interest, like e or 1=�, do not belong to P.Eah of these problems looks very hard and is likely to remain open a long time. Weend the setion on a more optimisti note by giving the promised simple example of asituation where Priniple 2 leads to suess, namely the formula �(2) = �2=6 provedby Euler in 1734. Sine both �(2) (f. eq. (2)) and � are periods, this is an \aessibleidentity." Here we show how to prove it (starting with a slightly di�erent integral rep-resentation) using only the rules 1){3), by suitably rewriting a proof originally due toCalabi and reprodued in the paper [5℄. SetI = Z 10 Z 10 11� xy dx dypxy :Expanding 1=(1� xy) as a geometri series and integrating term-by-term, we �nd thatI = P1n=0(n + 12 )�2 = (4 � 1)�(2), providing another \period" representation of �(2).Now making the hange of variablesx = �2 1 + �21 + �2 ; y = �2 1 + �21 + �2with Jaobian ����d(x; y)d(�; �) ���� = 4��(1� �2�2)(1 + �2)(1 + �2) = 4 (1� xy)pxy(1 + �2)(1 + �2) ; we �ndI = 4 ZZ�; �>0; � ��1 d�1 + �2 d�1 + �2 = 2 Z 10 d�1 + �2 Z 10 d�1 + �2 ;8



the last equality being obtained by onsidering the involution (�; �) 7! (��1; ��1); andomparing this with the last integral in (1) we obtain I = �2=2.As another example, the reader may like to try proving the aessible identity��x+ y + 16 + 1=x+ 1=y) = 116 ��x+ y + 5 + 1=x+ 1=y� ;where �(P ) denotes the Mahler measure as de�ned in x1.1, using only the rules 1){3).Chapter 2. Periods and Differential EquationsBy de�nition, periods are the values of integrals of algebraially de�ned di�erentialforms over ertain hains in algebrai varieties. If these forms and hains depend onparameters, then the integrals, onsidered as funtions of the parameters, typiallysatisfy linear di�erential equations with algebrai oeÆients. The periods then appearas speial values of the solutions of these di�erential equations at algebrai arguments.This leads to a fasinating and very produtive interplay between the study of periodsand the theory of linear di�erential equations. We annot begin to do justie to thishuge theme here, and will ontent ourselves with giving a few general properties andexamples, referring the reader to the extensive literature, e.g. [1℄, for more details.The di�erential equations ourring in the way just indiated are alled (generalized)Piard-Fuhs di�erential equations or (members of) Gauss-Manin systems. The �rstpoint to be emphasized is that these di�erential equations are of a very speial type,and that it is not known in general how to determine whether a given linear di�erentialequation (say, with oeÆients in Q [t℄) is of Piard-Fuhs type. There are several on-jetural riteria. We mention three of them briey, and without de�ning all of the termsinvolved. One, due to Bombieri and Dwork, says that these are preisely the equationsfor whih the power series expansion of every solution at a hosen (rational) base pointt0 has oeÆients whose numerators and denominators grow at most exponentially (so-alled \G-funtions"). Another (Siegel, Bombieri, Dwork) gives as a neessary andsuÆient ondition that the di�erential operator has nilpotent p-urvature for almostevery prime p. A third says that the di�erential equation should have only regularsingular points and a monodromy group ontained in SL(n;Q ), where n is the order ofthe equation. Note, however, that these riteria are not only not proved, but that it isalso not lear whether there is any general algorithm to determine whether they holdfor a given di�erential equation.We now desribe some examples of Piard-Fuhs equations and their relations toperiods.2.1. Example 1: Families of ellipti urves. This is the simplest and most lassialexample of the situation we have desribed. If E is an ellipti urve over C , say givenby an equation of the form y2 = f(x) with f(x) a ubi polynomial, then the integral ofthe holomorphi 1-form dx=y over a losed path in E(C ) depends only on the homologylass of the path, so by piking a basis of H1(E(C );Z) �= Z2 we obtain two basi periodintegrals. If f(x) depends rationally on a parameter t, these will be the solutions of a9



seond-order di�erential equation with monodromy group ontained in SL(2;Z). Forinstane, for the Weierstrass familyEWt : y2 = x3 � 3tx+ 2t (t 2 C ) ;the period integrals satisfy the di�erential equationt2(t� 1)W 00(t) + t(2t� 1)W 0(t) + � 3t16 + 136�W (t) = 0 :Another frequently enountered family is given by the Legendre equationELt : y2 = x(x� 1)(x� t) (t 2 C ) ; (7)whose period integrals
1(t) = Z 1t dxpx(x� 1)(x� t) ; 
2(t) = Z 11 dxpx(x� 1)(x� t) (8)are solutions of the di�erential equationt(t� 1)
00(t) + (2t� 1)
0(t) + 14 
(t) = 0 :A third example is the family of ellipti urves with a distinguished 2-torsion pointEPt : y2 = x3 � 2x2 + (1� t)x (t 2 C ) ;whose period integrals an be given byP1(t) = Z 1�pt0 dxpx3 � 2x2 + (1� t)x ; P2(t) = Z 0�1 dxpx3 � 2x2 + (1� t)xand satisfy the di�erential equationt(t� 1)P 00(t) + (2t� 1)P 0(t) + 316 P (t) = 0 :2.2. Example 2: Hypergeometri funtions. The di�erential equation satis�edby the Euler-Gauss hypergeometri funtionF (a; b; ; x) = 1Xn=0 (a)n (b)n()n n! xn � jxj < 1; (�)n := �(�+ 1) � � � (�+ n� 1) �is of Piard-Fuhs type whenever the parameters a, b,  are rational. The last two ofthe three di�erential equations just given are of this type. For instane, substitutingx = � ot2 � into the de�nition of P2(t) and expanding by the binomial theorem givesP2(t) = 2i Z �=20 d�p1� t sin4 � = 2i 1Xn=0�2nn � tn4n Z �=20 sin4n � d�= �i 1Xn=0�2nn ��4n2n� tn64n = �i F �14 ; 34 ; 1; t� �jtj < 1� ;10



and a similar alulation gives 
2(t) = �F ( 12 ; 12 ; 1; t).Note that in these examples, the values of the hypergeometri funtion at an algebraivalue of its argument is 1=� times a period. The same holds for F (a; b; ;x) for anyrational values of a, b, . To see this, one an start with Euler's integral representationF (a; b; ; x) = �()�(a) �(� a) Z 10 ta�1 (1� t)�a�1 (1� xt)�b dtand then use the reetion formula �(x)�(1 � x) = �= sin�x and the beta integral towrite �()�(a) �(� a) = 1� � a sin(�a) sin(�(a� ))sin(�) � Z 10 t�a�1 (1� t)a� dt 2 1� P :(An alternative proof is obtained by writing F (a; b; ;x) as the residue at z = 0 of thefuntion (� a)(1� xz)�a R 10 (1� t=z)�b(1� t)�2dt and then representing this residueby a Cauhy integral, with denominator 2�i.) Also, the fator 1=� really is needed, aswe see by observing that F ( 12 ; 12 ; 2; 1) = 4��1, whih belongs to ��1P but (presumably)not to P. Similar remarks hold also for generalized hypergeometri funtions. For manypurposes it is onvenient to widen our previous de�nition and onsider also elements ofthe extended period ring bP = P[1=�℄ (= P[1=2�i℄). From a motivi point of view(f. Chapter 4), it is more natural anyway to onsider bP than P, beause multiplyingby a power of 2�i orresponds to performing a \Tate twist" of the orresponding motiveand suh twists are onsidered as elementary resaling operations.The speial values of hypergeometri funtions at algebrai arguments are usuallytransendental, but sometimes an assume unexpeted algebrai values, an examplebeing the evaluation [7℄ F � 112 ; 512 ; 12; 13231331� = 34 4p11 :What makes this example even more surprising is that the same hypergeometri seriesalso onverges in the �eld of 7-adi numbers (sine 1323 = 3372) and that its value thereis 14 4p11 [4℄ ! (A simpler example of the same behavior is given by the hypergeomet-ri sum 1Pn=0 n!2 3n(2n+ 1)! , whih onverges to 4�3p3 in R but to 0 in Q3 [31℄.) Similarly,the hypergeometri funtions themselves are usually transendental funtions, but anoasionally be algebrai. The ases where this ours for the lassial Gauss hyperge-ometri funtion F = 2F1 were determined by Shwarz in 1873, and the orrespondingvalues for generalized (balaned) hypergeometri funtions nFn�1 were determined byBeukers and Hekman [6℄. Examples are the three funtionsA = 1Xn=0 (6n)!n!(3n)!(2n)!2 xn ; B = 1Xn=0 (10n)!n!(5n)!(4n)!(2n)! xn ; C = 1Xn=0 (20n)!n!(10n)!(7n)!(4n)! xn ;eah of whih is algebrai, but in a rather ompliated way; for instane, the equationsatis�ed by B has the form �(1 � 3125x; B2) = 0 where �(X;Y ) is a polynomialbeginning X12Y 15 + 154 X11Y 14 + 3128(15X11 + 266X10)Y 13 + � � � .11



