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Vassiliev’s Knot Invariants

MAXIM KONTSEVICH

To my teacher I. M. Gelfand on the occasion of his 80th birthday

V. Vassiliev [V1, V2] defined a broad class of knot invariants using a
kind of infinite-dimensional Alexander duality. Some comments on the main
idea of V.Vassiliev are contained in § 1. The vector space V' of Vassiliev’s
invariants has a filtration by natural numbers. We want to mention here
several features of these invariants:

(1) The space of invariants of a fixed degree is finite-dimensional and
there exists an a priori upper bound on its dimension. Moreover,
this space is algorithmically computable. Unfortunately, the only
known method to compute this space for a fixed degree takes a super-
exponential time.

(2) For any of Vassiliev’s invariants there exists a polynomial-time algo-
rithm for computing this invariant for arbitrary knots.

(3) It is not hard to prove that if all Vassiliev’s invariants for two knots
coincide, then their (Alexander, Conway, Jones, Kaufmann, HOM-
FLY, etc.) polynomial invariants coincide. In a sense, Vassiliev’s
invariants are stronger than any invariant coming from the solution
of the Yang-Baxter equation that can be deformed to the trivial so-
lution. It seems likely that Vassiliev’s invariants can distingush any
two different knots.

Here the reader will find only a short exposition of the theory. We recom-
mend a very detailed review by D. Bar-Natan [BN] containing most of what
is written here and much more.

§0. Two formulas

Let K:S' SR bea parametrized closed curve in R®. We shall write
two different formulas for the simplest nontrivial Vassiliev invariant of the
oriented knot K (S') . They arise from the perturbative Chern-Simons theory
and from the (perturbative) Knizhnik-Zamolodchikov equation.
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x'dx’ ndx®
Ix|*

R3\{0} (the standard volume element on S? written in homogeneous co-
ordinates). This form appears in the Gauss formula for the linking number
of two nonintersecting oriented curves L,, L, C R:

1

First formula. Denote by w(x) the closed 2-form ¢-g, ik on

#(L,, L,) = / w(x —yp).

x€L,,yeL,

For the knot K(S') , where §' = [0, 1]1/{0, 1}, the following sum

w(K(l)) — K(l)) A o(K(L) - K(L,))

0<! <ly<ly<li<l

+ / w(K(l)) — x) A w(K(l,) — x) N w(K(ly) = x) - ilz

0<l,<b<l;<1,x€R*\K(S")

is an invariant, i.e., does not change when we continuously vary K in the
class of embeddings.

The convergence of integrals above is almost clear (at least for real analytic
knots). For example, for the second integral we can define a map from
the integration domain to (Sz)3 by sending (/,,/,, [;, x) to the triple of
directions from x to /,. The image of this map is a real analytic subset of
(SZ)3 of dimension 6. The integral is equal to the part of volume of (Sz)3
covered by this subset, counting, of course, multiplicities and orientations.

The invariance of the sum of 4-dimensional and 6-dimensional integrals
above follows from Stokes’s theorem and the following properties of the form
w:

(1) w(ix)=sgn(A)w(x) forany L€ R",
(2) [pox)=1,
(3) fy(-:k’\{x,z} o(x—y)ANw(y —z) =0 as a 1-form in variables x #

ze]R3.

Second formula. Introduce coordinates ¢, z in R? , t=x €R, z =
X, + ix; € C. Suppose that our knot is such that /0 K is a Morse function
on S' ¢ R®. Let us consider the knot K (S l) as a graph of multivalued
functions R' — C'. The following sum of 2-dimensional and O-dimensional

integrals
! ’ . .
12 Z dz,= d,z' " dz, - d,z,_ H orientation of the knot
- = orientation arising from ¢
i ,<t, {2,2'} 44 227 %2 4 points g

(t,,z2,)

1 A . 1
+ K( number of critical points of 7 o K) — 3%
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where the sum is taken over all choices of two pairs of points (¢, z;), (¢;, z,'.) ;

i=1,2,on K(S l) such that points of the first pair alternate with points of
the second pair, is again a knot invariant. The proof uses Stokes’ theorem
and the identity

d? —dzzl\a'z2 —dz3+d22—dz3/\a’z3 —dzl_'_afz3 —-dz, Adzl ~dz,

=0.

