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Abstract. Consider the moduli space of pairs (C, ω) where C is a smooth
compact complex curve of a given genus and ω is a holomorphic 1-form
on C with a given list of multiplicities of zeroes. We describe connected
components of this space. This classification is important in the study of
dynamics of interval exchange transformations and billiards in rational
polygons, and in the study of geometry of translation surfaces.
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1. Introduction

1.1. Stratification of the moduli space of Abelian differentials. For inte-
ger g ≥ 2 we define the space Hg as the moduli space of pairs (C, ω) where
C is a smooth compact complex curve of genus g and ω is a holomorphic
1-form on C (i.e. an Abelian differential) which is not equal identically
to zero. Obviously, Hg is a complex algebraic orbifold (in other words,
a smooth stack) of dimension 4g−3. It is fibered over the moduli space Mg
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of curves with the fiber over [C] ∈ Mg equal to the punctured vector space
Γ(C,Ω1

C) \ {0} (modulo the action of a finite group Aut(C)).
Orbifold Hg is naturally stratified by the multiplicities of zeroes of ω.

Let k1, . . . , kn be a sequence of positive integers, n ≥ 1 with the sum
∑

i ki
equal to 2g − 2. We denote by H(k1, . . . , kn) the subspace of H consisting
of equivalence classes of pairs (C, ω) where ω has exactly n zeroes and
their multiplicities are equal to k1, . . . , kn (for some ordering of zeroes).
Our notation is symmetric, H(k1, . . . , kn) = H(kπ(1), . . . , kπ(n)) for any
permutation π ∈ Sn. One has then

Hg =
⊔

n, (k1,...,kn )
k1≤···≤kn

k1+···+kn=2g−2

H(k1, . . . , kn).

Thus, we have a stratification of the moduli space Hg. It is well-known that
each stratum H(k1, . . . , kn) is an algebraic orbifold of dimension

dimCH(k1, . . . , kn) = 2g + n − 1(1)

(see [11], [17], [19]). Moreover, it carries a natural holomorphic affine
structure. Here is the description of this structure.

With any pair (C, ω) we associate an element [ω]∈ H1(C, Zeroes(ω);C),
the cohomology class of pair (C, Zeroes(ω)) represented by closed complex-
valued 1-form ω. Locally near each point x of H(k1, . . . , kn) we can iden-
tify cohomology spaces H1(C, Zeroes(ω);C) with each other using the
Gauss–Manin connection. (For points x = (C, ω) with nontrivial symmetry
we would need to pass first to a finite covering of the neighborhood of x).
Thus, we obtain (locally) a period mapping from H(k1, . . . , kn) to a domain
in a complex vector space. It is well known that this mapping is holomor-
phic and locally one-to-one. The pullback of the tautological affine structure
on H1(C, Zeroes(ω);C) gives an affine structure on H(k1, . . . , kn). (See
also [6] for a related construction concerning smooth closed 1-forms.)

In general, the strata H(k1, . . . , kn) are not fiber bundles over the moduli
space of curves Mg. For example, the dimension of the stratum H(2g − 2)
for g ≥ 2 equals 2g, while dimension of the moduli space of curves Mg
equals 3g − 3 which is strictly larger than 2g for g ≥ 4.

The goal of this paper is to describe the set of connected components
of all strata H(k1, . . . , kn). Surprisingly, we found that the answer is quite
complicated, some strata have up to 3 connected components. The full
description of the connected components of strata is given in Sect. 2.3. This
result was announced in the paper [7].

Remark 1. For any sequence (k1, . . . , kn) of positive integers ki ≥ 1 such
that

∑
i ki = 2g − 2 we define Hnum(k1, . . . , kn) the moduli space of

Abelian differentials on curves with numbered zeroes such that the first
zero has multiplicity k1 etc. Orbifold Hnum(k1, . . . , kn) is a finite covering
of H(k1, . . . , kn). One can show that preimage of any connected component
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of H(k1, . . . , kn) in Hnum(k1, . . . , kn) is connected, i.e. the classification
of connected components is essentially identical in both cases, no matter
whether the zeroes are numbered or not.

1.2. Applications to interval exchange transformations. The motivation
for our study came from dynamical systems, namely from the theory of so
called interval exchange transformations.

First of all, there is an alternative description of Hg in terms of differential
geometry. Outside of zeroes of an Abelian differential ω one can chose
locally a complex coordinate z in such way that ω = dz. This coordinate
is defined up to a constant, z = z′ + const, so it determines a natural flat
metric |dz2| on the Riemann surface C punctured at zeroes of ω. At zero
of ω of multiplicity ki the metric has a conical singularity with the cone
angle 2π(ki + 1). This flat metric has trivial holonomy in the group SO(2):
a parallel transport of a vector tangent to the Riemann surface C along
any closed path avoiding conical singularities brings the vector back to
itself. Thus, choosing a tangent direction at any nonsingular point we can
extend it using the parallel transport to all other nonsingular points, getting
a smooth distribution on the punctured Riemann surface. This distribution
is integrable: it defines a foliation with singularities at the conical points.
The oriented foliation defined by the positive real direction x in coordinate
z = x + iy is called horizontal; the oriented foliation defined by the positive
purely imaginary direction y is called vertical. At a conical point with a cone
angle 2π(ki + 1) one gets ki + 1 horizontal (vertical) directions.

Conversely, a flat structure with trivial SO(2)-holonomy having several
cone type singularities plus a choice of, say, horizontal direction uniquely
determines a complex structure on the surface, and an Abelian differential
in this complex structure.

An Abelian differential ω defines also two smooth closed real-valued
1-forms ωv = Re(ω) and ωh = Im(ω) on C considered as a smooth
oriented two-dimensional surface M2. The vertical and horizontal foliations
described above are the kernel foliations of the 1-forms ωv and ωh corres-
pondingly.

Conversely, let M2 be a compact smooth oriented surface of genus g
with a pair of closed 1-forms ωv, ωh such that ωv ∧ ωh > 0 everywhere
on M2 outside of a finite set. Then there is a unique point [(C, ω)] ∈ Hg

producing such M2 with forms ωv, ωh .
There is a non-holomorphic continuous action on Hg of the group

GL(2,R)+ (the group of matrices with positive determinants). In terms
of pairs of 1-forms (ωv, ωh) = (Re(ω), Im(ω)) this action is given simply
by linear transformations

(ωv, ωh) �→ (aωv + bωh, cωv + dωh).

Later in this text we shall use all descriptions of Hg: the algebro-
geometric one, the one in terms of flat surfaces with a choice of the horizontal
direction, and the one in terms of pairs of measured oriented foliations.
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It was proved by H. Masur, see [11] and by W.A. Veech (see [17]) that
for a generic (with respect to the Lebesgue measure) point of any stratum
H(k1, . . . , kn) the horizontal foliation (and also the vertical one) is uniquely
ergodic. Let us take any interval I on the surface M2 transversal to the ver-
tical foliation, with the canonical induced length element. The first return
map T : I −→ I (defined almost everywhere on I ) is an interval exchange
map, i.e. a one-to-one map with finitely many discontinuity points such
that the derivative of T is equal almost everywhere to +1. The interval
exchange map is parametrized by the number m of maximal open subinter-
vals (Ii)i=1,...,m of continuity of the transformation T , by the sequence of
lengths of these subintervals λ1, . . . , λm where λi > 0, i = 1, . . . , m, and
by a permutation π ∈ Sm describing the order in which intervals T(Ii) are
placed in I : the k-th interval is sent to the place π(k). It follows from the
unique ergodicity that the permutation π is irreducible, which means in our
context that ∀k = 1, . . . , m − 1 we have π({1, . . . , k}) 	= {1, . . . , k}.

Conversely, for any interval exchange map T one can construct an
Abelian differential ω and a horizontal interval I on a complex curve C
such that the first return map to I along the vertical foliation of ω is the
given map T , see [11], [17]. Though the Abelian differential ω is not
uniquely determined by the interval exchange map, the collection of multi-
plicities of zeroes (k1, . . . , kn) of ω and even the connected component of
the moduli space H(k1, . . . , kn) containing point [(C, ω)] are uniquely de-
termined by the permutation π, see [11], [17]. Thus one may decompose the
set of irreducible permutations into groups called extended Rauzy classes
corresponding to connected components of the strata H(k1, . . . , kn).

The application of our result to the theory of interval exchange maps
is based on the corollary of the fundamental theorem of H. Masur [11]
and W. Veech [17] which we present in the next section. The corollary
is as follows: dynamical properties of a generic interval exchange map
depend only on the extended Rauzy class of the permutation of subintervals.
Genericity is understood here with respect to the Lebesgue measure on the
space Rm+ parameterizing lengths (λi)1≤i≤m of subintervals under exchange.

Actually, the extended Rauzy classes can be defined in purely com-
binatorial terms, see Appendix 5.4 for details. Thus the problem of the
description of the extended Rauzy classes, and hence, of the description
of connected components of the strata of Abelian differentials, is purely
combinatorial. However, it seems to be very hard to solve it directly. Still,
for small genera the problem is tractable. W. Veech showed in [19] that the
stratum H(4) has two connected components. P. Arnoux proved that the
stratum H(6) has three connected components.

In the present paper we give a classification of extended Rauzy classes
using not only combinatorics but also tools of algebraic geometry, topology
and of dynamical systems.

1.3. Ergodic components of the Teichmüller geodesic flow. There is
a natural immersion of the moduli space of Abelian differentials into the
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moduli space of holomorphic quadratic differentials: we associate to an
Abelian differential its square. With every quadratic differential we can
again associate a flat metric with conical singularities. The group GL(2,R)+
acts naturally on this larger moduli space as well; this action leaves the
immersed moduli space of Abelian differentials invariant, moreover, on
the immersed subspace it coincides with the action defined in the previous
section. This action preserves the natural stratification of the moduli space
of quadratic differentials by multiplicities of zeroes.

The action of the diagonal subgroup of SL(2,R) ⊂ GL(2,R)+ on the
moduli space of quadratic differentials can be naturally identified with the
geodesic flow on the moduli space of curves for Teichmüller metric (which
is piecewise real-analytic Finsler metric on Mg). Group SL(2,R) preserves
the hypersurface in the moduli space of quadratic differentials consisting
of those ones for which the associated flat metric has the total area equal
to 1.