2.3. Example 3: Modular forms. Modular forms will play an important role inmany of the remaining examples in this paper. We reall their de�nition. For k 2 Z,a modular form of weight k is a funtion f de�ned in the omplex upper half-planeH = fz 2 C j =(z) > 0g whih transforms under the ation of all matries � a b d �in SL(2;Z) or in a subgroup � of �nite index in SL(2;Z) aording to the formulaf((az+b)=(z+d)) = (z+d)kf(z), and also satis�es suitable onditions of holomorphyor meromorphy and growth onditions at in�nity. A modular funtion is a modular formof weight 0, i.e., a holomorphi or meromorphi funtion on H whih is invariant underthe ation of �. A basi priniple whih is unfamiliar to a surprising number even ofexperts in the �eld, although it has been known sine the end of the 19th entury, isthe following:Fat 1. Let f(z) be a (holomorphi or meromorphi) modular form of weight k > 0 andt(z) a modular funtion. Then the many-valued funtion F (t) de�ned by F (t(z)) = f(z)satis�es a linear di�erential equation of order k + 1 with algebrai oeÆients.Here is a brief indiation of the proof. One heks easily by indution on i that theation (in weight 0) of an element  2 � on Di ~f(z) for any i � 0, where D = t0(z)�1d=dz(\= d=dt") and ~f : H ! C k+1 is the vetor-valued funtion with omponents znf(z)(n = k; k � 1; : : : ; 0), is given by the onstant matrix Symk(). It follows that theoeÆients of the linear relation among the k+2 vetors Di ~f (i = 0; 1; : : : ; k+1) are �-invariant funtions of z and hene algebrai funtions of t = t(z), and this is the desireddi�erential equation. We see also that the full set of solutions of the di�erential equationis the spae spanned by the funtions znf(z) (0 � n � k) and that the monodromygroup is the image of � � SL(2;R) under the kth symmetri power representationSL(2;R) ! SL(k + 1;R).We give a few examples illustrating this and then desribe the orresponding state-ment for speial values and the relationship with the ellipti integrals disussed in x2.1.The simplest modular forms on the full modular group SL(2;Z) are the Eisensteinseries Ek(z) = 12 Xm;n2Zm, n oprime 1(mz + n)kof weight k for eah integer k = 4, 6, : : : (we need k > 2 to make the series onverge andk even to make it non-zero). Sine the funtional equation de�ning modularity inludesthe periodiity statement f(z) = f(z + 1), any modular form has a Fourier expansionas a power series in q = e2�iz. For the �rst two Eisenstein series these expansions areE4(z) = 1 + 240 1Xn=1�3(n) qn ; E6(z) = 1� 504 1Xn=1�5(n) qn ;where ��(n) denotes the sum of the �th powers of the positive divisors of n. (There aresimilar formulas for all Ek.) Another famous modular form is the disriminant funtion�(z) = 11728�E4(z)3 � E6(z)2� = q 1Yn=1(1� qn)24 = q � 24q2 + 252q3 � � � �12



of weight 12, whih has a Fourier expansionP �(n)qn with the remarkable property thatthe Fourier oeÆients are multipliative in n (for instane, �(6) = �6048 = �(2)�(3));forms with this property, the so-alled Heke eigenforms, are known to span the spae ofall modular forms and will be important in the onjetures about L-funtions disussedin Chapter 3. Finally, the simplest and best known example of a modular funtionis the j-funtion j(z) = E4(z)3=�(z) = q�1 + 744 + 196884q + � � � . If we now takef(z) = 4pE4(z) (whih is multivalued and hene not a true modular form, but Fat 1still applies) and t(z) = 1728=j(z), then the F (t) de�ned in Fat 1 is a hypergeometrifuntion: 4pE4(z) = F � 112 ; 512 ; 1; 1728j(z) � ;a formula already given by Frike and Klein at the turn of the last entury.As a seond example, we onsider the subgroup �(2) of matries � a b d � 2 SL(2;Z)ongruent to the identity matrix modulo 2. Here we an take for f(z) the modular form�(z)2 of weight 1, where�(z) = Xn2Ze�in2z = 1 + 2q1=2 + 2q2 + 2q9=2 + � � �is the lassial theta funtion (whose modularity is a onsequene of the Poisson sum-mation formula) and for t(z) the �-funtion, de�ned by�(z) = 16�(z=2)8�(2z)16�(z)24 = 1� �(z=2)16�(2z)8�(z)24 = 16q1=2 � 128q + 704q3=2 � � � � ;where �(z) = �(z)1=24 = q1=24Q(1� qn) is the Dedekind eta-funtion. Then one �ndsthat f(z) = F ( 12 ; 12 ; 1;�(z)), giving another illustration of Fat 1.The observant reader will have notied that the hypergeometri funtion F ( 12 ; 12 ; 1; t)relating �(z)2 to �(t) is the same as the one whih was mentioned in x2.2 as givingthe power series expansion near t = 0 of ��1
2(t), where 
2(t) is the ellipti integralde�ned in (8). This is not a oinidene. We an assoiate to any z 2 H the elliptiurve C =(Zz + Z). Two values of z equivalent under SL(2;Z) give isomorphi elliptiurves, so that any invariant of an ellipti urve is automatially a modular funtion.The \t" of the ellipti urve given by (7) is not quite an invariant of the ellipti urve,sine by writing the equation in this way we have hosen a numbering of the threeroots of the ubi polynomial ourring in the Weierstrass equation for the urve, butit is still a modular funtion for the subgroup �(2) of index 6 in SL(2;Z), and thismodular funtion is just �(z). This implies that the lattie generated by 
1(t) and
2(t) is homotheti (i.e., equal up to salar multipliation) to the lattie generated byz and 1. We hose the basis of the lattie in suh a way that z = 
1(t)=
2(t), andthe transformation properties under the modular group now tell us that 
2(�(z)) is amodular form of weight 1, whih is in fat just ��(z)2. The same applies to any otherfamily of ellipti urves, e.g. the family EPt of x2.1 has a modular parametrization byt = 64�(2z)=(�(z) + 64�(2z)) and P2(t) the square root of an Eisenstein series ofweight 2 on the subgroup �0(2) onsisting of matries � a b d � in SL(2;Z) with  even.The reader an �nd the modular parametrization of the family EWt as an exerise.13



Fat 1 was stated on the level of funtions. There is an analogous fat on the level ofspeial values. To state it, we need one further de�nition. We will say that a modularform or modular funtion is de�ned over a sub�eld K of C if all of its Fourier oeÆientsbelong to K. Then we have:Fat 2. Let f(z) be a modular form of weight k > 0 and t(z) a modular funtion, bothde�ned over Q . Then for any z0 2 H for whih t(z0) is algebrai, f(z0) belongs to bP.In fat, we have that �kf(z0) belongs to P. The proof at this stage is trivial: wepik one modular form f1(z) of weight 1, say �(z)2, and one modular funtion t1(z), say�(z), for whih we already know that the assertion holds (in the ase given, beause ift0 = �(z0) is algebrai, then �f1(z0) equals the 
2(t0), a period). Sine any two modularfuntions are algebraially dependent, both f(z)=f1(z)k and t1(z) are algebrai funtionsof t(z), and the fat that f , t, f1 and t1 are all de�ned over Q implies that the oeÆientsof these algebrai dependenes also belong to Q . It follows that f(z0)=f1(z0)k and t1(z0)belong to Q , and this implies in turn that �f1(z0) and �kf(z0) are in P. Notie that thesame argument an be used to give a di�erent proof of Fat 1 as well: having veri�edit for one pair (f1, t1), as we did in x2.2 in the ase of �2 and �, we dedue the generalase by observing that if F1(t) satis�es a seond order linear di�erential equation withalgebrai oeÆients, then F1(t)k satis�es a di�erential equation of order k + 1 withalgebrai oeÆients, and that this latter property is not a�eted if we replae t by analgebrai funtion of t or multiply the funtion F1(t)k by an algebrai funtion of t.A speial ase of Fat 2 is worth mentioning separately. A point z0 2 H is alled aCM point if it is the solution of a quadrati equation with oeÆients in Q . (This isbeause the orresponding ellipti urve C =(Zz+Z) then has non-trivial endomorphismsgiven by Multipliation with ertain Complex numbers, namely, elements of an order inthe imaginary quadrati �eld Q(z0).) In this ase it is known by the theory of omplexmultipliation that j(z0), and hene also t(z0) for any modular funtion t de�ned overQ , is an algebrai number, so Fat 2 tells us that �kf(z0) is a period for any modularform f of (positive) weight k de�ned over Q . In this ase there is an expliit formula (theso-alled Chowla-Selberg formula; f. [W℄), for the value of this period, up to algebrainumbers and a power of �, as a produt of rational powers of values of the gammafuntion at rational arguments. As an example, �(i) = 2�24 ��18 �(1=4)24.2.4. Example 4: Ap�ery's di�erential equation. In 1986, Roger Ap�ery reated asensation by proving the irrationality of the number �(3) = 1 + 2�3 + 3�3 + � � � . Morepreisely, what he did was to onstrut two sequenesa0 = 1; a1 = 5; a2 = 73; a3 = 1445; a4 = 33001; : : :b0 = 0; b1 = 6; b2 = 3514 ; b3 = 625336 ; b4 = 11424695288 ; : : :whih have the following properties:(i) an 2 Z, N3n bn 2 Z for all n � 0, where Nn = l..m.f1; 2; : : : ; ng ;(ii) 0 < an �(3)� bn < A��n for some A > 0 and all n � 0, where � = 17+12p2.Sine N3n grows like e3n (by the prime number theorem) and � > e3, these two state-ments together immediately imply that �(3) annot be a rational number. Ap�erygave the numbers an and bn by expliit formulas in terms of binomial oeÆients (e.g.14