%3 Zy 2y 2y 2y 23— 2y 23— 2 )

Both formulas give the same integer number.

§1. Vassiliev’s invariants

It is clear that knot invariants (with values in some abelian group) are the
. same as locally constant functions on the space of embeddings of the standard
circle S' into the 3-dimensional Euclidean space R’ , or, equivalently, zero-
cohomology classes.

Let us consider the space of embeddings as the complement in the infinite-
dimensional vector space of all mappings from S ! to R® to the closed sub-
space of maps with self-intersections or with singular image. We intersect
both spaces, the space of knots and its complement, with an appropriate
generic family of finite-dimensional vector spaces of growing dimensions.
For example, the spaces of trigonometric polynomial maps of fixed degrees
will do. Then we can apply the usual Alexander duality. Of course, we
can generalize it to the case of embeddings of an arbitrary manifold into
Euclidean space of arbitrary dimension.

The main techical invention of V. Vassiliev is a very simple simplicial
resolution of singularities of the space of nonembeddings, which allows us
to compute the homology groups with closed support. This technique can
be applied to a very broad class of situations, and in good cases it gives a
complete description of the weak homotopy type of some functional spaces.
The case of knot invariants turns out to be marginal. The spectral sequence
arising in Vassiliev’s approach does not converge well. The zero-degree part
of its limit is a certain countable-dimensional subspace in the continuum-
dimensional space of all cohomology classes.

Let us fix a nonnegative integer #. We want to define invariants of degree
strictly less than n.

For any knot K : S " R® and any family of nonintersecting balls B,
B il R? such that the intersection of any ball with K (S') is the
standard one (see Figure 1 on the next page), one can construct 2" knots.
These knots will be labeled by the sequences of +1 and —1 of length »n. The
knot Kc,,...,e,, is obtained from K = K(Sl) by replacing, foreach i, 1 <i <
n, such that ¢ = —1, the part of the knot in the interior of B; by another
standard sample (see Figure 2 on the next page). Of course, K| | is the
initial knot X .
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FIGURE 1
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FIGURE 2

FIGURE 3

Let @ be a knot invariant with the values in an abelian group A4 (for
example, A =27Z,Q,C, ...).

DEeFINITION. @ is an invariant of degree less than » if for all K and
B,, ..., B, asabove the following equality holds:

Z & "'sn(D(Ke,,...,en) =0.
R

Now we show that, for example, Jones invariants are contained in Vas-
siliev’s invariants. Recall that the Jones invariant
(1) takes values in the group Z[¢, t_'] .
(2) is defined for links, and
(3) satisfies the skein relation (see Figure 3).

THEOREM 1.1 (Birman-Lin). The kth coefficient in the Taylor expansion
of the Jones invariant at t = 1 is a Vassiliev's invariant of degree less than
(k+1).

Proor. The skein relation degenerates at ¢ = 1 to the relation ®(K;) =
®(K,). This fact easily implies that

S b0, )

8yiroeva Biiii
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FIGURE 4

belongs to the (k + 1)st degree of the ideal (¢ — 1)Z[t, t~']. Hence the kth
Taylor coefficient of this alternating sum is zero. 0O

This proof can be generalized immediately to an arbitrary complex an-
alytic family of solutions of the quantum Yang-Baxter equation containing
the trivial solution. So, Vassiliev invariants are at least as strong as different
kinds of polynomial invariants.

For k=0, 1, ... denote by V, the vector space of Q-valued invariants
of degree less than k + 1. Denote by V' = |J, V¥, the space of all invariants
of finite degree. It is clear that ¥, C ¥, C ¥, C --- is a growing family of
vector spaces. First of all, let us prove that all ¥, are finite-dimensional.

LemmA 1.1. dim(V, /V,_) < (2k-1)!"=1-3-5---(2k - 1).
PRroOOF. For an invariant @ € ¥, and any data K, B,, ..., B, asabove
consider the value of the alternating sum

k
V@)= Y g K, L)
CI ""‘Ek

k

We claim that this number does not change if we change the knot allowing
self-intersections of the knot outside the union of balls B, . It follows directly
from the equation for invariants of degree less than (k +1).