Numerous important results in the theory of interval exchange maps,
of measured foliations, of billiards in rational polygons, of dynamics on
translation surfaces are based on the following fundamental observation by
H. Masur [11] and W. Veech [17]:

Theorem (H. Masur; W. Veech). The Teichmüller geodesic flow acts ergod-
ically on every connected component of every stratum of the moduli space
of quadratic differentials with total area equal to 1; the corresponding
invariant measure on the stratum is a finite Lebesgue equivalent measure.

Thus our classification of connected components of the strata of Abelian
differentials gives the classification of ergodic components of the Teich-
müller geodesic flow on the strata of squares of Abelian differentials in the
moduli space of quadratic differentials.

The complete classification of connected components of strata of quad-
ratic differentials is in progress (see an announcement in [8]). For example,
the stratum of those quadratic differentials on a curve of genus g = 4, which
cannot be represented as a square of an Abelian differential, and which have
a single zero of degree 12, has two connected components, but at the moment
a topological invariant which would distinguish representatives of these two
connected components is not known yet.

In general, it seems to be very interesting to describe invariant submani-
folds (closures of orbits, invariant measures) for the action of GL(2,R)+
on the moduli spaces. Connected components of the strata are only the
simplest invariant submanifolds, there are many others. For example the
Teichmüller disks of Veech curves form the smallest possible invariant
submanifolds.

One can use a submanifold invariant under the action of GL(2,R)+
to produce other invariant submanifolds in higher genera applying some
fixed ramified covering construction to all pairs (C, ω) constituting the
initial invariant submanifold. In Sect. 2.1 we use a particular case of this
construction to define some special connected components of some strata.
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2. Formulation of results

2.1. Hyperelliptic components. First of all, we introduce the moduli
spaces of meromorphic quadratic differentials.

Definition 1. For integer g ≥ 0 and collection (l1, . . . , ln), n ≥ 1 such that
l j ≥ −1, l j 	= 0 for all j and

∑
j l j = 4g − 4, denote by Q(l1, . . . , ln) the

moduli space of pairs (C, φ) where C is a smooth compact complex curve
of genus g and φ is a meromorphic quadratic differential on C with zeroes
of orders l j (simple poles if l j = −1) such that φ is not equal to the square
of an Abelian differential.

It is known (see [19]) that Q(l1, . . . , ln) is a complex algebraic orbifold
of dimension

dimC Q(l1, . . . , ln) = 2g + n − 2.(2)

Sometimes we shall use “exponential” notation to denote multiple zeroes
(simple poles) of the same degree, for example Q(−15, 1) :=
Q(−1,−1,−1,−1,−1, 1). The condition that φ is not a square is auto-
matically satisfied if at least one of parameters l j is odd.

One can canonically associate with every meromorphic quadratic dif-
ferential (C, φ) another connected curve C′ with an Abelian differential ω
on it. Namely, C ′ is the unique double covering of C (maybe ramified at
singularities of φ), such that the pullback of φ is a square of an Abelian dif-
ferential ω. We have automatically σ∗(ω) = −ω where σ is the involution
on C ′ interchanging points in the generic fiber over C. Curve C′ is connected
because of the condition that φ is not a square of an Abelian differential.

Thus, we obtain a map from the stratum Q(l1, . . . , ln) of meromorphic
quadratic differentials to the stratum H(k1 , . . . , km) of Abelian differentials,
where numbers (ki) are obtained from (l j) by the following rule: to each
even l j > 0 we associate a pair of zeroes of ω of orders (l j/2, l j/2) in the
list (ki), to each odd l j > 0 we associate one zero of order l j + 1, and
associate nothing to simple poles (e.g. to l j = −1).

Lemma 1. The canonical map described above

Q(l1, . . . , ln) → H(k1, . . . , km)

is an immersion.

Proof. Denote as above by C ′ the double covering of C with Abelian
differential ω and involution σ .

Consider the induced involution

σ∗ : H1(C ′, Zeroes(ω);C) → H1(C ′, Zeroes(ω);C).

It defines decomposition H1(C ′, Zeroes(ω);C) � V1 ⊕ V−1 of the first
cohomology into the direct sum of subspaces invariant and anti invariant



Connected components of the moduli spaces of Abelian differentials 637

under the involution σ∗. By construction [ω] ∈ V−1. Thus, we obtain (lo-
cally) a mapping from Q(l1, . . . , ln) to a domain in the complex vector space
V−1 ⊆ H1(C ′, Zeroes(ω);C). It is well known that this mapping is holo-
morphic and locally one-to-one. Since the space H(k1, . . . , km) is locally
identified with H1(C ′, Zeroes(ω);C) by means of the period mapping, this
completes the proof of lemma. ��

The following two series of maps of this kind would play a special role
for us:

Q(−12g′+1, 2g′ − 3) → H(2g′ − 2)

Q(−12g′+2, 2g′ − 2) → H(g′ − 1, g′ − 1),
(3)

where g′ ≥ 2 in both cases. In both cases curve C is rational (i.e. g = 0),
and hence curve C ′ is hyperelliptic of genus g′. In these two cases the
dimension of the image stratum of Abelian differentials coincides with the
dimension of the original stratum of meromorphic quadratic differentials.
Indeed, formula (2) gives

dimC Q(−12g′+1, 2g′ − 3) = 2 · 0 + (2g′ + 2) − 2 = 2g′

dimC Q(−12g′+2, 2g′ − 2) = 2 · 0 + (2g′ + 3) − 2 = 2g′ + 1,

while formula (1) gives the following dimensions of the image strata:

dimC H(2g′ − 2) = 2g′ + 1 − 1 = 2g′

dimC H(g′ − 1, g′ − 1) = 2g′ + 2 − 1 = 2g′ + 1.

Remark 2. We have constructed a map Q(l1, . . . , ln) → H(k1, . . . , km)
using certain canonical double covering C′ → C. Choosing some other
(ramified) covering of some fixed type one can construct some other (local)
maps between moduli spaces of quadratic or Abelian differentials. The
reader can find a detailed description of all maps of this kind between moduli
spaces of quadratic differentials, which give coincidence of dimensions, in
paper [8].

Before returning to maps (3) which are of a particular interest for us we
need to prove the following statement.

Proposition 1. In the case g = 0 every stratum Q(l1, . . . , ln) of meromor-
phic quadratic differentials is nonempty and connected.

Proof. For any divisor on CP1 with given multiplicities the corresponding
meromorphic quadratic differential exists and is unique up to a non-zero
scalar. Thus, we have

Q(l1, ..., ln)/C
∗ ∼=

(
(CP1)n\diagonals

)
/
(
PSL(2,C) × (finite symmetry group)

)
.

Therefore the orbifold Q(l1, . . . , ln) is nonempty and connected. ��
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Lemma 1, the observation on coincidence of dimensions of the cor-
responding strata in (3), together with Proposition 1 justify the following
definition.

Definition 2. By hyperelliptic components we call the following connected
components of the following strata of Abelian differentials on compact
complex curves of genera g ≥ 2:

The connected component Hhyp(2g − 2) of the stratum H(2g − 2)
consisting of Abelian differentials on hyperelliptic curves of genus g cor-
responding to the orbifold Q(−12g+1, 2g − 3);

The connected component Hhyp(g − 1, g − 1) of H(g − 1, g − 1)
corresponding to the orbifold Q(−12g+2, 2g − 2).

Remark 3. Points of Hhyp(2g−2) (respectively of Hhyp(g−1, g−1)) are
Abelian differentials on hyperelliptic curves of genus g which have a single
zero of multiplicity 2g − 2 invariant under the hyperelliptic involution
(respectively a pair of zeroes of orders g − 1 symmetric to each other with
respect to the hyperelliptic involution).

Note that if an Abelian differential on a hyperelliptic curve has a sin-
gle zero of order 2g − 2 then this zero is necessarily invariant under the
hyperelliptic involution σ , because σ∗(ω) = −ω for any Abelian differ-
ential ω. Therefore, this Abelian differential belongs to the component
Hhyp(2g − 2). However, if an Abelian differential ω has two zeroes of
degrees g − 1, there are two possibilities: the zeroes might be interchanged
by the hyperelliptic involution, and they might be invariant under the hyper-
elliptic involution. In the first case the Abelian differential belongs to the
component Hhyp(g − 1, g − 1), while in the second case it does not.

2.2. Parity of a spin structure: a definition.

Definition 3. A spin structure on a smooth compact complex curve C is
a choice of a half of the canonical class, i.e. of an element α ∈ Pic(C) such
that

2α = KC := −c1(TC).

The parity of the spin structure is the residue modulo 2 of the dimension

dim Γ(C, L) = dim H0(C, L)

for line bundle L with c1(L) = α.

On a curve of genus g ≥ 1 there are 22g different spin structures among
which 22g−1 + 2g−1 are even and 22g−1 − 2g−1 are odd. It follows from
the results of M. Atiyah [1] and D. Mumford [14] that the parity of a spin
structure is invariant under continuous deformations.

Let ω be an Abelian differential with even multiplicities of zeroes, ki =
2li for all i, i = 1, . . . , n. The divisor of zeroes of ω

Zeroes(ω) = 2l1 P1 + · · · + 2ln Pn
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represents the canonical class KC . Thus, we have a canonical spin structure
on C defined by

αω := [l1 P1 + · · · + ln Pn] ∈ Pic(C).

By continuity the parity of this spin structure is constant on each connected
component of stratum H(2l1, . . . , 2ln).

Definition 4. We say that a connected component of H(2l1, . . . , 2ln) has
even or odd spin structure depending on whether αω is even or odd, where
ω belongs to the corresponding connected component.

In Sect. 3.1 we present an equivalent definition of the parity of spin
structure in terms of elementary differential topology.

2.3. Main results. First of all, we describe connected components of strata
in the “stable range” when the genus of the curve is sufficiently large.

Theorem 1. All connected components of any stratum of Abelian differen-
tials on a curve of genus g ≥ 4 are described by the following list:

The stratum H(2g − 2) has three connected components: the hyperel-
liptic one, Hhyp(2g − 2), and two other components: H even(2g − 2) and
Hodd(2g − 2) corresponding to even and odd spin structures.

The stratum H(2l, 2l), l ≥ 2 has three connected components: the
hyperelliptic one, Hhyp(2l, 2l), and two other components: H even(2l, 2l)
and Hodd(2l, 2l).

All the other strata of the form H(2l1, . . . , 2ln), where all li ≥ 1, have
two connected components: H even(2l1, . . . , 2ln) and Hodd(2l1, . . . , 2ln),
corresponding to even and odd spin structures.