an = Pk �nk�2�n+kk �2; the formula for bn is similar but more ompliated) whih madestatement (i) obvious. He then proved that both sequenes satis�ed the reurrene(n+ 1)3un+1 = (34n3 + 51n2 + 27n+ 5)un � n3 un�1 (n � 1) : (9)Statement (ii) follows easily from this. (Any solution of (9) must either grow or deayexponentially like C��n=n3=2, and the expliit formulas showed that bn=an ! �(3).)However, the proof that the sequenes de�ned by the expliit formulas satis�ed thereurrene (9) was ompliated and unilluminating. Fairly soon afterwards, Beukersfound two other muh more enlightening proofs whih are both related to the irle ofideas we are disussing.The �rst of these proofs is diretly based on the use of period integrals and thepriniple stated in x1.2. For n � 0 de�neIn = 12 1Z0 1Z0 1Z0 pn(x)pn(y)1� t+ txy dx dy dt ;where pn(x) = (d=dx)n(xn(1� x)n)=n! (essentially the nth Legendre polynomial). Forintegers k and l between 0 and n one �nds by a diret (but ingenious) alulationthat 12 RRR xkyl(1 � t + txy)�1 dx dy dt is the sum of Æk;l�(3) and a rational numberwith denominator dividing N3n, so, sine pn has integral oeÆients, In has the forman�(3)� bn with an and bn satisfying property (i). On the other hand, by applying therules of alulus as in x1.2 (spei�ally, by integrating by parts n times with respet tox and then, after a suitable hange of variables, n times with respet to y), one obtains2In = 1Z0 1Z0 1Z0 �xyz(1� x)(1� y)(1� z)1� (1� xy)z �n dx dy dz1� (1� xy)z ;and the estimate In = O(��n) in (ii) now follows beause the maximum of the expressionin square brakets is 1=�.The seond, even nier, proof is based on giving modular interpretations of the se-quenes fang and fbng. We indiate only what happens for fang, sine this is a diretappliation of \Fat 1" from x2.3. If we de�net(z) = � �(z) �(6z)�(2z) �(3z)�12 = q � 12q2 + 66q3 � 220q4 + : : :(�(z) = Dedekind eta-funtion) andf(z) = ��(2z) �(3z)�7��(z) �(6z)�5 = 1 + 5q + 13q2 + 23q3 + 29q4 + : : : ;whih are, respetively, a modular funtion and a modular form of weight 2 on the group�0(6) of all matries � a b d � in SL(2;Z) with  divisible by 6 (and in fat on the slightly15



larger group ��0(6) obtained by adjoining the matrix � 0 �1=p6p6 0 � to �0(6)), then Fat 1tells us that the power series F (t) = 1+5t+73t2+ � � � expressing f(z) (near z = i1) interms of t(z) satis�es a linear di�erential equation of order 2+ 1 = 3 with (in this ase)polynomial oeÆients. Calulating this di�erential equation expliitly, one �nds thatthe oeÆients of F (t) satisfy the reursion (9), and their integrality is obvious sineboth f(z) and t(z) have q-expansions with integral oeÆients.This seond proof highlights an aspet of Piard-Fuhs equations whih was men-tioned at the beginning of this hapter as one of the (onjetural) haraterizations ofthis lass of di�erential equations, namely the \G-funtion" property of having TayloroeÆients with (numerators and) denominators of at most polynomial growth. Thereurrene (9) plainly has two linearly independent solutions over Q (take any initialvalues of u0 and u1 in Q and ontinue from there), but sine in omputing un+1 fromits two predeessors one has to divide by (n+ 1)3, one would a priori expet that eahof these has denominators (and hene also numerators) growing roughly like n!3, i.e.,more than exponentially. The property found by Ap�ery that in fat both solutions havedenominators at most N3n (of only exponential growth) and that there is even one solu-tion fang with no denominators at all, is surprising and, indeed, is the rux of Ap�ery'sproof. This type of property is very rare. For an example, one of the authors has madea searh over 108 parameter values (A;B; �) (B(A2 � 4B) 6= 0) of the reursionu0 = 1; (n+ 1)2un+1 �An(n+ 1)un + Bn2un�1 = �un (n � 0)(whih for (A;B; �) = (11;�1; 3) is the reursion ourring in a proof of the irrationalityof �(2) exatly parallel to the �(3) proof) and found only 6 ases in whih the un's areintegral. In aordane with the onjetural haraterization, all six were indeed ofPiard-Fuhs type, in fat assoiated with families of ellipti urves as in x2.1.As a �nal remark in onnetion with Ap�ery's proof we mention that many, if notalmost all proofs of irrationality and transendene results use periods and their asso-iated di�erential equations in one form or another. As salient examples we mentionW�ustholz's 1983 theorem (inluding several previous results of transendene theory asspeial ases) that the integral of any meromorphi 1-form on a Riemann surfae (bothde�ned over Q ) over any losed yle is either 0 or else transendental, and Nesterenko'smore reent theorem that �, e� and �(1=4) are algebraially independent, whose proofmakes essential use of the representation of speial values of modular forms as periodintegrals.2.5. An appliation. We end this hapter by a simple appliation demonstrating thatthe priniple formulated in x1.2 (prove an identity by �rst reasting it in an \aessible"form as an equality between period integrals and then applying the transformation rulesfor suh integrals) an also be applied at the level of funtions satisfying Piard-Fuhs-type equations (prove an identity by �rst writing it as an equality between values offuntions satisfying di�erential equations and then showing that both satisfy the sameequation with the same boundary ondition). In favorable ases the freedom omingfrom the extra variable makes the proofs easier than if we just looked at �xed values of16



the variables. The example we onsider is the formula�(1; 3; 1; 3; : : : ; 1; 3| {z }2m terms ) = 2�4m(4m+ 2)! (m � 1)for ertain speial values of the sum (3). This identity, whih was onjetured in [32℄,is aessible, sine both multiple zeta values and powers of � are periods, but it is farfrom lear how to prove it by applying the transformation rules given in x1.2, and itremained unsolved for several years. It was then proved by Broadhurst by an argumentwhih, in a streamlined form, is as follows: For jxj � 1 and any t we have1 + 1Xm=1 X0<a1<b1<���<am<bm (�4t4)m xbma1b31 � � �amb3m = F (t;�t; 1;x)F (it;�it; 1;x)beause both sides are power series in x starting 1 + O(x2) and are annihilated by thedi�erential operator �(1� x) ddx�2�x ddx�2 + 4t4 . Now setting x = 1 gives1 + 1Xm=1 �(1; 3; 1; 3; : : : ; 1; 3| {z }2m terms ) (�4t4)m = sin�t�t sinh�t�t = 1Xm=0 2�4m(4m+ 2)! (�4t4)m :
Chapter 3. Periods and L-FuntionsThe most striking way that periods appear in arithmeti is in onnetion with thespeial values of L-funtions. This onnetion, still onjetural in most ases, has beenone of the main unifying themes of number theory and arithmeti algebrai geometry inreent deades and seems destined to ontinue to be so for a long time. We will disussit in some detail in this hapter. The �rst two setions of the hapter give a survey of theL-funtions arising in number theory and of the onjetured relationship between theirspeial values at ertain values of the argument and periods. The next three setionsdesribe a number of examples oming from algebrai number theory and the theoryof modular forms. In x3.6 we disuss the onjeture of Birh and Swinnerton-Dyer insome detail and explain how the \right-hand side" of the onjetural formula it givesfor a derivative of the L-series of an ellipti urve over Q an be written in terms ofperiod integrals on this urve. The �nal setion desribes a onjeture due to Colmezwhih extends the onjetures about leading Taylor oeÆients of an L-funtion to astatement about the seond term in its Taylor expansion at a speial point.3.1. L-funtions. One of the most important and most mysterious disoveries of thelast entury is that one an assoiate to many of the basi objets of arithmeti|number �elds, Galois representations, algebrai varieties, and modular forms|ertainanalyti funtions alled L-funtions whih enode in some deep way the properties17



of these objets and the relations between them. These funtions are Dirihlet seriesL(s) =P ann�s (onvergent for <(s)� 0) with the following harateristi properties:(i) They have Euler produts of the form Qp Pp(p�s) where the produt runs overall prime numbers p and the Pp(T ) are polynomials with (algebrai) integeroeÆients and �xed degree n (exept for a �nite number of p where it drops)whih desribe in some way the behaviour of the arithmeti objet over �nite�elds of harateristi p.(ii) They have or are onjetured to have meromorphi ontinuations (with only�nitely many poles, at integral values of s) and funtional equations of the formL�(s) = �L�(k � s) for some positive integer k, where L�(s) = (s)L(s) forsome \gamma fator" (s) of the form AsQnj=1 �(12(s+ �j)) (A > 0, �j 2 Z).(More generally, the funtional equation may have the form L�1(s) = wL�2(k� s)where L1 and L2 are the L-funtions assoiated to dual arithmeti objets likea Galois representation and its ontragredient and w is an algebrai number ofabsolute value 1, but in our examples L1 and L2 will always oinide.)(iii) They satisfy or are onjetured to satisfy the loal Riemann hypothesis, sayingthat the zeros of Pp(p�s) lie on the line <(s) = (k � 1)=2.(iv) They are onjetured to satisfy the global Riemann hypothesis, saying that thezeros of L(s) are either integers or lie on the line <(s) = k=2.(v) They have interesting speial values, related to periods, at integral values of s.The last aspet is the one we are interested in and will be disussed in the rest of thishapter. First, however, we desribe some examples of L-funtions and their properties.The �rst example, of ourse, is the \Riemann" (atually Euler) zeta funtion �(s).In this ase (i) holds with n = 1 and Pp(T ) = 1 � T for all p (Euler); (ii) holds withk = 1 and (s) = ��s=2�(s=2) (Riemann); the loal Riemann hypothesis (iii) is trivial,while the global one (iv) is a million-dollar question; and the speial values mentionedin (v) are the evaluations�(2) = �26 ; �(4) = �490 ; �(6) = �6945 ; �(8) = �89450 ; : : : (10)and (after analyti ontinuation of �(s))�(0) = �12 ; �(�1) = � 112 ; �(�3) = 1120 ; �(�5) = � 1252 ; : : : (11)found by Euler in 1734 and 1749, respetively. Various generalizations of the Riemannzeta funtion oming from algebrai number theory were disovered and studied in the19th and early 20th enturies, inluding in partiular (in inreasing order of generality)the L-funtion L(s; �) assoiated to a Dirihlet harater � (here n = 1 and k = 1), theDedekind zeta funtion �F (s) of a number �eld F (with n = [F : Q ℄, k = 1), and theArtin L-funtion L(s; �) assoiated to a representation � of Gal(Q =Q) (with n = dim �and k = 1). We will disuss some of the results and onjetures onerning the speialvalues of these funtions in x3.3.A major development in 20th entury arithmeti was the realization that thesenumber-theoretial L-funtions are merely the zero-dimensional ase of far more gen-eral Dirihlet series assoiated to algebrai varieties, as follows. Let X be a smooth18