Hence these numbers depend only on k pairs of intervals on § : , which
are preimages of balls B; under the map K. It is clear that these numbers
are invariant under permutations of indices 1, ..., k and under the homo-
topy of families of intervals. We can connect two points on both components
of K _I(B,.) by lines and obtain a finite family of chords (see Figure 4). Each
family of k chords can be obtained in this way for some K, B, ..., B,.
So, we obtain a function Vk(d)) on families of k chords with all ends dis-
tinct. By definition, V"(<D) =0 if and only if ® € ¥, _, . A simple compu-
tation shows that if we replace S' by R', there are (2k — 1)!! topologically
distinct families of pairs of points. It is clear that it gives an upper bound
for the circle. O

Moreover, there are some linear relations between values of Vk(CD) :

For a family S of k — 1 chords, a point p on the circle S' different
from all endpoints of chords in S, and a chord a € S we can construct four
new familes S, S,, S;, S, of k chords. They are obtained by adding to .S
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FIGURE 5

a new chord connecting p with a point on .S ' from the left and from the
right side near both endpoints of a (see Figure 5).

LEMMA 1.2. For any invariant ® € V,_ its higher derivative Vk(CI)) satisfies
the following relations:

(1) for any family S of k —1 arcs, p, and a as above,
4 Y
Y (=1)'VE@)(S;) = 0;
i=

(2) if the family S of k chords contains a chord that does not intersect
other chords, then V* (®)(S)=0.

ProoOF. To obtain the first relation consider the situation when there exists
a ball intersecting our knot in three intervals parallel to coordinate axes. Let
the endpoints of a and p lie on these intervals. There are eight topologically
different possible arrangements of such intervals in a ball. Our relation con-
tains 16 terms. One can check easily that each configuration arises twice with
opposite signs. The second relation is simpler: one can consider the situa-
tion when the knot consists of two spatially separated parts connected by two
strings. The spinning of this pair of strings does not change the topological
type of the knot. O

Vassiliev’s invariants are closed under the multiplication V, x ¥V, C V, ;.
This fact follows easily from the definition and a generalization of the Leibniz
formula to difference derivatives.

§2. Algebra of diagrams and the main theorem

It will be convenient for us to cut the circle at some point and to obtain
a family of nonintersecting 2-element subsets of a (horizontal) line R'. We
connect two points belonging to one subset by an arc above the line.

We shall use now notations from the previous lemma.

DerFINITION. Foreach k=0, 1, ..., % is the vector space over Q gen-
erated by homotopy classes of families of k arcs with distinct ends on the
line R' modulo relations

(1) T, (-1)'s;=0,

(2) if S contains an arc that does not intersect other arcs, then S =0.
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The first three spaces are: &, =Q, % =0,.%, =Q. Lemma 1.2 means
that V, /V,_, is a subspace of the space JV;( = Hom(%}\ , Q).

REMARK. D. Bar-Natan denotes our ./ by " and our & (see the end
of this section) by & .

We shall prove the following

THEOREM 2.1. V[V, _, =% .

This theorem means that differentials for zero cohomology groups of the
space of knots in higher terms of Vassiliev’s spectral sequence are trivial up
to the torsion.

The proof of Theorem 2.1 requires some preparations.

LEMMA-DEFINITION. For two families of arcs such that all endpoints of S,
are smaller than all endpoints of S, (as real numbers) the formula S X S2 =
S, US, defines the structure of assoczatzve algebra on & = @k —0%

We have to verify that the product is compatible with the additive relations
between families of arcs. It is almost evident.

A slightly less trivial fact is that any family of chords on the circle i
defines an element of & .

LEMMA 2.1. If S is a family of k chords with distinct ends on S' and
p,D, €S v are two points different from the endpoints of S, then two families
ofarcs S, S, on R' obtained by deleting p, or p, from the circle, define
the same element of % .