The strata H(2l−1, 2l−1), l ≥ 2, have two connected components; one
of them: Hhyp(2l−1, 2l−1) is hyperelliptic; the other Hnonhyp(2l−1, 2l−1)
is not.

All the other strata of Abelian differentials on the curves of genera g ≥ 4
are nonempty and connected.

Finally we consider the list of connected components in the case of small
genera 1 ≤ g ≤ 3, where some components are missing in comparison with
the general case.

Theorem 2. The moduli space of Abelian differentials on a curve of genus
g = 2 contains two strata: H(1, 1) and H(2). Each of them is connected
and coincides with its hyperelliptic component.

Each of the strata H(2, 2), H(4) of the moduli space of Abelian dif-
ferentials on a curve of genus g = 3 has two connected components: the
hyperelliptic one, and one having odd spin structure. The other strata are
connected for genus g = 3.

Parities of spin structures for hyperelliptic strata are calculated in the
Appendix A.4, Corollary 5.

Theorems 1 and 2 were announced in [7].
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2.4. Plan of the proof. We possess two invariants of connected compo-
nents: the components could be either hyperelliptic or not, and in the case
of even multiplicities the associated spin structure could be either even or
odd. We show that these invariants classify the connected components. The
maximal number of connected components is 3, and it is achieved for the
strata H(2g − 2) for g ≥ 4. We call the stratum H(2g − 2) minimal.

Our plan of the proof is the following:
In Sect. 3 we give an alternative description of the parity of the spin

structure defined by an Abelian differential having zeroes of even degrees.
For a special class of Abelian differentials introduced in Sect. 4 this de-
scription in terms of differential topology will make the computation of the
parity of the spin structure especially easy.

The subset of points [(C, ω)] whose horizontal foliation has only closed
leaves, is dense in every stratum. In Sect. 4.1 we consider Abelian dif-
ferentials only of this type. We propose a combinatorial way to represent
such Abelian differentials by diagrams, and it is particularly convenient for
the minimal stratum. In Sect. 4.1 we establish a criterion for diagrams se-
lecting the ones associated to Abelian differentials. We call corresponding
diagrams realizable. Also in Sect. 4.1 we describe diagrams corresponding
to hyperelliptic Abelian differentials.

We complete Sect. 4 by introducing a surgery (“bubbling a handle”)
which allows us to construct an Abelian differential in the minimal stratum
in genus g + 1 from an Abelian differential from the minimal stratum in
genus g. This surgery can be applied to any Abelian differential; however,
when the horizontal foliation of an Abelian differential has only closed
leaves, one can apply the surgery in such way that the horizontal folia-
tion of the resulting Abelian differential also has only closed leaves. In
this particular case the surgery can be described in terms of diagrams.
Also we describe how the parity of the spin structure changes under the
surgery.

In Sect. 5 we prove the classification theorem. First we prove it for
the minimal stratum. In Sect. 5.1 we study possible transformations of
realizable diagrams representing points in the minimal stratum preserving
the connected component. We prove by induction in genus g ≥ 2 that the
classification of connected components of the minimal stratum H(2g − 2)
is as in Theorems 1 and 2. We have to note that a surgery used in the step
of induction (“tearing off a handle”) is based on combinatorial Lemma 20
from Appendix A.3 concerning extended Rauzy classes.

In Sect. 5.2 we study the topology of the adjacency of strata, and prove
that the number of connected components in every stratum adjacent to the
minimal stratum is bounded above by the number of connected compo-
nents of the minimal stratum. More precisely, we identify the set of such
components with a quotient of the set π0(H(2g − 2)).

In Sect. 5.3 we prove that any Abelian differential which does not belong
to the minimal stratum, can be degenerated to a differential with less zeroes.
Thus, by induction we prove that any connected component of any stratum
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is adjacent to the minimal stratum, opening the way to apply results of
Sect. 5.2.

Using another class of transformations of diagrams we prove in Sect. 5.4
that in certain cases two connected components of a stratum adjacent to two
given different components of the minimal stratum coincide.

Using the previous results we prove the upper bound on the number
of connected components of every stratum. On the other hand, topological
invariants plus a realization construction (see the end of Sect. 5.4) give
a lower bound on the number of components. These two bounds coincide,
thus we obtain the main result.

Although we shall not do it explicitly in the present paper, one can easily
modify the proof for the case of numbered zeroes and obtain essentially the
same classification of connected components.

3. Spin structure determined by an Abelian differential

In this section we give an alternative description of the spin structure de-
termined by an Abelian differential with zeroes of even orders on a closed
complex curve.

3.1. Spin structure: topological definition. We begin by recalling the
topological definition of the spin structure on a Riemann surface
(see [13], [1]). Let M2

g be a Riemann surface of genus g, and let P be
the S1-bundle of directions of non-zero tangent vectors to M2

g . A spin struc-
ture on M2

g is a double-covering Q → P whose restriction to each fiber of
P is isomorphic to the standard double covering S1 Z/2→ S1.

Since the structure group of the covering Q → P is just Z/2, the spin
structures are in the one-to-one correspondence with the Z/2-valued linear
functions on H1(P;Z/2), having nonzero value on the cycle representing the
fiber S1 of P. Thus, spin structures are classified by a coset of H1(M2

g;Z/2)

in H1(P;Z/2).
In [5] D. Johnson associates to every spin structure ξ ∈ H1(P;Z/2) on

a Riemann surface a Z/2-valued quadratic form Ωξ on H1(M2
g;Z/2), and

shows, that the parity of the spin structure ξ coincides with the Arf-invariant
of Ωξ . We present briefly a sketch of the construction from [5].

First of all, there is a canonical lifting c �→ c̃, H1(M2
g;Z/2) →

H1(P;Z/2) (a map of sets) defined in the following way. Having a cycle
c ∈ H1(M2

g;Z/2) one can represent it by a collection of simple closed ori-
ented curves c = ∑m

i=1[αi]. Let [⇀
αi] be the cycle in H1(P;Z/2) represented

by the framed curve in P consisting of positive tangent directions to αi . Let
z ∈ H1(P;Z/2) be the homology class represented by the fiber S1. The
lifting is defined as

c �→ c̃ :=
m∑

i=1

[⇀
αi] + mz.
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According to [5] the map is well-defined. The map obeys the following
relation

ã + b = ã + b̃ + (a · b)z

where (a · b) is the intersection index of cycles a and b. Notice that the
lifting is not a homomorphism of groups.

A Z/2-valued quadratic form Ω on H1(M2
g;Z/2) with the associated

bilinear form (a, b) �→ a · b is any function Ω : H1(M2
g;Z/2) → Z/2 such

that

Ω(a + b) = Ω(a) + Ω(b) + a · b.

Having a spin structure ξ ∈ H1(P;Z/2) one associates to it the following
quadratic form Ωξ on H1(M2

g;Z/2):

Ωξ(a) :def= 〈ξ, ã〉.

Given a symplectic basis ai, bi ∈ H1(M2
g;Z) the Arf-invariant of a quadratic

form Ωξ is determined as

Φ(Ωξ) :def=
g∑

i=1

Ωξ(ai)Ωξ(bi)(mod 2).

It is proved in [5] that the parity of the spin structure ξ coincides with the
Arf-invariant of Ωξ .

3.2. Spin structure determined by an Abelian differential. Consider
an Abelian differential ω having zeroes of even degrees (2l1, . . . , 2ln) on
a Riemann surface M2

g . It determines a flat structure on M2
g with cone-type

singularities. Recall, that this flat metric has trivial holonomy. In particular,
outside of finite number of singularities (corresponding to zeroes of ω)
we have a well-defined horizontal direction. Consider a smooth simple
closed oriented curve α on M2

g which does not contain any zeroes of ω.
The flat structure allows us to determine the index indα ∈ Z of the field
tangent to the curve; indα coincides with the degree of the corresponding
Gauss map: the total change of the angle between the vector tangent to
the curve, and the vector tangent to the horizontal foliation is equal to
2π · indα.

The spin structure ξ ∈ H1(P;Z/2) determined by ω has the following
property:

〈ξ, [̃α]〉 + 1 ≡ 〈ξ, [⇀α]〉 = indα(mod 2).

This property can be considered as a topological definition of the spin
structure determined by an Abelian differential. It gives also the following
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effective way to compute the parity ϕ(ω) of the spin structure defined by
ω: choose oriented smooth paths (αi, βi)i=1,...,g representing a symplectic
basis of H1(M2

g,Z/2). Then

ϕ(ω) := Φ(Ωξ) =
g∑

i=1

Ωξ([αi]) · Ωξ([βi]) (mod 2) =(4)

=
g∑

i=1

〈ξ, [̃αi]〉 · 〈ξ, [̃βi ]〉 (mod 2) =

=
g∑

i=1

(indαi + 1)(indβi + 1) (mod 2).

In particular, using this definition it is easy to calculate the parity of the
spin structure given any permutation from the corresponding Rauzy class.

We complete this section with the following obvious statements.

Lemma 2. Let α be a smooth simple closed oriented curve everywhere
transversal to the horizontal (vertical) foliation. Then indα = 0. Let α be
a closed regular leaf of the horizontal (vertical) foliation. Then indα = 0.

Lemma 3. The spin structure of an Abelian differential on a surface of
genus one is always odd.

Proof. An Abelian differential ω on a surface of genus one defines a flat
metric on the torus. One can represent a symplectic basis of cycles on
this flat torus by a pair of closed geodesics α, β. By Lemma 2 we get
indα = indβ = 0. Thus, formula 4 gives the following value for the parity
ϕ(ω) of the spin-structure defined by ω

ϕ(ω) = (indα + 1)(indβ + 1) (mod 2) = 1. ��

4. Preparation of a surgery toolkit

4.1. Separatrix diagrams. In this section we consider a special class of
Abelian differentials. Namely, we assume that all leaves of the horizontal
foliation are either closed or connect critical points (a leaf joining two
critical points is called a saddle connection or a separatrix). Later we will
be saying simply that the horizontal foliation has only closed leaves. The
square of an Abelian differential having this property is a particular case of
Jenkins–Strebel quadratic differential, see [16].