projetive variety de�ned over Q , given as the set of solutions of a �nite olletion ofmultivariate polynomials with oeÆients in Q . We attah to X a zeta funtion bysetting �X(s) := exp� Xp prime Xr�1N(pr) p�rsr � (12)where N(pr) is de�ned for almost all primes p and all r � 1 by ounting the numberof solutions of the equations de�ning X over the �nite �eld of pr elements. If X is the0-dimensional variety de�ned by f(x) = 0, where f is an irreduible polynomial withrational oeÆients, then �X(s) oinides with the Dedekind zeta funtion of the �eldobtained by adjoining to Q a root of f . If X is a 1-dimensional variety (urve), thenit is known (by results of Hasse if X is an ellipti urve and of Weil for X of arbitrarygenus g) that �X(s) has the form �(s)�(s� 1)=L(X; s), where L(X; s), the Hasse-WeilL-funtion of X, has an Euler produt of the form desribed in (i) (with k = 2 andn = 2g) and satis�es the loal Riemann hypothesis (iii). If X has arbitrary dimension d,then by the work of Weil, Grothendiek, Dwork, Deligne and others we know that �X(s)has a anonial representation as an alternating produt�X(s) = L0(s)L1(s)�1 � � �L2d�1(s)�1L2d(s)where eah Lj(s) is a Dirihlet series whih has an Euler produt having the propertiesin (i) and (iii) above, with k = j + 1 and n equal to the jth Betti number of X. Moregenerally, in analogy with the way that Artin L-funtions arise as the primitive pieesinto whih the Dedekind zeta funtions of number �elds split, one an de�ne a motiviL-funtion L(M; s) having an Euler produt with the properties (i) and (iii) for anynatural summand M (\motive") of the ohomology of X.The properties just given justify the de�nition of the individual fators, i.e., thesummation over r in (12). On the other hand, the justi�ation for multiplying theseEuler fators together, i.e., for the summation over p in (12), is almost entirely onje-tural, sine none of the desired properties (analyti ontinuation, funtional equation,Riemann hypothesis, or speial values) an be proved in general for varieties of di-mension bigger than 0. There is, however, a seond lass of L-funtions for whihglobal properties an sometimes be established, namely the automorphi L-funtions.The prototype this time is the Dirihlet series P1m=1 �(m)m�s assoiated to the mod-ular form �(z) = P1m=1 �(m)qm de�ned in x2.3. This funtion has an Euler prod-ut as in (i) with n = 2 and Pp(T ) = 1 � �(p)T + p11T 2 (this was onjetured byRamanujan and proved by Mordell), satis�es a funtional equation as in (ii) withk = 12 and (s) = (2�)�s�(s) (Heke), and satis�es the loal Riemann hypothesis(iii) (Deligne). Similar properties hold for the Heke L-series L(f; s) = P1m=1 amm�sof any Heke eigenform f(z) = P1m=0 amqm (with n = 2, k equal to the weight of f ,and Pp(T ) = 1 � apT + pk�1T 2). One an also assoiate to f other L-funtions likethe symmetri square L-funtion L(Sym2f; s) (whih has an Euler fator with n = 3and Pp(T ) = (1 � pk�1T )(1 � (ap2 � pk�1)T + p2k�2T 2) ) or higher symmetri powerL-funtions. These all orrespond to the speial ase G = GL(2) of the general Lang-lands L-funtions assoiated to automorphi representations of algebrai groups G overthe adeles. The entral onjeture of the whole �eld is the Langlands program, whih in19



its rudest form is the predition that the lass of motivi L-funtions should oinidepreisely with an appropriate lass of these automorphi L-funtions. The relativelyfew known ases of this inlude some of the deepest results of twentieth entury num-ber theory: lass �eld theory, the theorem (proved by Eihler and Shimura for k = 2,by Deligne for k > 2, and by Deligne and Serre for k = 1) that the Heke L-seriesL(f; k) of a weight k Heke eigenform f is motivi, and the theorem proved by Wilesand his ollaborators (previously the Taniyama-Weil onjeture) that the L-series ofany ellipti urve over Q is equal to the Heke L-series of a modular form of weight 2.The Langlands program not only provides a grand uni�ation of all the mainstreamsof number theory, but also permits us to verify some of the properties (i){(v) for L-funtions where they annot be proved diretly. In partiular, the only known proofof the loal Riemann hypothesis (iii) for Heke L-series (\Ramanujan-Petersson on-jeture") omes from identifying them with motivi L-funtions, and the only motiviL-funtions for whih one an prove the analyti ontinuation and funtional equationof motivi L-funtions are those whih are known to be automorphi.3.2. Speial values: the onjetures of Deligne and Beilinson. The formulasfound by Euler for speial values of �(s) were already stated in equations (10) and (11).Analogous results for Dirihlet series L(s; �) were proved in the 19th entury and forthe Dedekind zeta funtions of totally real �elds in the 1960's (Klingen-Siegel theorem).In a di�erent diretion, results of Eihler, Shimura, and Manin, also in the 1960's, ledto formulas desribing the values of the Heke L-funtion L(f; s) of a modular formof weight k for s = 1; 2; : : : ; k � 1, and in the subsequent years analogous results forertain speial values of the symmetri square L-funtions L(Sym2f; s) and of somehigher symmetri power L-funtions were either proved or else obtained experimentally.In 1979, Deligne [13℄ made a very general onjeture whih ontained all of these asspeial ases. He began by asking where speial values of this type should be expeted.The arguments ourring in (10) and (11) are (apart from s = 0, whih orrespondsunder the funtional equation of �(s) to the pole at s = 1 and hene is exeptional)the positive even integers and the negative odd integers. In other words, the values forwhih one does not have a nie formula of this sort are the negative even integers andthe positive odd integers. If we reall that the funtional equation of �(s) has the form��(s) = ��(1 � s), where ��(s) is the produt of �(s) with (s) = ��s=2�(s=2), thenwe see that these forbidden integers are preisely the ones where either (s) or (1� s)has a pole. Based on this and the other examples, Deligne de�ned the ritial valuesof a (motivi) L-funtion L(s) to be the integer arguments of s at whih neither (s)nor (k � s) has a pole, where now (s) and k are de�ned as in (ii) of the last setion,and formulated a onjeture saying that the value of L(s) (or L�(s)) at any suh ritialvalue is a non-zero algebrai multiple of the determinant of a ertain matrix whoseentries are periods. The atual statement of the onjeture is far more preise andnot only desribes the period matrix exatly (in terms of the Hodge �ltration on theohomology group or piee of a ohomology group de�ning the L-funtion), but alsospei�es in what number �eld the unknown algebrai fator lies and how it transformsunder the ation of the Galois group of Q over Q .Deligne's onjeture has been proved or experimentally veri�ed in many ases, someof whih will be indiated in the next two setions. Nevertheless, there were several other20



results about speial values of L-funtions whih were not subsumed in this piture, mostnotably Dirihlet's lass number formula, whih desribes the residue at s = 1 of theDedekind zeta funtion of a number �eld, and the onjeture of Birh and Swinnerton-Dyer, whih desribes the �rst non-vanishing derivative at s = 1 of the L-series of anellipti urve over Q . In both of these, the known or onjetured formula for the value inquestion involves a quantity alled the \regulator" whih is de�ned as the determinantof a ertain square matrix (of logarithms of units in the �rst ase, and of heights ofrational points in the latter). In the early 1980's, Beilinson made a huge generalizationof Deligne's onjeture whih inluded not only these two speial ases, but all values ofmotivi L-funtions and their leading non-zero derivatives at all integral values of theargument, giving these values (again up to a non-zero algebrai number with knownbehavior under the Galois group) in terms of periods on the variety de�ning the L-funtion and of a regulator generalizing the ones in the Dirihlet lass number formulaand the Birh{Swinnerton-Dyer onjeture. A few years later, Sholl [21℄ observedthat this regulator an itself be expressed in terms of periods (some part of this analso be found in earlier work of Bloh and of Beilinson). This led to a reformulation ofBeilinson's onjeture whih is again far too tehnial to state here, but whose essene isaptured by the following beautiful (onjetural) statement, whose wider disseminationwas one of our main motivations for writing the present paper:Conjeture (Deligne{Beilinson{Sholl). Let L(s) be a motivi L-funtion, m anarbitrary integer, and r the order of vanishing of L(s) at s = m. Then L(r)(m) 2 bP.In the next two setions we give a number of illustrations of the Deligne and Beilinsononjetures, while in x3.5 we illustrate Sholl's reformulation of the latter in some detailin the ase of the Birh{Swinnerton-Dyer onjeture.3.3 Examples oming from algebrai number theory. We already gave Euler'sformulas for the speial values of the Riemann zeta funtion in equations (10) and(11). The ase of Dirihlet L-funtions L(s; �) is similar exept that the ritial valuesare at positive odd and negative even integers when � is an odd harater (i.e. when�(�1) = �1) rather than at positive even and negative odd integers as happens for�(s) or for even haraters, beause the gamma fator (s) in this ase has the formAs�((s+ 1)=2) rather than As�(s=2).The next ase is the Dedekind zeta funtion �F (s) of a number �eld F , say F = Q (�)where � is the root of an irreduible polynomial f(X) 2 Z[X℄. This zeta funtionwas de�ned in x3.2 by formula (12) with N(pr) (for p not dividing the disriminant off) equal to the number of roots of the equation f(x) = 0 in the �eld of pr elements.An easy alulation shows that this is equivalent to saying that �F (s) has an Eulerprodut of the form given in (i) of x3.1 with Pp(T ) = (1 � Tn1) � � � (1 � Tnr ) if f isongruent modulo p to the produt of irreduible polynomials of degrees n1; : : : ; nrin Fp(X). Equivalently, the pth Euler fator of �F (s) desribes the splitting of theprime p in F , whih explains the interest attahed to these funtions. The funtionalequation of �F (s) was proved by Heke (following Riemann's approah of writing thesefuntions as the Mellin transform of a theta funtion, in aordane with the laimmade at the end of x3.1 that all known funtional equations of motivi L-funtions arebased on modular forms or their generalizations) and has k = 1 and a gamma fator21