PrOOF. We can proceed step by step. Let S’ is a family of arcs on R'. Let
x € R' be the minimal endpoint of §’ and {x, y} € S’ be the corresponding
arc. Consider the sum of relations (1) over all arcs a € S"\{x, y} for the
triple

(point p, arc a, family of arcs S'\{x, ¥}).

It is easy to see that this sum is equal to the dlﬁ'erence S'—S", where S”
obtained from S’ by replacing x with a point on R' right to all endpomts
of . O

COROLLARY. % is a commutative algebra.

Let us consider the standard Euclidean space R® as the product of the real
line R' with the complex line C' . We denote the corresponding coordinates
by t,z, t€R, ze C. Aknot K is called a Morse knot if the function
(to K) is a Morse function on S'. As before, for any n we can define the
notion of an invariant of Morse knots of degree less than 7.

Define a sequence of invariants of Morse knots with values in %, @ C.
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FIGURE 6

-

DEFINITION. Z\(K)=1€Q=.9,C.%®C. For n>0

Z (K)= / / Z (the corresponding element of &/ )

noncritical (.2}
1, <l < <L,

n /
dlog(z; — z.
% H 8( i i) (-1 )s ,
i=1 2ny -1
where the summation is taken over all choices of nonordered pairs of distinct
points on the sections 7 = {; of the knot K, ¢ denotes the number of points
(25 2p)5 (852 ) with the onentanon in the negatlve direction. The element

of &7 correspondingto n pairs of points on K(S ) is well defined by Lemma
2:1.

THEOREM 2.2. (1) The integral defining Z,(K) is absolutely convergent,

(2) Z,(K) is invariant under the homotopy in the class of Morse knots,
(3) Z,(K) is an invariant of degree less than (n+ 1).

ProoF. For any Morse knot there exists a homeomorphism #(7) of R that
is a diffeomorphism everywhere outside the set of critical values of the map
(o K) and that transforms the image of the knot to the union of finitely
many lines transversal to horizontal planes {t, z| t is fixed} (see Figure 6).
One can see that all possible divergences arise at the domain where a short
interval (z,, z:) arises. If there are no other endpoints of other intervals in
the small part of the knot connecting these two points, then the integral is
zero by the relation (2). In all other cases the integral can be estimated above

by
dx,dx dx,
const / / dx,—2—3... —k,
X, X4 X
0<x, <Xy <ee Xy <
The last integral is absolutely convergent. Hence the first part of the theorem
is proved.

Using the same estimates, one can verify that Z,(K) is a continuous func-
tion of Morse knot K. Now it is sufficient to venfy that this function is
locally constant for the variation of a Morse knot with all distinct critical
values. In this situation we can use Stokes’ formula since we integrate a
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FIGURE 7

closed form over a manifold with the corners. The reader can check that
the last relation from §0 and relation (1) in the definition of .2/, imply the
homotopy invariance of Z (K).

Part (3) is very simple. Using part (2) proved just now we can consider
only the situation when all (n+1) balls have nonintersecting images under the
projection onto the vertical axis R. Then the vanishing of the corresponding
alternating sum is evident. 0O

The integral formula above arose from the attempts to understand the
remarkable work of V. Drinfel’d [D1] on quasi-Hopf algebras. It follows
more or less explicitly from another work of Drinfel’d [D2] that Z (K) €
&, C & ®C. We do not know any direct geometric proof of this fact.

It is easy to see that the set of complete invariants of Morse knot K
consists of the topological type of the knot and the number of critical points
of the map (10 K). Let us consider the sequence of invariants for the special
noncompact Morse knot K|,

K,:R' SRxC,  Ky(x)=(x"—x,x).

Define an element Z(K,) € & := [[%, to be the sum Y Z, (K,). This
element is invertible because the series for it starts from 1. One can replace
here K, by any compact trivial Morse knot with four critical points.

THEOREM 2.3. For any Morse knot K the element

Z(K) - i Zk(K) = Z(KO)—J_; number of critical points of (oK) e
k=0
depends only on the topological type of K. For any n the first (n + 1)
components Z,(K), ..., Z"(K ) of Z(K) together give the universal Q-valued
Vassiliev invariant of degree less than (n +1).