Lemma 4. Abelian differentials whose horizontal (vertical) foliations have
only closed leaves form a dense subset in arbitrary stratum H(k1, . . . , kn).
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Proof. We prove the statement for horizontal foliations; for vertical foli-
ations it is completely analogous. First of all, using the period mapping
one concludes immediately that points [(C, ω)] with rational periods of
ωh := Im(ω) are dense in arbitrary stratum. We claim that for these points
the horizontal foliation (given by the kernel of ωh) has only closed leaves.
The reason is that in this case the integration of ωh gives a smooth proper
map π : C → R/ 1

NZ � S1 where N ∈ N is a common denominator of
periods of ωh . Also we have the equality ωh = π∗(dy) where y denotes the
standard coordinate on the real line R. All leaves of the horizontal foliations
belong to fibers of π, therefore are either closed or connect critical points.

��
We will associate with each Abelian differential (C, ω) whose horizontal

foliation has only closed leaves a combinatorial data called separatrix dia-
gram.

We start with an informal explanation. Consider the union of all saddle
connections for the horizontal foliation, and add all critical points (zeroes
of ω). We obtain a finite oriented graph Γ. Orientation on the edges comes
from the canonical orientation of the horizontal foliation. Moreover, graph
Γ is drawn on an oriented surface, therefore it carries so called ribbon
structure (even if we forget about the orientation of edges), i.e. on the
star of each vertex v a cyclic order is given, namely the counterclockwise
order in which edges are attached to v. The direction of edges attached
to v alternates (between directions toward v and from v) as we follow the
counterclockwise order.

It is well known that any finite ribbon graph Γ defines canonically (up to
an isotopy) an oriented surface S(Γ) with boundary. To obtain this surface
we replace each edge of Γ by a thin oriented strip (rectangle) and glue these
strips together using the cyclic order in each vertex of Γ. In our case surface
S(Γ) can be realized as a tubular ε-neighborhood (in the sense of transversal
measure) of the union of all saddle connections for sufficiently small ε > 0.

The orientation of edges of Γ gives rise to the orientation of the bound-
ary of S(Γ). Notice that this orientation is not the same as the canonical
orientation of the boundary of an oriented surface. Thus, connected compo-
nents of the boundary of S(Γ) are decomposed into two classes: positively
and negatively oriented (positively when two orientations of the boundary
components coincide and negatively, when they are different). The comple-
ment to the tubular ε-neighborhood of Γ is a finite disjoint union of open
cylinders foliated by oriented circles. It gives a decomposition of the set
of boundary circles π0(∂(S(Γ))) into pairs of components having opposite
signs of the orientation.

Now we are ready to give a formal definition:

Definition 5. A separatrix diagram (or simply a diagram) is a finite oriented
ribbon graph Γ, and a decomposition of the set of boundary components of
S(Γ) into pairs, such that
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(1) the orientation of edges at any vertex is alternated with respect to the
cyclic order of edges at this vertex;

(2) there is one positively oriented and one negatively oriented boundary
component in each pair.

Notice that ribbon graphs which appear as a part of the structure of
a separatrix diagram are very special. Any vertex of such a graph has even
degree, and the number of boundary components of the associated surface
with boundary is even. Notice also, that in general the graph of a separatrix
diagram is not planar.

Any separatrix diagram (Γ, pairing) defines a closed oriented surface
together with an embedding of Γ (up to a homeomorphism) into this sur-
face. Namely, we glue to the surface with boundary S(Γ) standard oriented
cylinders using the given pairing.

In pictures representing diagrams we encode the pairing on the set of
boundary components painting corresponding domains in the picture by
some colors (textures in the black-and-white text) in such a way that every
color appears exactly twice. We will say also that paired components have
the same color.

6 1

5 2

4 3

Fig. 1. An example of a separatrix diagram. A detailed picture on the left can be encoded
by a schematic picture on the right

Example 1. The ribbon graph presented at Fig. 1 corresponds to the ho-
rizontal foliation of an Abelian differential on a surface of genus g = 2.
The Abelian differential has a single zero of order 2. The ribbon graph has
two pairs of boundary components.

Any separatrix diagram represents an orientable measured foliation with
only closed leaves on a compact oriented surface without boundary. We say
that a diagram is realizable if, moreover, this measured foliation can be
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chosen as the horizontal foliation of some Abelian differential. Lemma 5
below gives a criterion of realizability of a diagram.

Assign to each saddle connection a real variable standing for its “length”.
Now any boundary component is also endowed with a “length” obtained as
sum of the “lengths” of all those saddle connections which belong to this
component. If we want to glue flat cylinders to the boundary components, the
lengths of the components in every pair should match each other. Thus for
every two boundary components paired together (i.e. having the same color)
we get a linear equation: “the length of the positively oriented component
equals the length of the negatively oriented one”.

Lemma 5. A diagram is realizable if and only if the corresponding system of
linear equations on “lengths” of saddle connections admits strictly positive
solution.

The proof is obvious.

Example 2. The diagram presented at Fig. 1 has three saddle connections,
all of them are loops. Let p16, p52, p34 be their “lengths”. There are two pairs
of boundary components. The corresponding system of linear equations is
as follows: {

p34 = p16
p16 + p52 = p34 + p52.

Here is a simple but important result which together with Lemma 4
shows that one can encode (not uniquely) connected components of strata
by realizable separatrix diagrams.

Lemma 6. Let the horizontal foliations of Abelian differentials ω1, ω2 have
only closed leaves. If the corresponding separatrix diagrams are isomor-
phic, then both Abelian differentials belong to the same connected compon-
ent of the same stratum of Abelian differentials.

Proof. In this context it is convenient to think of an Abelian differential as
of a flat surface with cone type singularities, with trivial holonomy and with
a choice of a covariantly constant horizontal direction.

A family of Abelian differentials sharing the same diagram is paramet-
rized by the collection of “horizontal” parameters representing the lengths
of edges of the graph (i.e., the lengths of saddle connections) and by the
collection of “vertical” parameters: heights of the cylinders, and twists used
to paste them in. The vertical and the horizontal parameters are indepen-
dent. There are no constraints on vertical parameters: the heights of the
cylinders are arbitrary positive numbers; the twists are arbitrary angles.
The horizontal parameters belong to a simplicial cone: they are presented
by strictly positive solutions of a system of homogeneous linear equations
described in Lemma 5. Thus the space of parameters is connected. ��
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Lemma 7. Diagram of the horizontal foliation of Abelian differential −ω is
obtained from the diagram of the horizontal foliation of Abelian differential
ω by reversing the arrows (orientations of edges).

The proof is obvious.
As a corollary, we obtain a necessary and sufficient condition for di-

agrams to represent a hyperelliptic Abelian differential from H(2g − 2).
First of all, such a diagram has one only vertex of valence 4g − 2. Con-
sider a small neighborhood of the vertex of such graph; it is represented by
4g − 2 rays joined at the vertex which are organized in a cyclic order. There
is a natural (local) involution of this neighborhood, the central symmetry,
which fixes the vertex and sends each ray to the opposite one.

Lemma 8. For any diagram with one vertex corresponding to a hyperellip-
tic Abelian differential (C, ω) ∈ H(2g−2) the central symmetry extends to
an involution of the ribbon graph interchanging any two paired boundary
components. Also the number of cylinders in the diagram is equal to one
plus the number of two-element orbits of the involution on the set of the
edges of the graph (separatrix loops). Conversely, any diagram with one
vertex and properties as above is realizable and represents a hyperelliptic
Abelian differential.

Proof. Hyperelliptic involution acts as a central symmetry near the unique
zero of ω, also it transforms ω to −ω. This implies the symmetry of the
graph underlying the diagram. Also it shows that the decomposition of
boundary components into pairs is also invariant under the involution. Let
us prove that the involution preserves each pair. Suppose there is a pair of
distinct cylinders which are interchanged by the involution. Change slightly
the “height” of one of them. This corresponds to a continuous deformation
of the vertical foliation, which leaves the horizontal foliation unchanged.
The deformed Abelian differential is supposed to stay in the component
Hhyp(2g − 2) which leads to a contradiction, since the involution does not
exist anymore.

Let us establish now the numerical property nc = n2 + 1 where nc is
the number of cylinders and n2 is the number of two-element orbits as in
lemma. The set of fixed points of the involution consists of a) the vertex
of the diagram, b) the middle point on every involutive separatrix loop, c)
two points in the interior of each cylinder. The total number of separatrix
loops is equal to 2g − 1, therefore the number n1 of loops invariant under
the involution is equal to 2g − 1 − 2n2. Hence, we have 1 + n1 + 2nc =
2g+2(nc−n2) fixed points. On the other hand, the number of fixed points of
a hyperelliptic involution is equal to 2g + 2 which implies that nc = n2 + 1.

Conversely, for a diagram with the properties listed in the lemma the
realizability is obvious because we can assign to each separatrix loop the
same length, which gives us a positive solution of the system of linear
equations from Lemma 5. The corresponding surface carries canonically
an involution with 2g + 2 fixed points, therefore by Hurwitz formula the
quotient surface has genus zero and we are in the hyperelliptic case. ��
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Remark 4. Consider a realizable separatrix diagram corresponding to a con-
nected closed surface, and forget the orientation of the edges. There are
exactly two ways to orient again our graph (keeping the initial structure of
the ribbon graph, and keeping the initial distribution of the boundary com-
ponents into pairs) which lead to a realizable diagram: the initial way, and
the opposite one. This is true even if the underlying graph of the diagram is
not connected. According to Lemma 7 these two orientations correspond to
Abelian differentials ω and −ω. Note that Abelian differentials ω and −ω
belong to the same stratum H(k1, . . . , kn); moreover, they belong to the
same connected component since they can be joined inside the stratum by
the continuous path eiθω, θ ∈ [0;π]. Thus, it follows from Lemmas 6 and 7
that both orientations of a realizable diagram represent Abelian differentials
from the same connected component of the same stratum. Hence, if we care
only about connected components of strata then in pictures of separatrix
diagrams we can omit arrows (directions of edges).

4.2. Bubbling handles. In this section we describe a local surgery (“bub-
bling a handle”) which modifies the surface in a small neighborhood of
a chosen zero of the Abelian differential. Here it will be convenient to use
“numbered” versions of moduli spaces (see Remark 1 from Introduction).
Also here and later in Sect. 5 in order to alleviate notations we will denote
a point [(C, ω)] of the moduli space simply by ω and will write slightly
incorrectly ω ∈ Hnum(k1, . . . , kn).