of the form As�(s=2)r1�(s)r2 where r1 and 2r2 denote the number of real and non-realroots, respetively, of the polynomial f . We therefore have the same ritial values (viz.,positive even and negative odd integers) as for the Riemann zeta funtion if F is totallyreal (r2 = 0), and no ritial values otherwise. In the former ase (F totally real) thetheorem of Klingen and Siegel mentioned in the last setion provides the analogue offormulas (10) and (11). In partiular, the values of �F (s) at negative odd values of sare non-zero rational numbers.The �rst non-ritial ase is s = 1. Here the Dirihlet lass number formula mentionedin the last setion expresses the residue of �F (s) as an algebrai number (in fat, thesquare root of a rational number) times the produt of �r2 with a regulator whih is thedeterminant of an (r1 + r2 � 1)� (r1 + r2 � 1) matrix whose entries are logarithms ofunits of F . The algebrai fator is also known preisely and ontains the lass numberof F , whene the name of the theorem, but is not relevant at the level of the disussionhere.Dirihlet's theorem was proved in the mid-19th entury. It has two generalizations,both onjetural exept in speial ases. On the one hand one an replae �F (s) byan Artin L-series L(s; �), where � is an irreduible representation of the Galois groupof F . (This is more re�ned than looking at �F (s) sine every Dedekind zeta funtionfators into �nitely many Artin L-series and onversely every Artin L-series L(s; �) is afator of some Dedekind zeta funtion. The meromorphi ontinuation and funtionalequation of L(s; �) are known, while its holomorphy is in general only onjetured.)The generalization of Dirihlet's formula is then the Stark onjeture, whih says thatL(1; �) an always be written as the produt of an algebrai number, a ertain powerof �, and the determinant of a matrix whose entries are logarithms of units. (For moredetails, f. [24℄ and [25℄.) This onjeture has been proved in some ases and veri�ednumerially in many others, but we are far from a proof in general, the main ase knownbeing the Kroneker limit formula whih uses methods from the theory of modular formsto prove the assertion in question for ertain two-dimensional representations assoiatedto imaginary quadrati �elds.In a di�erent diretion, we an look again at �F (s), but now at other non-ritialvalues s = m (say positive odd integers when F is totally real, or arbitrary positivenumbers when it is not). Here an expression for �F (m) as a regulator oming fromalgebrai K-theory was found by Borel in 1975 [10℄. This expression is a period, inaordane with the general set-up explained in the last setion, but it is not very expliitsine the higher K-groups of a �eld do not have a known algorithmi desription. Amore alulable, but onjetural, formula for the speial values �F (m) was given by oneof the authors [30℄ in terms of speial values at algebrai arguments (more preisely, atarguments belonging to F ) of the mth polylogarithm funtion Lim(z) =P1n=1 zn=nm.Note that this onjeture in any onrete ase is \aessible" in the sense of x1.2, sineboth Borel's regulator and the values of the polylogarithm funtion belong to the ring P.The onjeture has been proved for m = 2 and 3 (the latter, muh harder, result is dueto A. Gonharov) and heked numerially to high preision in many examples.One an also ombine these two generalizations of the lass number formula by lookingat the values of Artin L-funtions at integral values s = m > 1, whih are againonjetured to be expressible in terms of determinants of matries of polylogarithms.22



For the same representations as in the Kroneker limit formula this statement an bemade muh more preise and predits that the value at s = m of the Epstein zetafuntion �Q(s) = X0x; y 2Z 1Q(x; y)s (13)assoiated to a positive de�nite binary quadrati formQ with integer oeÆients is equal(up to an algebrai fator and a power of �) to a linear ombination of values of themth polylogarithm evaluated at ertain algebrai arguments (in an abelian extension ofthe imaginary quadrati �eld de�ned by Q). As a typial example, we haveX0x; y 2Z 1(2x2 + xy + 3y2)3 = 64�3235=2 �Li3(�)� 13 Li3(�3) + 32 Li3(��4) + Li3(�5)�; (14)where � = 0:75487 : : : is the real root of �3+�2 = 1. The onjeture has been hekedin many ases and has been proved for m = 2 by A. Levin. (For details, see [33℄.)3.4. Examples oming from modular forms. Again we treat ritial values �rst.As was already mentioned in x3.2, these were among the main motivating examplesfor the onjetures in [13℄. Consider a modular form f(z) = P anqn (say, on the fullmodular group SL(2;Z)) of weight k. We suppose that f is a Heke eigenform, so thatits L-series L(f; s) = P1n=1 ann�s has an Euler produt as desribed in x3.1. (Thereader an think of the ase f = �, k = 12.) The funtional equation has the formL�(f; s) = �L�(f; k�s), where L�(f; s) = (2�)�s�(s)L(f; s), so the ritial values in thesense of Deligne are s = 1; 2; : : : ; k�1. One an show (using either the theory of periodpolynomials as developed by Eihler, Shimura and Manin or else Rankin's method) thatthere are two real numbers C+ and C�, depending on f , suh that the values of L�(f; s)at even (resp. odd) values of s are algebraially proportional to C+ (resp. C�) and suhthat the produt C+C� is an algebrai multiple of (f; f) = RH=� jf(x+ iy)j2yk�2dxdy,the square of the Petersson norm of f . For instane, for f = � we haves 6 7 8 9 10 11L�(�; s) 130C+ 128C� 124C+ 118C� 225C+ 90691C�for two onstants C+ = 0:046346 : : : , C� = 0:045751 : : : with C+C� = 211(�;�). In[13℄, Deligne showed that his onjeture not only orroborates these results, with C�being ertain period integrals attahed to �, but that it also predits that the speialvalues of L(Symr�; s), for any r � 1 and for s belonging to a ertain �nite set ofvalues depending on r, will be rational multiples of some expliitly given monomialsin �, C+ and C�. These results were known for r = 2, where the ritial values ares = 12; 14; : : : ; 22 and the numbers L(Sym2�; s) are rational multiples of �2s�11C+C�,but no examples for higher r had been omputed; the subsequent numerial alulationsfor r = 3 (where the ritial values are s = 18; 19; : : : ; 22 and the speial values areproportional to �2s�11C3�C�) and r = 4 (where s = 22; 24; : : : ; 32 and the L-valuesare proportional to �3s�33C3+C3�) on�rmed Deligne's predition to high preision andprovided onvining evidene for the validity of his onjeture.23



Deligne's earlier proof that the L-series L(�; s) is motivi had identi�ed it with theL-funtion of a ertain 2-dimensional piee of the 11th ohomology group of a ertain(omplex) 11-dimensional algebrai variety alled the Kuga variety, de�ned as the 10th�bre power of the universal ellipti urve over the modular urve of level 1. In aordanewith his general onjeture, the expressions for the numbers C� should therefore beintegrals of algebrai 11-forms over appropriate (real) 11-dimensional yles on thisvariety. This sounds ompliated, but in fat an be written in quite an elementaryway. To do this, we start with the integral formula L�(�; s) = R10 �(iy) ys�1 dy . Wethen hoose one of the families of ellipti urves disussed in x2.1 (for de�niteness, saythe seond one, given by equation (7)) and use it to reparametrize our modular urve.As we saw in x2.3, if we substitute the modular funtion �(z) (z 2 H) for t in (8), weobtain 
2(t) = ��(z)2 and 
1(t) = z
2(t), where �(z)2 is a ertain modular funtionof weight 1. The funtion �(z), being a modular form of weight 12, an be written asthe produt of the 12th power of �(z)2 and a rational funtion (whih turns out to bet2(t� 1)2) of �(z) (= t). Similarly, the weight 2 modular form dt=dz is the produt of(�(z)2)2 with another rational funtion of t, and using this one �ndsL�(�; n) = 1in�1�11 Z 10 
1(t)n�1
2(t)11�n t(1� t) dt (n = 1; 2; : : : ; 11) :The same substitutions also give(�;�) := ZC �ZC d�(x)jx(x� 1)(x� t)j�10 jtj2 j1� tj2 d�(t) ;where d�(x) (= dx0 dx1 if x = x0+ ix1) denotes Lebesgue measure in C and := denotesequality up to a omputable fator in Q��Z. This shows expliitly that (�;�) 2 bP.We now turn to non-ritial values. The following speial ase of the onjeturestated in x3.2 seems not to be widely known, even to speialists in the �eld.Theorem. Let f be a modular form of weight k � 2, de�ned over Q . Then L(f;m) 2 bPfor all m � k (as well as for the ritial values 0 < m < k).This was proved by Beilinson [2℄ for m = k = 2 by a ombination of Rankin's methodand ohomologial manipulations and in the general ase by Deninger and Sholl [14℄by an extension of the same method. If one unravels Beilinson's proof (not an entirelytrivial exerise), one �nds that L(f; 2) is expressed, up to a power of �, as a rationallinear ombination of integrals of the form R ba log jA(x)jB(x) dx with A(x); B(x) 2 Q(x)and a; b 2 Q . On the other hand, the Mahler measure �(P ) (f. (4)) of a two-variableLaurent polynomial P (x; y) is also equal to an integral of this form (�(P ) is de�nedas a double integral, but one of the two integrations an be arried out using Jensen'sformula). In many ases, inluding the two examples given at the end of x1.2, it turnsout that the Mahler measure of a polynomial whose vanishing de�nes an ellipti urveover Q is equal, up to a power of �, to a rational multiple of the value at s = 2 of theL-series of this urve. We refer the reader to [11℄ and [20℄ for more details and manyexamples of this beautiful onnetion. 24