Proor. Consider the Morse knot such that its top part looks like the union
of the middle part of K, with a vertical line far away from this curved part,
and with a convex arc connecting these two parts (see Figure 7). The value of
normalized invariant Z(K) does not change when we replace the curved part
on the top by a straight line. So, Z(K) is a knot invariant. Zk(K). oy
are invariants of degree less than (n+1) because they are linear combinations
of invariants Z,(K), k < n. The map V"(7:") o — & is the identity
map. 0O
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Theorem 2.1 follows immediately from Theorem 2.3. We have an explicit
isomorphism

n
¥, & @ka' 3
k=0

Define a comultiplication A:.%, — @, ,,_, %, ®.%, by the formula

AS) =) S ®(S\S).
S'ES

A simple computation shows that this comultiplication is well defined and
compatible with the algebra structure on % . By the usual structure theorem
(Milnor-Moore theorem) we conclude that &/ is canonically isomorphic to
the symmetric algebra of the graded vector space of primitive elments

P=Prim(¥):={ac |Ala)=1®a+a®l}.

The value of the universal knot invariant Z(K) is always a group-like element
of &, A(Z(K)) = Z(K) @ Z(K). Hence there is a space of algebraically
independent invariants @ P, and all other rational-valued Vassiliev’s invari-
ants are polynomials in it.

D. Bar-Natan has calculated vector spaces P, for k < 8 using a com-
puter. The list of dimensions of these spacesis 0,0,1,1,2,3,5,8, 12
for k=0,1,2,3,4,5,6, 7, 8 respectively. The computation time grows
superexponentially, and the computation of P, seems to be quite hard.

We define a modified invariant of knot by the formula Zmod(K )= Z(K)x
Z(K,). One can check that again Zmod(K) is a group-like element, and the
modified primitive invariant log(Zmod(K )) € P is an additive invariant with
the respect to the usual addition of knots. We can introduce the structure of
the Hopf algebra on the space V' of Vassiliev’s invariants with the comulti-
plication coming from the addition of knots. Hopf algebra 7 is in a sense
dual to V.

There are two obvious involutions on the set of knot types, corresponding
to the change of the orientation of the Euclidean space R’ and of the knot
S'. The corresponding involutions on % are multiplication by (— 1)
and the change of the orientation of the line R'.

One can extend the definition of Vassiliev invariants and all constructions
above to the case of framed knots ( = embeddings of the standard solid torus
into R® ). We define the group .W; in the same way as %, with relation (2)
omitted.

The universal Q-valued Vassilev’s invariant for framed knots takes values
in the space & := HM,:. The integral has to be regularized near criti-
cal points. The algebra % is a commutative cocommutative Hopf algebra
canonically isomorphic to &/ [t]. where ¢ is the variable of degree 1 corre-
sponding to the unique family of single arcs.
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83. Algebra &/ and universal enveloping algebras

Let g be a Lie algebra over C, and 7 € g® g be a symmetric element
invariant under the adjoint action, i.e.,

teS’g)’ cSgcgms.

Choose any decomposition of the tensor ¢ into the sum of squares of
elements of g,

t=) g®g, &€

Then for any finite sequence of letters 7, j, k, ... such that every letter
appears twice we can construct an element of the universal enveloping algebra
Ug. For example, the element corresponding to the word ijkjlilk is

Y. 888881888 -
i,j.k,!

With such a word one can associate also a family of arcs on the line. The
invariance of ¢ implies that the relation (1) in the definition of the group
&/ maps to zero. Our construction gives a morphism of algebras .« — Ug,

which does not depend on the choice of the decomposition of 7. In general
this map is not compatible with coproduct structures on &/ and Ug. Since
the tensor ¢ is invariant, the image of this map belongs to the subalgebra
(Ug)® of invariants of Ug under the adjoint action of g. It is clear that
(Ug)? is the center ZUg of the algebra Ug.