Topologically the surgery corresponds to adding a handle to the sur-
face. Metrically we choose a small disk centered at the chosen conical
singularity, then we make some geodesic cuts inside the disk and paste
in a small metric cylinder. Having started with an Abelian differential
ω ∈ Hnum(k1, . . . , ki−1, ki, ki+1, . . . , kn) we construct an Abelian differ-
ential ω̂ ∈ Hnum(k1, . . . , ki−1, ki + 2, ki+1, . . . , kn), where the surface was
modified in the neighborhood of the zero Pi of multiplicity ki . The surgery
depends on one discrete and on two complex parameters.

Revising this paper we decided to replace the initial version of the
surgery, by the more general one described recently in [3], called there the
“figure eight construction”. Here we present briefly this latter construction
consisting of two steps.

Breaking up a zero. We first describe how one can break up a zero Pi of
multiplicity k of an Abelian differential into two zeroes of multiplicities
k′, k′′, where k′ + k′′ = k, by a local surgery. In fact, we will need this
construction also in a slightly more general case when parameter k′′ is equal
to zero.

Consider a metric disk of a small radius ε centered at the point Pi , i.e.
the set of points Q of the surface such that Euclidean distance from Q to
the point Pi is less than or equal to ε. We suppose that ε > 0 is chosen
small enough, so that the ε-disk does not contain any other conical points
of the metric; we assume also, that the disk which we defined in the metric
sense is homeomorphic to a topological disk. Then, metrically our disk
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has a structure of a regular cone with a cone angle 2π(ki + 1); here ki is
the multiplicity of the zero Pi . Now cut the chosen disk (cone) out of the
surface. We shall modify the flat metric inside it preserving the metric at the
boundary, and then paste the modified disk (cone) back into the surface.

ε ε

6π

2δ

ε+δ ε−δ

ε−δ ε+δ

2δε+δ ε+δ

ε−δ ε−δ

ε−δ ε−δ

Fig. 2. Breaking up a zero into two zeroes (after [3])

Our cone can be glued from 2(ki + 1) copies of standard metric half-
disks of the radius ε, see the picture at the top of Fig. 2. Choose some
small δ, where 0 < δ < ε and change the way of gluing the half-disks
as indicated on the bottom picture of Fig. 2. As patterns we still use the
standard metric half-disks, but we move slightly the marked points on their
diameters. Now we use two special half-disks; they have two marked points
on the diameter at the distance δ from the center of the half disk. Each
of the remaining 2ki half-disks has a single marked point at the distance
δ from the center of the half-disk. We are alternating the half-disks with
the marked point moved to the right and to the left from the center. The
picture shows that all the lengths along identifications are matching; gluing
the half-disks in this latter way we obtain a topological disk with a flat
metric; now the flat metric has two cone-type singularities with the cone
angles 2π(k′ + 1) and 2π(k′′ + 1), where k′ + k′′ = ki , and k′, k′′ ∈ Z+.
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By convention we denote the multiplicities of the newborn zeroes in such
way that k′ ≥ k′′. Here 2k′ and 2k′′ are the numbers of half-disks with one
marked point glued in between the distinguished pair of half-disks with two
marked points.

By technical reasons it would be convenient to include into consideration
the trivial case, when k′′ is equal to zero. In this latter case we, actually, do
not change the metric at all; we just mark a point P′′ at the distance 2δ from
the point Pi = P′.

Note that a small tubular neighborhood of the boundary of the initial
cone is isometric to the corresponding tubular neighborhood of the boundary
of the resulting object. Thus we can paste it back into the surface. Pasting it
back we can turn it by any angle ϕ, where 0 ≤ ϕ < 2π(ki + 1).

We described how to break up a zero of multiplicity k of an Abelian
differential into two zeroes of multiplicities k′, k′′, where k′ + k′′ = k, and
k′ ≥ k′′. The construction is local; it is parameterized by the two free real
parameters (actually, by one complex parameter): by the small distance 2δ
between the newborn zeroes, and by the direction ϕ of the short geodesic
segment joining the two newborn zeroes. In particular, as a parameter space
for this construction one can choose a punctured disk.

Now we can proceed with the second step of the construction.

Bubbling a handle into a slit. Let us slit the surface along the short geodesic
segment of the length 2δ joining the newborn zeroes P′, P′′ and let us
identify the endpoints of the slit. The resulting surface has two boundary
components joined together at the point P′ = P′′. By construction the
boundary components are geodesics in the flat metric determined by ω; they
have the same length 2δ. Take a small flat cylinder with a waist curve of
length 2δ and paste it into our surface. The surface M2

g+1 is constructed. The
flat structure on M2

g+1 together with the choice of the horizontal direction
uniquely determine an Abelian differential ω̂ on M2

g+1. By construction the
resulting Abelian differential ω̂ belongs to the stratum Hnum(k1, . . . , ki +2,
. . . , kn), where ω ∈ Hnum(k1, . . . , ki, . . . , kn), and ki is the multiplicity of
the zero Pi (the case ki = 0 is not excluded; in this case Pi is just a marked
point). The Abelian differential ω̂ is obtained from ω by “bubbling a small
handle” at the zero Pi (see Fig. 3).

This surgery is parameterized by the following list of parameters:
— Discrete parameter k′, where ki/2 ≤ k′ ≤ ki . This parameter indicates
the number of sectors between the distinguished pair of sectors. For the
resulting Abelian differential ω̂ there are 2k′ + 2 sectors on the one side and
2k′′ + 2 on the other side; see also Fig. 3, where m denotes (k′′ + 1);
— Pair of free real parameters δ and ϕ responsible for the breaking up
a zero; in the resulting construction they represent the length of the waist
curve of the cylinder and direction in which goes the corresponding closed
geodesic. This pair of real parameters can be seen as one complex parameter:
the period of the Abelian differential ω̂ along the waist curve of the new
cylinder;
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— Finally, we have two more free real parameters representing the height
of the cylinder, and the twist which we used pasting it into the surface. They
can be organized in a complex parameter representing the period of ω̂ along
the cycle following the new handle.

Let us describe now the properties of this surgery.

Lemma 9. Consider Abelian differentials ω̂1, ω̂2 ∈ Hnum(k1, . . . , ki + 2,
. . . , kn) obtained by “bubbling a handle” at the same zero Pi of an Abelian
differential ω ∈ Hnum(k1, . . . , ki, . . . , kn). If the angle 2πm between the
sectors corresponding to the handle (see Fig. 3) is the same for ω̂1 and
for ω̂2, then there exist a continuous path in Hnum(k1, . . . , k j + 2, . . . , kn)
joining ω̂1 with ω̂2; in particular, ω̂1, ω̂2 belong to the same connected
component of the stratum Hnum(k1, . . . , ki + 2, . . . , kn).

Proof. Fixing the discrete parameter k′ (which is equal to m − 1 if m >
ki/2 − 1, and to ki − m + 1 otherwise) we describe “bubbling a handle”
at the zero Pi of ω by two pairs of continuous parameters as above. Note
that the space of parameters δ, ϕ describing breaking up the zero into two is
a punctured disk; the space of parameters parameterizing the cylinder (the
height of the cylinder and the twist used to paste it into the surface) is also
a punctured disk. Thus the total space of parameters is a direct product of
two punctured disks, which is obviously path-connected. ��
Lemma 10. Let an Abelian differential ω̂ ∈ Hnum(k1, . . . , ki + 2, . . . , kn)
be obtained from an Abelian differential ω ∈ Hnum(k1, . . . , ki, . . . , kn) by
“bubbling a handle” at some zero Pi. Any path ρ : [0; 1] →
Hnum(k1, . . . , ki, . . . , kn) which starts at ω can be lifted to a path ρ̂ :
[0; 1] → Hnum(k1, . . . , ki + 2, . . . , kn) starting at ω̂ by continuous “bub-
bling a handle” along ρ.

Proof. Note that we can bubble a small handle into any Abelian differential
of the given stratum. This implies that we can choose an appropriate subset
in the stratum Hnum(k1, . . . , ki +2, . . . , kn) which would have the structure
of a (singular) fiber bundle over the stratum Hnum(k1, . . . , ki, . . . , kn). The
regular fiber is a direct product of two disks punctured at the centers;
a singular fiber is a quotient of the direct product of two disks punctured at
the centers by a finite group of symmetry. Thus the lifting described in the
lemma is the particular case of lifting of a path from the base to the total
space of a fiber bundle. ��
Remark 5. In other words Lemma 10 means the following. Let an Abelian
differential ω̂ on a Riemann surface of genus g + 1 be constructed from an
Abelian differential ω on a surface of genus g by “bubbling a small handle”.
Morally, we can temporarily “forget” (or “erase”) corresponding handle;
modify Abelian differential ω on a surface of genus g inside his stratum in
a continuous way, and then “recall” the “forgotten” handle for the resulting
Abelian differential ω′ provided that the metric parameters of the handle
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are sufficiently small. Then Abelian differential ω̂′ on a surface of genus
g + 1 which we obtain as a result of this construction belongs to the same
connected component as Abelian differential ω̂.

Suppose that we “bubble a handle” into a flat surface corresponding to
an Abelian differential ω having zeroes of even multiplicities. The resulting
Abelian differential ω̂ would have the same property. In particular, both
Abelian differentials determine spin structures on corresponding surfaces.
The following lemma compares the parities ϕ(ω) and ϕ(ω̂) of these spin
structures.

2πm

Fig. 3. Two simple separatrix loops determining a handle

Lemma 11. Let an Abelian differential ω̂ ∈ Hnum(2(l1 + 1), 2l2, ..., 2ln)
on a surface of genus g + 1 be obtained from an Abelian differential ω ∈
Hnum(2l1, 2l2, ..., 2ln) on a surface of genus g by “bubbling a handle”. Let
2πm be the angle of one of the two sectors complementary to the handle,
see Fig. 3. The parities of the spin structures determined by ω and by ω̂ are
related in the following way:

ϕ(ω̂) − ϕ(ω) = m + 1(mod 2).

Proof. Choose a collection of oriented simple curves (αi, βi)i=1,...,g on the
initial surface of genus g representing a symplectic basis in the first homol-
ogy group. Deforming, if necessary, the paths inside their isotopy classes
we can make them stay away from some small neighborhood U(P1) of the
zero P1 under consideration. We can assume that the surgery (“bubbling
a handle”) was performed inside this small neighborhood U . In particular,
the surgery does not affect the initial collection of paths.

The initial basis of cycles can be completed to a symplectic basis on the
surface of genus g + 1 obtained after “bubbling a handle” by adding two
additional curves on the handle created in the surgery.