For k = 1, Beilinson's method no longer applies, sine it begins by using Rankin'smethod to get an integral representation of L(f;m)L(f; n), where n is ritial for f , andin weight 1 there are no ritial values. If f is an eigenform of weight 1, a theorem ofDeligne and Serre tells us that L(f; s) is equal to the Artin L-series of a 2-dimensionalGalois representation �, so we are bak in the situation of x3.3 and the onjeturesdisussed there say that L(f;m) should be expressible in terms of values of the mthpolylogarithm funtion at algebrai arguments. Equation (14) is an instane of this,sine the number appearing on the left is just L(f; 3) for the weight 1 theta-seriesf(z) = Px;y q2x2+xy+3y2 . In general, whenever the modular form f is the theta seriesassoiated to a binary quadrati form Q, so that L(f; s) = �Q(s) (these are the so-alledCM forms, and orrespond to 2-dimensional representations � whose image in GL(2; C )is a dihedral group), then a alulation whih is desribed in x7 of [33℄ lets one writeL(f;m) as a sum of integrals of the form R �� E2m(z)Q(z)m�1 dz, where � and � are CMpoints (f. x2.3) and E2m(z) is the holomorphi Eisenstein series of weight 2m. Thesame method as used above for L(�; n) then lets us rewrite these integrals expliitly asperiods. This proves the above theorem for forms of this type, and at the same timeimplies that the higher Kroneker limit formulas disussed in the last setion, thoughstill onjetural, are at least \aessible identities" in the sense of x1.2.Applying the above theorem (or the above disussion if k = 1) to the ase when f(z)is the theta-series attahed to a quadrati form in 2k variables, we obtain the followingCorollary. Let Q(x1; : : : ; xn) be a positive de�nite quadrati form in an even numberof variables with oeÆients in Q . Then the values of the Epstein zeta funtion�Q(s) = X0x1;::: ;xn 2Z 1Q(x1; : : : ; xn)sat all integers s > n=2 belong to bP.Question. Does this hold also for forms in an odd number of variables? In partiular,does the numberX0x; y; z 2Z 1(x2 + y2 + z2)2 = 16:532315959761669643892704592887851743834129 : : :belong to bP?As our �nal example, we onsider the ase when the L-series L(f; s) of a Hekeeigenform of even weight k vanishes at the entral point s = k=2 of the funtional equa-tion. This is of partiular interest in the ase of the Birh{Swinnerton-Dyer onjeture(f. x3.5), where k = 2 and the order of vanishing is onjetured to be equal to the rankof the Mordell-Weil group of the urve under onsideration, but an our in arbitraryweights if the funtional equation of L(f; s) has a sign �1. In this situation we have:Theorem. Let f be a Heke eigenform of even weight k, with L�(f; s) = �L�(f; k�s).Then L0(f; k=2) 2 bP.This theorem follows from the results of [15℄, though it is not expliitly stated there.The main objet of [15℄ was to prove the Birh{Swinnerton-Dyer onjetural formula up25



to a rational number for ellipti urves where both the order of vanishing of the L-seriesand the Mordell-Weil rank are equal to 1, but the analyti part of the proof appliedto forms of arbitrary even weight k and gave an expression for L0(f; k=2) as a �nitesum of logarithms of algebrai values and speial values at CM points of ertain higher-weight Green's funtions Gk=2(z1; z2). These speial values an in turn be expressedas periods. Besides the theorem just stated, this has another onsequene. In [15℄and [16℄ a onjeture was formulated saying that in ases where there are no uspforms of weight k, the values of the Green's funtion at arbitrary CM points should bealgebrai multiples of logarithms of algebrai numbers. The fat that these values anbe expressed as periods now makes this onjeture \aessible." An example of this (inwhih the left- and right-hand sides represent the provable and the predited value of�G2(i; ip2)=p2 for the full modular group) is the onjetural identity20G� + 1728�2 Z 1p2 E4(iy)�(iy)E6(iy)2 (y2 � 2) dy ?= log 27 + 19p227� 19p2 ;where G = 1 � 3�2 + 5�2 � � � � is Catalan's onstant (itself a period). The sametransformation t = �(iy) as was used for the ritial values of L(�; n) lets us write theintegral on the left-hand side of this formula as a simple multiple of the period integralZ 3�p20 t2(t� 1)2(t2 � t+ 1)(t+ 1)2(t� 2)2(2t� 1)2 �
1(t)2 + 2
2(t)2� dt ;with 
i(t) as in (8), after whih one ould at least attempt to give an elementary proofof the identity using only the rules of alulus, as disussed in Chapter 1.3.5. The onjeture of Birh and Swinnerton-Dyer. The Birh{Swinnerton-Dyer(BSD) onjeture, originally formulated in the mid-1960's on the basis of numerialexperiments, is one of the most beautiful and most intriguing open questions in numbertheory and, as already mentioned in x3.2, was the starting point and motivating examplefor Beilinson's general onjetures about L-series at non-ritial arguments. In thissetion|the longest in this paper and the only one to ontain a omplete proof|weshall reall its statement and show how it an be rewritten in a form involving onlyperiods, thereby illustrating in a onrete ase the general reformulation of Beilinson'sonjeture due to Sholl whih was mentioned in x3.2. The alulations of this setionan also be seen as an elementary and expliit realization of the version of the BSDonjeture given by Bloh in [8℄. We would like to thank A. Gonharov for pointing outthe possibility of this elementary statement.We �rst reall the BSD onjeture in its lassial form. Let E be an ellipti urvede�ned over Q , given by a Weierstrass equation y2 = x3+Ax+B with A; B 2 Z. Its L-funtion L(E; s) is de�ned for <(s) > 32 by an Euler produt of the form Qp Pp(p�s)�1where Pp(X) (for all but �nitely many p) equals 1 � (Np � p)X + pX2, where Np isthe number of solutions of y2 = x3 + Ax + B modulo p. If r denotes the rank of theMordell-Weil group E(Q) (known to be �nitely generated by Mordell's theorem), thenthe onjeture is that the funtion L(E; s) vanishes to order preisely r at s = 1 andthat L(r)(E; 1) ?=  � 
 �R ; (15)26



where 
 = RE(R) dx=y is the real period, R (the regulator) is the determinant of theheight pairing ( ; ) de�ned below with respet to a Z-basis of E(Q)=(torsion), and is a ertain non-zero rational number whose preise form is spei�ed by the onjeturebut will be of no onern to us. Of ourse, to make sense of this, we must �rst knowthat L(E; s), de�ned initially for <(s) > 32 , extends holomorphially to all s (or at leastto s = 1). This is guaranteed if the ellipti urve E is modular, whih an be hekedin an elementary way for any given urve and is now known unonditionally thanks tothe theorem of Wiles et al.The statement we want to prove is:Theorem. The right-hand side of (15) belongs to P.What about the left-hand side? We formulate the followingProblem 4. Show that if f is a Heke eigenform of even weight k, and r is the orderof vanishing of L(f; s) at s = k=2, then L(r)(f; k=2) 2 P :The results stated in the last setion do this for the ases r = 0 or r = 1. If one ouldprove it in general|whih may not be out of reah|then ombining it with the theoremabove would turn the equality of the BSD onjeture into an \aessible identity" in thesense of Chapter 1 and would thus give one, if not a proof, then at least a way to provethe truth of the onjetured equality for any given ellipti urve. We emphasize thatso far there is not a single ellipti urve of rank r � 2 for whih (15) is known exatly,though many ases have been heked numerially to high preision.Before proving the theorem, we illustrate its statement with a numerial example.Let E be the ellipti urve y2 = 4x3 � 4x + 1 of ondutor 37, the urve of smallestondutor with in�nite Mordell-Weil group. Spei�ally, E(Q) is in�nite yli, withgenerator P = (0; 1) and ontaining as its next few elements the pointsn 2 3 4 5 6 7nP (1; 1) (�1;�1) (2;�5) ( 14 ;� 14 ) (6; 29) (� 59 ; 4327)The regulator equals (P; P ) = 2h(P ), where h(P ), the anonial height, an be de�nedas limn!1(logNn)=n2, where Nn is the maximum of the absolute values of the numer-ator and denominator of the x-oordinate of nP . (A more useful de�nition of the heightpairing will be given below when we prove the theorem.) Numerially we have
 = ZE(R) dxp4x3 � 4x+ 1 = 5:98691729 : : : ; R = (P; P ) = 0:0511114082 : : :and the Birh-Swinnerton-Dyer formula (proved in this ase) says thatL0(E; 1) = 
R = 0:305999773 : : : :The promised representation of the right-hand side of (15) as a period is given here by
R = �������� 0R�1 dxp4x3 � 4x+ 1 0R�1�1� 1p4x3 � 4x+ 1� dx2x2R1 dxp4x3 � 4x+ 1 2R1 �1� 1p4x3 � 4x+ 1� dx2x �������� : (16)27