As a corollary, we obtain a map &/ — ZUg/iZUg, where i =} g,g,-

Any linear functional y : ZUg — C gives an infinite sequence of C-
valued Vassiliev’s invariants for ordinary and framed knots. For example,
any finite-dimensional representation p of the Lie algebra g gives the trace
functional

X,(x) = tr(p(x)), x € (Ug)®’ c Ug.
All invariants up to degree 7 computed by D. Bar-Natan are linear combi-

nations of invariants arising from simple Lie algebras of types 4, B, C, D.
Using this construction one can obtain the estimate

dim(V,) > e,  n— +o0,

for any positive constant ¢ < 7+/2/3 (see [BN, Exercise 6.14]).

t4. Problem of orientation

The construction described above gives a lot of Vassiliev’s invariants. Un-
fortunately, all such invariants constructed from semisimple Lie algebras can-
not detect the change of orientation of knots.
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The change of orientation corresponds to the passing to the dual represen-
tation. Any simple Lie algebra admits an automorphism (Cartan involution)
acting as the conjugation on the set of irreducible representations.

At the moment it is not clear whether or not ( Q-valued) Vassiliev in-
variants can detect the change of orientation. All the standard polynomial
invariants also cannot do it. Nevertheless, I hope that there are such invari-
ants. Probably, the first one has degree 9. Recall that the first noninvertible
knot was discovered only in 1964 and the simplest diagram for noninvertible
knot has eight self-intersections. D. Bar-Natan conjectured that all invariants
arise from the classical Lie algebras. His conjecture implies that Vassiliev in-
variants cannot detect noninvertibility.

§5. Relation with the perturbative Chern-Simons theory

Three-dimensional topological field theory with Chern-Simons action is
now known to be solvable (see [W]). The corresponding Feynman integral is
defined for integral values k of some parameter called level, and the value
of this integral is an algebraic number. From the physical point of view there
must exist an asymptotic formula for the value of the Feynman integral for
large k in terms of the set of representations of the fundamental group of
3-manifolds into a compact Lie group (=critical points for the Chern-Simons
action).

The perturbation theory was discussed in [GMM] for two-loop diagrams
and was worked out completely by S. Axelrod and I. Singer [AS] and by
myself. It turns out that gauge fields, ghost fields, and anti-ghost fields can be
considered as differential forms of degrees 0, 1, 2. Feynman diagrams (for
knots in R3) are connected 3-valent graphs I' with a fixed oriented simple
closed cycle C in it and an orientation that could be defined in several ways
(see below).

Feynman integral associated with a diagram I' and a knot K (S') C R’ is

I(K) = / [[ o(edge) .
straight embeddings ¢dges €N\C

(', C)—=(R*, K(S"))

where the words “straight embeddings” denote embeddings of the graph T’
into R® such that edges from C are parts of K (S') with compatible ori-
entations and other edges are straight line intervals in R’. The orientation
of the graph I' is a way to fix a sign in the definition of the corresponding
integral. One can describe it as

1) the ordering on the set of vertices plus the choice of orientation of each
edge from I'\C modulo even permutations and an even number of changes,
or, equivalently, as
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Y - _

S=H= >

cycle

Ry
Ny

FIGURE 8§

2) the choice of cyclic order on 3-element sets of edges coming to each
vertex, modulo an even number of changes.

Of course, chord diagrams from Vassiliev’s theory are examples of Feyn-
man diagrams for CS theory. One can define a vector space generated by
equivalence classes of Feynman diagrams with orientation modulo relations
(I", —or) = —(T", or) and a kind of “Jacobi identity” (see Figure 8). D. Bar-
Natan has proved that this space is canonically isomorphic to &7 .

The perturbative Chern-Simons theory for a/l compact Lie groups near the
trivial representation gives the following series

r
1+ b3 FAu) T(K) €7 OR.

equivalence classes of I”

The proof of the topological invariance of this formula is somewhat more
technical than for the case with the Knizhnik-Zamolodchikov equation, but
it uses only three properties of the form @ mentioned in Section 0.

Question. Are invariants arising from CS theory the same as invariants
arising from the KZ equation?

The approach with the Gauss form has a straightforward generalization

1) to the case of higher-degree cohomology classes of the space of embed-
dings,

2) to the case of embeddings into R” with n > 3. It implies collapsing of
the spectral sequence of Vassiliev in the 3-dimensional case and “complete”
computation of H*(Emb(S', R"), Q) for n > 4.
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