One of these new curves, which we denote by αg+1 , can be represented by
a waist curve of the cylinder which we pasted in; moreover, we can choose
this waist curve to be a closed geodesic. By Lemma 2 we get indαg+1 = 0.
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The second curve, βg+1, can be chosen as follows. Suppose for simplicity
that the handle was bubbled with the slit made in the horizontal direction,
and with a trivial twist, i.e., the leaf of the vertical foliation emitted from zero
P1 into the new handle returns back to P1. (Changing the twist we stay in the
same connected component of the stratum Hnum(2(l1 + 1), 2l2, . . . , 2ln);
in particular, we do not change the parity of the spin structure defined by
the corresponding ω̂.) Take a circle centered at P1 in the initial surface.
Making the radius of the circle sufficiently small we get the circle inside the
neighborhood U; in particular, it does not intersect any of the initial curves
αi, βi , where i ≤ g. Choose an arc of this circle joining two distinguished
sectors (see Fig. 3). Then the endpoints of the arc might be joint by a piece
of leaf of the vertical foliation along the new cylinder (recall, that the twist
of the handle is by assumption trivial). By construction the resulting closed
path βg+1 is smooth; it does not intersect any of the initial curves; and
[αg+1] · [βg+1] = 1. Hence we got the desired symplectic basis of cycles.

Direct calculation gives indβg+1 = m, since the tangent vector to the path
βg+1 turns by the angle 2πm along the arc, and does not turn at all along
the vertical segment. Now everything is ready to compare the parities of the
spin structures of ω and ω̂; here we use formula 4

ϕ(ω′) =
g+1∑

i=1

(indαi + 1) · (indβi + 1) =

=
g∑

i=1

(indαi + 1) · (indβi + 1) + (indαg+1 + 1) · (indβg+1 + 1) =

= ϕ(ω) + (0 + 1) · (m + 1). ��
Consider now “bubbling a handle” in the particular case when the ho-

rizontal foliation of the initial Abelian differential ω has only closed leaves.
If at the intermediate stage of “bubbling a handle” we break up the zero in
the horizontal direction, then the horizontal foliation of the resulting Abelian
differential ω̂ obtained after “bubbling a handle” also has only closed leaves.
It would be convenient for us to reformulate the lemmas above in this par-
ticular case in terms of the diagrams of the Abelian differentials ω and ω̂.

Example 3. Consider a flat torus and chose the horizontal direction on it
in such way that the leaves of the horizontal foliation would be closed.
“Bubbling a handle” in the horizontal direction at some point of the torus
we get a surface of genus 2 with horizontal foliation having only closed
leaves. The diagram of this foliation is presented at Fig. 1.

We call a separatrix loop simple if the corresponding outgoing and
ingoing separatrix rays are neighbors (see Fig. 3). In terms of diagrams of
separatrix loops “bubbling a handle” in a horizontal direction corresponds
to adding a pair of simple separatrix loops of the same color to the initial
diagram, see Example 3 above.
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Note that when we “bubble a handle” at a true zero of ω (and not
at a regular point as in the example above) there are several horizontal
directions at a conical point. In particular, even when we fix the discrete
parameter k′ there are several ways to “bubble a handle” in the horizontal
direction. The first lemma says that fixing the discrete parameter k′ we
get to the same connected component, no matter which of these horizontal
direction we choose.

Lemma 12. Rotating a pair of simple separatrix loops of the same color
corresponding to the handle just “bubbled” in such way that the number
of sectors between the pair of simple separatrix loops stay unchanged we
obtain diagrams representing Abelian differentials from the same connected
component of the corresponding stratum.

Proof. The proof is a direct corollary of Lemma 6 and Lemma 9. ��
Example 4. The realizable diagrams presented at Fig. 8 correspond to
Abelian differentials from the same connected component.

Now let us reformulate Lemma 11 in the case when the leaves of ho-
rizontal foliations of ω and of ω̂ are closed. We assume that all zeroes of ω
and ω̂ have even degrees, or equivalently that the corresponding separatrix
diagrams have vertices only of valences 2(mod 4).

Lemma 13. Let Abelian differentials ω on a surface of genus g and ω̂ on
a surface of genus g + 1 have horizontal foliations with only closed leaves.
Suppose that the corresponding separatrix diagram of ω is obtained from the
diagram of ω̂ by erasing a pair of simple separatrix loops corresponding to
the same zero and bounding a pair of sectors of the same color (see Fig. 3).
Let 2πm be the angle of one of the two complementary sectors. The parities
of the spin structures determined by ω and by ω̂ are related in the following
way:

ϕ(ω̂) − ϕ(ω) = m + 1(mod 2).

Proof. Bubbling an appropriate handle in the flat surface determined by ω
we obtain an Abelian differential with the same diagram as ω̂. It follows
from Lemma 6 that all Abelian differentials corresponding to the same
diagram have the same parity of the spin structure. Thus the lemma is
a direct corollary of Lemma 11. ��

5. Connected components of the strata

5.1. Connected components of the minimal stratum H (2g−2). Here we
will proceed by induction in genus g and will use the fact that any connected
component of the minimal stratum H(2g) in genus g + 1 can be accessed
from some connected component of the minimal stratum H(2g − 2) in
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genus g by “bubbling a handle”. Surprisingly, this statement is not triv-
ial. Despite of many attempts we were unable to find a purely geometric
proof of the lemma below; we use the arguments based on combinatorial
Lemma 20 from Appendix A.3. The difficulty which one meets here is
as follows. In every connected component of H(2g) one can easily find
Abelian differentials having a cylinder filled by regular closed leaves of the
horizontal foliation. Moreover, one can get examples when such cylinder is
bounded by a pair of simple separatrix loops. However, we should warn the
reader that many of these Abelian differentials are not results of “bubbling
a handle”, see [3] for details.

Lemma 14. Any connected component of the minimal stratum H(2g)
can be accessed from some connected component of the minimal stratum
H(2g − 2) by “bubbling a handle” into a flat surface corresponding to an
Abelian differential ω ∈ H(2g − 2).

Proof. Consider the extended Rauzy class Rex corresponding to the con-
nected component of the stratum H(2g) under consideration. Choose a per-
mutation π ∈ Rex as in Lemma 20 from Appendix A. Consider an Abelian
differential ω̂ obtained as a suspension over an interval exchange transform-
ation with the permutation π, with integer λi , and with λ1 = λm . Since all
λi are integer, the vertical foliation of ω̂ has only closed leaves. It is easy
to see that the vertical foliation has a pair of simple separatrix loops: that
is an ingoing and outgoing separatrices in each loop are neighbors, and this
pair of simple loops determines a handle (cf. Fig. 3); subintervals I1 and Im
belong to this handle.

Consider now an Abelian differential ω obtained as a suspension over an
interval exchange transformation with permutation π ′ as in Lemma 20, and
with the vector of lengths λ2, . . . , λm−1, where λi are same as above. By the
choice of the permutations π and π ′ we get ω ∈ H(2g − 2). Since all λi are
integer, the vertical foliation of ω also has only closed leaves. Moreover,
it is easy to check that the separatrix diagram of the vertical foliation of
ω̂ is obtained from the separatrix diagram of the vertical foliation of ω
by “bubbling a handle”. The statement of the lemma now follows from
Lemma 6. ��

From now on till the end of this subsection we will work in terms of sepa-
ratrix diagrams representing Abelian differentials from stratum H(2g − 2).

Consider the following three diagrams depending on genus g (cf Fig. 4
for the case g = 5). Each diagram contains 2g − 1 separatrix loops (g ≥ 2)
corresponding to 4g − 2 separatrix rays r1, . . . , r4g−2. We enumerate the
rays counterclockwise starting from the one pointing to the “south”. Join
the following ordered pairs of rays by arcs; the order of the rays in each pair
defines the orientation of the separatrix loop. Join r1 and r2g; join r2i+1 and
r2i , for i = 1, . . . , g − 1; join r2i−1 and r2i for i = g + 1, . . . , 2g − 1. The
diagrams differ only by the way we paint them.
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Fig. 4. The diagrams represent the following components on a surface of genus 5:
H) hyperelliptic component; O) odd spin structure; E) even spin structure

— Case H. (g ≥ 2) Paint with the same colors pairs of domains centrally
symmetric to each other.
— Case O. (g ≥ 2) Paint with the same colors pairs of domains symmetric
with respect to the vertical axis.
— Case E. (g ≥ 3) Paint with the same colors the sectors corresponding
to the loops r3r2 and r4g−5r4g−4. Paint with the same colors the sectors
corresponding to the loops r5r4 and r4g−3r4g−2. Paint with the same colors
the rest pairs of domains symmetric to each other with respect to the vertical
axis (cf. Fig. 4).

Lemma 15. Every diagram of the type H, O, or E is realizable by the
horizontal foliation of an Abelian differential from the stratum H(2g − 2).

Proof. In our case the system of linear equations on the lengths of separatrix
loops (see Lemma 5) is trivial: simple separatrix loops bounding the domains
of the same color have equal length. Thus it obviously has positive solutions.

��
Lemma 16. Let an Abelian differential ω have the horizontal foliation
represented by one of the diagrams H, O, E.

— If the diagram is diagram H, then ω ∈ Hhyp(2g − 2).
— If the diagram is diagram O, then ω has odd spin structure. If g = 2,
then the diagram O coincides with the diagram H, and ω is hyperelliptic;
for g > 2 it is not hyperelliptic.
— If the diagram is diagram E, then ω has even spin structure. If g = 3
then the diagram E coincides with the diagram H, and ω is hyperelliptic;
for g > 3 it is not hyperelliptic.

Proof. Diagram H is always centrally symmetric ; diagram O is centrally
symmetric only for g = 2 when it coincides with the diagram H; dia-
gram E is centrally symmetric only for g = 3 when it coincides with the
diagram H . Thus according to Lemma 8 these are the only cases when we
get a hyperelliptic Abelian differential.
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The parity of the spin structure determined by an Abelian differential
with a horizontal foliation of the type O or E is computed inductively
using Lemma 13, with Lemma 3 serving as the base of induction. Strictly
speaking, we can not apply Lemma 13 to the bubbling a handle to the torus
(g = 1 case) because we introduced bubbling only at zeroes of positive
multiplicity. It is easy to check that our arguments work as well for the
bubbling at a regular point, i.e. at a “zero of multiplicity zero”. The diagram
for g = 1 case consists of one vertex and one loop. ��
Proposition 2. Any connected component of the stratum H(2g − 2) for
g ≥ 2 contains an Abelian differential with a horizontal foliation repre-
sented by one of the diagrams H, O, E.