We now turn to the proof. The regulator in (15) is de�ned as the determinant ofthe r � r matrix (Pi; Pj), where fPig is a basis of the free Z-module E(Q)/(torsion).We somewhat perversely denote this lattie by both the letters R and L (for RegulatorLattie or Right and Left) and onsider the height pairing ( ; ), although it is symmetri,as a pairing from L � R to R. The reason for introduing this asymmetry is that weare going to extend L and R to larger latties bL and bR, related to L and R by0! Z! bL ! L ! 0 ; 0! Z! bR ! R! 0 (17)and to eah other by the existene of an extended height pairing bL � bR ! R, and thenew latties bL and bR are not (in any anonial way) isomorphi to one another. Ourgoal, more preise than the statement of the theorem as given above, is to show thatthe produt 
R in (15) is equal to the extended regulator bR de�ned as the determinantof the extended height pairing with respet to Z-bases of bL and bR.First we reall the de�nition of the usual height pairing. Ignoring torsion from nowon, we an write L = R as the quotient of Div0(E=Q), the group of divisors of Eof degree 0 de�ned over Q , by the subgroup Prin(E=Q) �= Q(E)�=Q� of prinipaldivisors. If D = Pi ni(xi) (ni 2 Z, xi 2 E(Q ), D� = D for all � 2 Gal(Q =Q )) andD0 = Pj n0j(x0j) are two divisors of degree 0, assumed for simpliity to have disjointsupport, then the (global) height pairing (D;D0) is equal to the sum of the loal heightpairings (D;D0)v where v runs over the plaes of Q , i.e., the �nite primes and the \plaeat in�nity." The loal height pairing is de�ned by the requirements that it is symmetriinD andD0, extends to a ontinuous funtion of the xi in the p-adi or omplex topologyof E, and is given by the formula (D;D0)v =Pi ni log jf(xi)jv if D0 = (f) is a prinipaldivisor. The latter formula shows that the sum (D;D0) vanishes if one of the divisorsis prinipal (beause of the produt formula Qv j � jv = 1) and therefore is well de�nedon the regulator lattie L = R, and at the same time that the loal pairings ( ; )vare unique (beause the di�erene of any two hoies would be a ontinuous bilinearfuntion from the p-adi or omplex points of the Jaobian, a ompat group, into Rand hene vanish). For the existene, one has to �nd a loal formula satisfying theonditions. This is done for �nite primes by setting (D;D0)p = (D �D0)p log p 2 Z logp(here (D �D0)p, the loal intersetion number, is an integer measuring to what extent thepoints of D and D0 are ongruent to one another modulo p or powers of p, and vanishesfor all but �nitely many p), and at in�nity by setting (D;D0)1 =Pj n0j GD(x0j). HereGD(x) is the Green's funtion attahed to D, de�ned as the unique (up to an additiveonstant whih drops out under the pairing with D0) harmoni funtion on E(C ) r jDjwhih satis�es GD(x) = ni log jx � xij + O(1) in loal oordinates near xi. We anonstrut GD(x) as <�R xa !D�, where a 2 X(Q) is an arbitrary basepoint and !D ameromorphi 1-form (di�erential) on X satisfying(i) !D has a simple pole of residue ni at xi and no other poles;(ii) !D is de�ned over R;(iii) <�RE(R) !D� = 0 .The last ondition, whih is possible beause onditions (i) and (ii) �x !D only up tothe addition of a real multiple of !0 = dx=y and <�RE(R) !0� = 
 6= 0, and neessarybeause the integral R xa !D is de�ned only up to a half-integral multiple of RE(R) !D28



(by (ii) and beause the homology lass of E(R) is 1 or 2 times the generator of thepart of H1(E(C );Z) �xed by omplex onjugation), is the ruial one for us. It impliesthat GD(x) for x 2 E(Q) belongs to 
�1P. Indeed, let !�D be a seond meromorphi1-form satisfying ondition (i) and ondition (ii) with \R" replaed by \Q ," whih ispossible beause the divisor D is de�ned over Q . (If we want to get a lattie rather thanmerely a Q -vetor spae when we de�ne bL below, we in fat have to require !D to bede�ned over Z in a N�eron model, but this is a minor point and will be ignored.) Then!D = !�D+�!0 for some � 2 R by what was said before. The oeÆient � is alulatedby <�RE(R) !�D�+ �
 = <�RE(R) !D� = 0, soGD(x) = 1
 ����� <�RE(R) !0� <�R xa !0�<�RE(R) !�D� <�R xa !�D� ����� 2 1
 P if x 2 E(Q ) (18)as laimed. This shows also that (D;D0), whih is the sum of �nitely many terms GD(x)and log p, belongs to 
�1P.We an now onstrut the latties bL and bR and the pairing between them. For bLwe take the group of all meromorphi 1-forms on E, de�ned over Q (or rather Z) andhaving only simple poles with integral residues, divided by the subgroup of 1-formsdf=f with f 2 Q (E)� . The map bL ! L in (17) is given by assoiating to a 1-form !the divisor Res(!) = Pi ni(xi) 2 Div0(E=Q), where fxig are the poles of ! and fnigthe orresponding residues, while the map Z ! bL sends 1 to !0. The other lattie bRis de�ned as the group of homology lasses of (oriented) 1-hains C on E(C ) de�nedover R (i.e., invariant up to homology under omplex onjugation) whose boundary isde�ned over Q , divided by the subgroup of uts. Here C is alled a \ut" if we an �nda holomorphi funtion ' on E(C ) r jCj whose value jumps by m as we ross (fromleft to right, everything being oriented) a omponent of C of multipliity m, and suhthat f = e2�i' is meromorphi on E; then f has divisor �C, so �C is prinipal, andonversely any f 2 Q(E)�=Q� has an assoiated ut whih is unique up to homology, sothe boundary map C 7! �C indeed gives a well-de�ned map bL ! E(Q)=(torsion) = L .The remaining map Z! bL is de�ned by 1 7! E(R), and the pairing bL � bR ! R by(!; C) = <�RC !� + �Res(!); �C�f ; (19)where (D;D0)f =Pp(D;D0)p 2 log(Q>0) denotes the �nite part of the height pairingof two divisors D and D0. We leave to the reader the task of heking that this pairingis well-de�ned (i.e., that it vanishes if ! = df=f or if C is a ut) and, using (18), thatits determinant with respet to bases of bL and bR is (possibly up to a simple rationalmultiple oming from the normalizations) equal to the produt of 
 and R. This endsthe proof of the theorem. The matrix in (16) is a speial ase of the ( bL � bR)-pairing,with the bases !0 = dx=y and !1 = ((y� 1)=2x)!0 of bL and [�3P; P ℄ and [2P;�4P ℄ ofbR arefully hosen to make the �nite height ontributions in (19) vanish.We make two �nal remarks. The �rst is that everything said above would go throughunhanged if E were replaed by a urve of arbitrary genus g, but with both Z's in (17)replaed by Zg, so that the extended regulator in this ase would be the determinant29



of an (r + g)� (r + g) matrix. The seond is that the number 
 = RE(R) !0, and moregenerally the entries in the period matries entering into Deligne's onjetural formulafor L-values at ritial values, is a \pure period," while the matrix elements in (16),and more generally the entries in the period matries entering into the Beilinson-Shollonjetural formula for non-ritial L-values, are \mixed periods." The words \pure"and \mixed" here are meant to suggest that the numbers in question are the periodsof pure and mixed motives, respetively (f. the remarks at the end of x4.2). They area little hard to de�ne preisely in an elementary way. Among the examples in x1.1,the number �, the ellipti integral and �(p=q)q are pure periods, while logarithms ofalgebrai numbers, multiple zeta values and Mahler measures are (in general) mixed. Aneessary but not suÆient ondition for a period to be pure is that one an representit as an integral over a losed yle (i.e. hain without boundary) of a losed algebraidi�erential form on a smooth algebrai variety de�ned over Q .3.6 Subleading oeÆients: the Colmez onjeture. The Beilinson onjeturesonern only the leading oeÆient in the Laurent expansion of L(s) at integer valuess = m 2 Z. In general, one does not expet any interesting number-theoreti propertyfor subleading oeÆients. Still, there are some remarkable exeptions. For example,�(s) = �12 + log� 1p2�� � s+ O(s2); s!0or, in a more suggestive form,log �(s) = log(� 12) + log(2�) � s+O(s2) :Conjeture [12℄. Let � : Gal(Q =Q) ! GL(n;Q )be a representation of the absolute Galois group suh that�(omplex onjugation) = �1n�n :Then the logarithmi derivative of the Artin L-funtion L(�; s) at s = 0 is a �nitelinear ombination with oeÆients in Q of logarithms of periods of abelian varietieswith omplex multipliation.If K2 is a totally imaginary quadrati extension of a totally real number �eld K1(i.e., K1 = Q (�) and K2 = Q(p�) for some algebrai number � all of whose onjugatesare negative), then the ratio of Dedekind zeta-funtions �K2(s)=�K1(s) is an L-funtionof the type onsidered in the above onjeture. In this ase the logarithmi derivativeat s = 0 is the logarithm of a single period. For K1 = Q this is a onsequene of theChowla-Selberg formula mentioned at the end of x2.3.Colmez himself proved his onjeture in the ase of abelian representations (whenall �elds entering the game are ylotomi �elds). In essene, it redues to knownidentities between values of the gamma funtion at rational points and periods. Itseems that today nobody has any idea how to prove the identity predited by theColmez onjeture for any nonabelian representation. Quite reently H. Yoshida hasformulated re�nements of Colmez's onjeture and arried out some highly non-trivialnumerial veri�ations in various nonabelian ases [28, 29℄.30