Corollary 1. For g = 2 the stratum H(2) is connected; it coincides with
the hyperelliptic component. For g = 3 the stratum H(4) has exactly two
connected components: the hyperelliptic one Hhyp(4), and one having odd
parity of the spin structure Hodd(4). For g ≥ 4 the stratum H(2g − 2) has
exactly three different connected components: Hhyp(2g−2), Hodd(2g−2),
and H even(2g − 2).

Proof. The corollary follows immediately from combination of Proposi-
tion 2 with Lemma 16 and Lemma 6. ��

The rest part of this section is devoted to the proof of Proposition 2.

Proof of Proposition 2. The diagrams which can be obtained one from the
other by reversing the arrows are equivalent in our considerations, see Re-
mark 4. Throughout this proof we mostly do not distinguish such diagrams.

First note that for the connected component Hhyp(2g −2) the statement
of the proposition is obvious: by Lemmas 15 and 16 the diagram H is
realizable by the horizontal foliation of a hyperelliptic Abelian differential.

Every Riemann surface of genus g = 2 is hyperelliptic which implies
that any Abelian differential in the stratum H(2) is hyperelliptic, H(2) =
Hhyp(2) and hence H(2) is connected. Thus for g = 2 the proposition is
proved.

Assume that Proposition 2 is proved for all genera smaller than or equal
to g, where g ≥ 2. Let us prove it for genus g + 1. To make a step of
induction we have to decrease the genus of the surface by one. In order
to do this we use Lemma 14 saying that in any connected component of
H(2g), g ≥ 2, one can find an Abelian differential ω̂ obtained from some
Abelian differential ω ∈ H(2g − 2) by “bubbling a handle”.

“Forget” the corresponding handle (see Remark 5). By the induction
assumption we can deform continuously the corresponding Abelian differ-
ential ω on a surface of genus g to fit one of the diagrams H, O, or E. Now we
can “bubble the forgotten handle” along the path in the stratum H(2g − 2),
see Lemma 10. Proposition 2 now follows from the lemma below. ��
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Lemma 17. Consider an Abelian differential ω̂ ∈ H(2g) obtained by
“bubbling a handle” at the zero of an Abelian differential ω ∈ H(2g − 2)
having the horizontal foliation of one of the types H, O, E in genus g. There
exist a continuous path in H(2g) joining ω̂ with an Abelian differential
having the horizontal foliation of one of the types H, O, E in genus g + 1.

Proof. Note that by Lemma 12 we may always assume that the pair of
simple separatrix loops representing the handle just “bubbled” is symmetric
with respect to the vertical axis.

If the diagram obtained after “bubbling a handle” is already of one of
the types H, O, E, the statement of the lemma becomes trivial.

The pair of simple separatrix loops representing the handle just “bub-
bled” is colored in black on all the figures. Speaking about a pair of simple
separatrix loops we always mean a pair of simple separatrix loops repre-
senting a handle, and thus colored by the same color at the diagram.

The idea of the proof is the following. Our diagrams have numerous pairs
of simple separatrix loops representing handles. We choose an appropriate
pair of simple separatrix loops of the same color and temporarily “forget”
it, see Remark 5. Using Lemma 5 we check that the modified diagram
is realizable. Using the induction assumption we deform continuously the
corresponding Abelian differential in genus g to one having one of the
diagrams H, O, E. Then we “recall” the “forgotten” handle. By Lemma 10
the resulting diagram in genus g+1 represents an Abelian differential which
can be obtained from the initial one ω̂ by a continuous deformation inside
H(2g).

We start with the general case assuming that g ≥ 4; we consider the
small genera g = 2, 3 separately.

Case h) Let the initial Abelian differential ω̂ in genus g + 1 correspond to
the diagram of the type H with a “handle bubbled into it”. If the result-
ing diagram is centrally symmetric, it satisfies conditions from Lemma 8
and therefore Abelian differential ω̂ belongs to the hyperelliptic connected
component Hhyp(2g). Hence, we can join it by a continuous path with an
Abelian differential corresponding to the diagram H in genus g + 1.

Suppose now that the diagram obtained after “bubbling a handle” in
the diagram H is not centrally symmetric. For the initial genus g ≥ 4
we obtain a diagram in genus g + 1 having a centrally symmetric pair
of simple separatrix loops different from the pair just “bubbled”. We can
always choose this new pair of simple separatrix loops in such a way that
the diagram obtained after “forgetting” this new pair would not be centrally
symmetric. It is easy to see that the resulting diagram is realizable. Thus,
by induction assumption we can deform the resulting Abelian differential
inside H(2g − 2) to one corresponding to one of the diagrams O or E.
“Recall” the “forgotten” handle. The resulting diagram is obtained from
one of the diagrams of the type E or O by “bubbling a handle”. We have
reduced this case to one of the cases o) or e).



Connected components of the moduli spaces of Abelian differentials 659

Case o) A diagram obtained by “bubbling a handle” into the diagram of
type O in genus g ≥ 4 is either again of the type O, or it is of the type
presented at Fig. 5.
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Fig. 5. Case o)

In the latter case there is a symmetric pair of simple separatrix loops
next to the vertical axis. By reversing the arrows on the diagram, if neces-
sary, we may assume that this new pair of simple separatrix loops is next
to the top vertical ray (one without arrow). Let us “forget” this new pair of
simple separatrix loops. The resulting diagram is obviously realizable. By
Lemma 11 it represents an Abelian differential ω′ having even parity of the
spin structure. For initial genus g ≥ 4 it would not be centrally-symmetric.
Thus, by the induction assumption we can deform ω′ by a continuous defor-
mation inside H(2g−2) to an Abelian differential representing diagram E.
“Recall” the “forgotten” handle. Using Lemma 12 we can assume that it is
located near the marked ray. It is represented by a pair of simple separatrix
loops next to the top vertical separatrix ray symmetric with respect to the
vertical diameter. The diagram thus obtained is diagram E in genus g + 1.

Case e) Consider a diagram obtained after “bubbling a handle” into diagram
E in genus g ≥ 4. If it is already of the type E, we have nothing to modify.

If the new handle was “bubbled” inside the pair of top symmetric sectors
(see, for example, Fig. 6) we may turn the pair of black petals (keeping fixed
the angle between them), say, placing them inside the bottom two petals
(see Lemma 12). Thus we may assume that the top symmetric petals of the
diagram stay unchanged upon “bubbling a handle”, see, e.g. Fig. 7.

“Forgetting” the top pair of symmetric petals we obtain a diagram which
is obviously realizable by an Abelian differential ω′ ∈ H(2g − 2), and
which is not centrally-symmetric, except only one case when g = 4 and
black petals are inserted between the bottom pairs of petals. Thus, if we are
not in this exceptional case, by the induction assumption we can deform ω′
by a continuous deformation inside H(2g − 2) to an Abelian differential
representing one of the diagrams O or E. “Recalling” the “forgotten” handle
we obtain an Abelian differential representing one of the diagrams O or E
in genus g + 1.
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Fig. 6. A handle “bubbled” into diagram E in genus g = 4
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Fig. 7. Case e)

In the exceptional case when the initial genus g is equal to 4 and black
petals are inserted between the bottom pairs of petals of diagram E “recall”
the “forgotten” top pair of symmetric petals at the initial place. Turn the pair
of black petals (keeping fixed the angle between them) by seven sectors.
The black petals are again symmetric with respect to the vertical axis and
we obtain a diagram of the type E in genus g = 5.

To complete the proof of the lemma we need to consider the small genera
g = 2, 3.

Small genera) For initial genus g = 2 the diagram E does not exist, and the
diagrams H and O coincide. Thus, the new diagram is obtained by “bubbling
a handle” into the diagram of the type H in genus g = 2. The diagram
obtained is either of the type O in genus g = 3, or it is centrally-symmetric.
In the latter case by Lemma 8 the corresponding Abelian differential belongs
to the hyperelliptic component. Hence, it can be joined by a continuous path
to an Abelian differential corresponding to the diagram of the type H . This
completes consideration of genus g = 2.

Consider now diagrams in genus g = 3. The case when a handle is
“bubbled” in a diagram of the type O in genus g = 3 can be treated the
same way as in the general case o), except that we can now obtain a diagram
which is centrally symmetric, thus reducing it to the case of ‘bubbling
a handle” into the diagram of the type H .
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Fig. 8. Modifying diagrams by rotating a pair of petals of the same color

The diagrams H and E coincide in genus g = 3. “Bubbling a handle”
in the diagram H in genus g = 3 we obtain either one of the diagrams H, E
in genus g = 4 (up to the change of the orientation of the foliation, see
Remark 4) or the diagram presented at Fig. 8 on the left.

In the latter case we can rotate the pair of black petals one sector clock-
wise to obtain the diagram presented at Fig. 8 in the middle; by Lemma 12
this realizable diagram represents the same connected component of the
same stratum as the initial one. Using Lemma 5 one can check that erasing
any pair of petals of the same color from the resulting diagram (the middle
one on Fig. 8) one gets a realizable diagram. In particular, we may think of
the pair of petals colored in light grey (the petals corresponding to North-
East and South-West directions) as of the pair of petals “just bubbled”.
Hence, we may apply Lemma 12 to this pair of petals. Rotating two sectors
clockwise this pair of petals of the same color (the ones corresponding to
North-East and South-West directions) we modify the middle diagram on
Fig. 8 to the diagram of the type O in genus g = 4 (the right one on Fig. 8).

Lemma 17 is proved. ��

5.2. Stratification of H g near a given stratum. Let (C, ω) be a complex
curve C with an Abelian differential ω representing a point x =[(C, ω)]∈Hg
of the moduli space Hg of all Abelian differentials, g ≥ 2. A germ U of
the orbifold Hg at the point x is the quotient Ũ/Γ where Ũ is a germ of
a complex manifold of dimension 4g − 3 and Γ = Aut(C, ω) is a finite
group acting on Ũ , preserving the base point x̃ ∈ Ũ corresponding to x. (For
a generic point x = [(C, ω)] ∈ Hg the group of automorphisms Γ is trivial.)
Our goal here is to describe the germ Ũ together with the stratification of Ũ
by multiplicities of zeroes induced from Hg.