Chapter 4. Periods and Motives4.1. The algebra of abstrat periods. In the �nal setions of this paper we presentan elementary approah to motives in terms of periods. In order to do this, we need amore \sienti�" de�nition of periods than the one given in Chapter 1.Let X be a smooth algebrai variety of dimension d de�ned over Q , D � X a divisorwith normal rossings (i.e. loally D looks like a olletion of oordinate hypersurfaes),! 2 
d(X) an algebrai di�erential form on X of top degree (so ! is automatiallylosed), and  2 Hd(X(C ); D(C );Q ) a (homology lass of a) singular hain on theomplex manifold X(C ) with boundary on the divisor D(C ). We say that the integralR ! 2 C is the period of the quadruple (X;D; !; ). One an always redue onvergentintegrals of algebrai forms over semi-algebrai sets de�ned over the �eld of algebrainumbers Q to the form as above, using the funtor of restrition of salars to Q and theresolution of singularities in harateristi zero.De�nition. The spae P of e�etive periods is de�ned as a vetor spae over Q gen-erated by the symbols [(X;D; !; )℄ representing equivalene lasses of quadruples asabove, modulo the following relations:(1) (linearity) [(X;D; !; )℄ is linear in both ! and  :(2) (hange of variables) If f : (X1; D1)!(X2; D2) is a morphism of pairs de�nedover Q , 1 2 Hd(X1(C ); D1(C );Q ) and !2 2 
d(X2) then[(X1; D1; f�!2; 1)℄ = [(X2; D2; !2; f�(1))℄ :(3) (Stokes formula) Denote by ~D the normalization of D (i.e. loally it is thedisjoint union of irreduible omponents ofD), the variety ~D ontaining a divisorwith normal rossing ~D1 oming from double points in D. If � 2 
d�1(X) and 2 Hd(X(C ); D(C );Q ) then[(X;D; d�; )℄ = [( ~D; ~D1; �j ~D; �)℄where � : Hd(X(C ); D(C );Q )!Hd�1( ~D(C ); ~D1(C );Q ) is the boundary opera-tor.Then the image of the evaluation homomorphism [(X;D; !; )℄ 7! R ! from P to Cis preisely the set P of numerial periods, and Conjeture 1 from x1.2 is equivalent toConjeture. The evaluation homomorphism P!P is an isomorphism.For example, the (known) fat that the number � is transendental follows from thisonjeture and Deligne's theory of weights.The spae of e�etive periods forms an algebra beause the produt of integrals isagain an integral (Fubini formula). It is onvenient to extend the algebra of e�etiveperiods to a larger algebra bP by inverting formally the element whose evaluation in C is2�i. Informally, we an say that the whole algebra of abstrat periods bP is P[(2�i)�1℄.The periods whose logarithms appear in the Colmez onjeture are invertible elementsin the extended algebra bP. 31



4.2. The motivi Galois group. The algebra bP is an in�nitely generated algebraover Q , but like any algebra it is an indutive limit of �nitely generated subalgebras.This means that Spe(bP) is a projetive limit of �nite-dimensional aÆne shemes overQ . We laim that Spe(bP) arries a natural struture of a pro-algebrai torsor over Q .A struture of a set-theoreti torsor (i.e. a prinipal homogeneous spae of a group G)on a given set S an be enoded in a map, S3!S, whih after any identi�ation of Swith the G-set G looks like (x; y; z) 7! x � y�1 � z :IfX is a pro-algebrai torsor, then the triple produt onX gives rise to a triple oproduton the algebra of funtions O(X).We now desribe the triple oprodut on the algebra bP of abstrat periods. Let(X;D) be a pair onsisting of a smooth algebrai variety and a divisor with normalrossings in X, both de�ned over Q , as above. Let us assume for simpliity that X isaÆne. (Using a well-known trik of Jouanolou [19, Lemme 1.5℄, we an always redueto this ase.) The algebrai de Rham ohomology groups H�de Rham(X;D) an thenbe de�ned as the ohomology groups of the omplex 
�(X;D) onsisting of algebraidi�erential forms on X vanishing on D. The period matrix (Pij) of the pair (X;D)onsists of pairings between lasses running through a basis (i) in H�(X(C ); D(C );Q )and a basis (!j) in H�de Rham(X;D). It an be shown using several results from algebraigeometry that the period matrix is a square matrix with entries in P, and determinantin pQ� � (2�i)Z�0. This implies that the inverse matrix has oeÆients in the extendedalgebra bP = P[(2�i)�1℄.We now de�ne the triple oprodut in bP by the formula�(Pij) :=Xk;l Pik 
 (P�1)kl 
 Pljfor any period matrix (Pij).As an example, onsider the pair X = A 1Q r f0g and D := f1; 2g � X. The basisof H1(X(C ); D(C );Q ) onsists of the homology lasses of a ounter-lokwise path 1of small radius around zero, and the interval 2 := [1; 2℄. The basis of H1de Rham(X;D)onsists of ohomology lasses of forms !1 = z�1dz and !2 = dz where z is the standardoordinate on X = A 1 . The period matrix is � 2�i 0log(2) 1� . From this one an thendedue the following formulas for the triple oproduts:�(2�i) = 2�i
 12�i 
 2�i ;�(log(2)) = �log(2)
 12�i 
 2�i�� �1
 log(2)2�i 
 2�i�+ �1
 1
 log(2)� :It is not lear why the de�nition of triple oprodut given above is onsistent, be-ause it is not obvious why the triple oprodut preserves the de�ning relations in thealgebra bP. This follows more or less automatially from the following result whih wasreently proved by M. Nori: 32



Theorem. The algebra bP over Q is the algebra of funtions on the pro-algebrai tor-sor of isomorphisms between two ohomology theories, the usual topologial ohomologytheory H�Betti : X 7! H�(X(C );Q )and the algebrai de Rham ohomology theoryH�deRham : X 7! H�(X;
�X) :The motivi Galois group in the Betti realization GM;Betti is de�ned as the pro-algebrai group ating on Spe(bP) from the side of Betti ohomology. Analogously,one de�nes the de Rham version GM;deRham. The ategory of motives is de�ned asthe ategory of representations of the motivi Galois group. It does not matter whihrealization one hooses beause the ategories for both realizations an be anoniallyidenti�ed with eah other. The following elementary de�nition also gives a ategoryanonially equivalent to the ategory of motives:De�nition. A framed motive of rank r � 0 is an invertible (r� r)-matrix (Pij)1�i;j;�rwith oeÆients in the algebra bP, satisfying the equation�(Pij) =Xk;l Pik 
 (P�1)kl 
 Plj (20)for any i; j. The spae of morphisms from one framed motive to another, orrespondingto matries P (1) 2 GL(r1; bP); P (2) 2 GL(r2; bP);is de�ned as �T 2 Mat(r2 � r1;Q) j TP (1) = P (2)T	 :The ohomology groups of varieties over Q an be onsidered as objets of the at-egory of motives. From omparison isomorphisms in algebrai geometry it follows thatthere are also l-adi realizations of motives, on whih the Galois group Gal(Q =Q) ats.One an de�ne a (framed) motive with oeÆients in Q as a solution of the equa-tion (20) in the algebra bP 
 Q over Q . The olletion of all L-funtions in numbertheory an be onsidered as a homomorphism from the Grothendiek group K0 of theategory of motives with oeÆients in Q to the multipliative group of meromorphifuntions on C .Originally, A. Grothendiek introdued the so-alled \pure motives," the naturalsummands of ohomology spaes of smooth projetive varieties. Every pure motive hasa ertain weight j 2 Z (the degree of the orresponding ohomology group). The loalfators of the L-funtion assoiated to a pure motive of weight j have zeroes on theline <(s) = j=2. Conjeturally, the ategory of pure motives is semi-simple and it isequivalent to the ategory of representations of a redutive pro-algebrai group GpureM(see the survey artiles in [18℄).By ontrast, the ohomology spaes of non-ompat or of singular varieties, or ofpairs of varieties, should be \mixed" motives, with a natural weight �ltration suh33



that the assoiated graded piees are pure motives. For mixed motives there is no niede�nition �a la Grothendiek, but one still expets that they are given by representationsof a pro-algebrai group, one of the onjetural desriptions of whih was given above.The motivi Galois group GM for mixed motives is expeted to be an extension of theredutive motivi Galois group GpureM of pure motives by a pro-unipotent group.At the end of x3.5 we mentioned that periods of pure motives an be written asintegrals of losed forms over losed yles. This fat is an immediate orollary ofthe Jouanolou trik, and it also makes sense in the framework of abstrat periods. Ingeneral, let us de�ne losed periods as abstrat periods orresponding to integrals overlosed yles. It is easy to see that these are exatly the periods of motives of smoothnon-ompat varieties. Pure periods are losed, but not every losed period is pure, i.e.,it is mixed in general. However, it seems that one annot exhaust the olletion of allmixed periods by onsidering only losed ones. In other words, there are mixed motiveswhih annot be realized as subquotients of motives of smooth non-ompat varieties.In partiular, in the same spirit as the questions raised in x1.2, we pose:Problem 5. Let us assume Conjeture 1, or, equivalently, let us work within the frame-work of abstrat periods. Show that the (abstrat period orrresponding to) the numberlog 2 or even �n log 2 for n 2 Z, annot be represented as the integral of a losed algebraiform over a losed yle.There is now a well-established theory of Voevodsky whih gives not an abelianategory but merely a triangulated ategory of \omplexes of mixed motives." It is notlear whether Voevodsky's ategory (with rational oeÆients) should be equivalent tothe derived ategory of representations of the motivi Galois group introdued in thishapter, but at least it should have a t-struture whose ore is equivalent to the ategoryof representations of GM .4.3. Exponential periods. One an imitate the de�nition of the motivi Galois groupand motives by onsidering a larger lass of transendental numbers, whih we allexponential periods. These numbers are also onsidered in the preprint [9℄ by S. Blohand H. Esnault.De�nition. An exponential period is an absolutely onvergent integral of the produtof an algebrai funtion with the exponent of an algebrai funtion, over a real semial-gebrai set, where all polynomials entering the de�nition have algebrai oeÆients.For a triple (X;D; f) where (X;D) is as above and f 2 O(X) is a regular fun-tion on X, one an de�ne period matries onsisting of exponential periods. TheBetti homology spaes are de�ned for (X;D; f) as the singular homology of the pair(X(C ); D(C ) [ f�1(fz 2 C j <(z) > Cg)) where C 2 R is suÆiently large. The deRham ohomology is de�ned as the ohomology of the omplex 
�(X;D) endowed withthe di�erential df (!) := d! � df ^ !. The elements of the period matrix for the triple(X;D; f) are the integrals Ri exp(�f)!j, where the i are real analyti hains repre-senting the elements of a basis of Betti homology and the !j represent a basis of deRham ohomology. One an show that these period matries are square matries andthat their determinants belong to pQ� � (p�)Z�0 � exp(Q).As a simple example, if X = A 1 , D = ; and f(x) = x2, then the period matrix has34
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