By definition Ũ is a universal analytic deformation of the pair (C, ω),
i.e. it is an analytic family of pairs (Cy, ωy)y∈Ũ together with an identifi-
cation i : (Cx̃, ωx̃) � (C, ω) of the distinguished element (Cx̃, ωx̃) of the
family with (C, ω), such that any germ of deformations of (C, ω) is induced
canonically from Ũ .
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Let P1, . . . , Pn be all zeroes of ω (enumerated in some order), and
k1, . . . , kn be their multiplicities. Let us also choose local coordinates
z1, . . . , zn near the zeroes in such way that zi(Pi) = 0 and ω = zki

i dzi . The
choice of local coordinates zi is canonical up to a transformation zi �→ ξi zi

where ξi is a root of unity, ξ
ki+1
i = 1. A deformation (Cy, ωy)y∈Ũ defines

for each i, 1 ≤ i ≤ n, a deformation of the germ zki
i dzi of a holomorphic

1-form on a complex curve.
It is an easy and well-known corollary of the standard deformation

theory of singularities of functions that for the germs zkdz of 1-forms there
exists a universal deformation over a germ of (k−1)-dimensional manifold.
Namely, the following proposition holds.

Proposition 3. Let π : (C, c) → (B, b) be a map between germs of ana-
lytic spaces with based points with non-singular fibers of dimension 1, and
let ω ∈ Γ(C, T ∗

C/B) be a 1-form along the fibers of π not equal identically
to zero. Let zb be a local coordinate on π−1(b) such that ω|π−1(b) is equal to
zk

bdzb for some k ≥ 0. Assume that k ≥ 1. Then there exist a unique collec-
tion of k − 1 functions a2, . . . ak on B vanishing at b, and a holomorphic
function z on C extending zb such that

ω = (
zk + a2zk−2 + · · · + ak

)
dz.

Proof. Germs of 1-forms in one variable can be identified by integration
with germs of functions modulo constants. Now apply the standard fact:
the universal deformation of the germ zk+1 is given by the formula zk+1 +
a′

2zk−1 + · · · + a′
k+1 where (a′

i)i=2,...,k+1 are parameters. It remains to let
ai := a′

i · (k + 1 − i)/(k + 1) for i = 2, . . . , k. ��
We denote by Pk the germ in the space Ck−1 endowed with coordinates

a2, . . . , ak parameterizing 1-forms (zk +a2zk−2+· · ·+ak)dz near z = 0 ∈ C.
The above proposition says that any deformation of a germ of a zero of order
k of a 1-form is induced canonically from Pk. We also get a canonical local
coordinate z on deformed germs of curves. In notations of the proposition we
call a point zb′ ∈ π−1(b′) given by the equation z(zb′) = 0 the holomorphic
center of masses of zeroes (near the base point c). The reason is that for
a polynomial form ω = (zk + a2zk−2 + · · · + ak)dz the arithmetic mean of
zeroes of ω coincides with 0 ∈ C. (Note that the notion of the holomorphic
center of masses is not invariant under the GL(2,R)+-action for the case
k ≥ 3.)

Now we are ready to construct local coordinates on the germ Ũ associ-
ated with a global curve C endowed with an Abelian differential ω. Using
the notations introduced above, we define a map

Φ : Ũ →
n∏

i=1

Pki × H1(C, {P1, . . . , Pn};C).(5)
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The components of this map have the following description. First of all,
for each i, 1 ≤ i ≤ n, we construct a canonical map Ũ → Pki , ap-
plying Proposition 3 to a neighborhood of the point Pi . Secondly, for
deformed curves (C′, ω′) with Abelian differentials we have canonical
local holomorphic centers of masses P′

1, . . . , P′
n ∈ C ′. We associate with

(C ′, ω′) an element in H1(C, {P1, . . . , Pn};C) (close to [ω]) using [ω′] ∈
H1(C ′, {P′

1, . . . , P′
n};C) and an identification of the cohomology spaces

H1(C, {P1, . . . , Pn};C) � H1(C ′, {P′
1, . . . , P′

n};C)

given by any continuous map

(C, {P1, . . . , Pn}) → (C ′, {P′
1, . . . , P′

n})
close to the identity map (in other words, using the holonomy of the Gauss–
Manin connection).

An easy calculation with the tangent spaces shows that Φ is a local iso-
morphism. Thus, we constructed, in a sense, local coordinates in a neighbor-
hood of any point of Hg. The stratification of Ũ given by the multiplicities
of zeroes is obvious. Namely, we should count the numbers of zeroes of
given multiplicities in deformed polynomial Abelian differentials. Also, the
transversal slice in Ũ to the stratum containing the base point x̃ is identified
with the product of germs Pki .

Using this description of the local structure of Hg we draw the main
conclusion for our classification program:

Corollary 2. For any stratum H(k1, . . . , kn) of Hg and for any connected
component S of H(2g−2) there exists exactly one connected component S′
of H(k1, . . . , kn) adjacent to S, i.e. such that S is contained in the closure
S′ of S′ in Hg.

Proof. Let us prove that for any point x = [(C, ω)] ∈ H(2g − 2) of
the minimal stratum H(2g − 2) ⊂ Hg one can find a sufficiently small
neighborhood U(x) ⊂ Hg of x in Hg such that the intersection of U(x) with
H(k1, . . . , kn) is nonempty and connected. Obviously lemma follows from
this statement.

Applying formula 5 to a point x = [(C, ω)] ∈ H(2g−2) of the minimal
stratum H(2g − 2) we establish a local diffeomorphism between the germ
Ũ(x) and P2g−2 × H1(C, {P1};C). Here P1 ∈ C is the single zero of order
2g−2. Our statement now follows from the fact that the germ of any stratum
in P2g−2 is nonempty and connected. ��
Corollary 3. For any parameters (k1, . . . , kn), where

∑
ki = 2g − 2 and

n ≥ 2, any component S of the stratum H(k1 +k2, k3, . . . , kn) of Hg and for
any two connected components S1, S2 of H(2g − 2) to which S is adjacent,
there exists a connected component S′ of H(k1, k2, . . . , kn) which is also
adjacent to S1 and S2.
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Proof. By assumption we have S ⊃ S1∪S2. It follows from our picture of the
local behavior of the stratification that there exists a connected component
S′ of H(k1, k2, . . . , kn) adjacent to S, i.e. S′ ⊃ S. Therefore we have
S′ ⊃ S ⊃ S1 ∪ S2. ��

5.3. Merging zeroes and adjacency to the minimal stratum. In this
section we prove

Proposition 4 (Merging zeroes). For any given parameters k1, . . . , kn,
where n ≥ 2 and

∑
i ki = 2g − 2, the closure of any connected component

of a stratum H(k1, k2, . . . , kn) ⊂ Hg contains some connected component
of the stratum H(k1 + k2, k3, . . . , kn).

Remark 6. Note that in general the similar statement is no longer true for the
strata of quadratic differentials. Say, one of the two connected components
of the stratum of meromorphic quadratic differentials having a single simple
pole, and a single zero of degree 9 is adjacent to the stratum of quadratic
differentials with a single zero of degree 8, and the other component — not.

We start the proof with the following technical result (see the similar
result in [10] for the principal stratum of quadratic differentials).

Lemma 18. Every connected component of every stratum contains an
Abelian differential whose horizontal foliation has only closed leaves and
the corresponding diagram has only one cylinder.

Proof. First of all, let us choose an Abelian differential in a given component
of a stratum whose vertical foliation has only closed leaves, see Lemma 4.
Deforming slightly this differential preserving the structure of the vertical
measured foliation we can assume that the horizontal foliation is uniquely
ergodic, in particular, minimal. This follows immediately from results of
H. Masur, see [11], and W.A. Veech, see [17].

Let us pick a point P on our surface which is not connected by a leaf
of the horizontal foliation to a critical point. The leaf of the horizontal
foliation starting at P is everywhere dense. For any ε > 0 we can now
follow the leaf until it returns for the first time to the distance ε from the
point P. For sufficiently small ε if we connect the endpoints of our piece of
horizontal leaf by the geodesic interval of length ε, and then perturb slightly
the obtained closed curve, we obtain a smooth closed curve γ transversal to
the vertical foliation (see [20] for details).

If we choose curve γ long enough, it will intersect all cylinders of the
vertical foliation and, moreover, all vertical saddle connections. Our goal
now is to modify the flat structure on our surface preserving the vertical
measured foliation and making the horizontal foliation satisfy the properties
in the lemma.

Let us remove all vertical saddle connections and curve γ from our
surface; let us forget the horizontal foliation. We obtain a finite collection
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of curvilinear 4-gons endowed with vertical measured foliations. Now let
us construct on 4-gons new horizontal measured foliations, in such way that
the horizontal parts of the boundary of every 4-gon would be leaves of the
new foliation. Namely, we say that the vertical length of each 4-gon is equal
to one, and if a critical point is situated on the vertical part of the boundary
of a 4-gon, it should be exactly in the middle. The last condition can be
always fulfilled because by our assumption we cannot have more than one
critical point on any vertical part of the boundary of any 4-gon.

We endow each 4-gon with the canonical flat metric (and with two
measured foliations) and then glue the rectangles thus obtained together.
On the new surface both the vertical and the horizontal foliations have only
closed leaves. The diagram corresponding to the vertical foliation of the new
surface coincides with the diagram for the initial Abelian differential, thus
we land to the same connected component. Finally, the horizontal foliation
of the new surface has only one cylinder, the union of two strips of width
1/2 on the left and on the right of the closed line γ . ��
Remark 7. Actually, we have proved a stronger statement: Abelian differ-
entials satisfying conditions of Lemma 18 are dense in every connected
component of any stratum.

Here is the proof of this statement. We did not change the vertical foliation
at all, so we do not deform the closed 1-form ωv. We modify the horizontal
foliation in two steps: at the first step we perturb the closed 1-form ωh to
some ω′

h to make the horizontal foliation uniquely ergodic. At the second
step we replace ω′

h by a closed 1-form ω′′
h , whose cohomology class, by

construction, is Poincaré-dual to the cycle [γ ]; the final horizontal foliation
is the kernel foliation of ω′′

h . Note that it follows from ergodicity of the
intermediate foliation corresponding to ω′

h and from definition of ω′′
h that

choosing the curve γ sufficiently long we get
∫

ρ

ω′
h ≈ 1

|γ | · (number of intersections of γ with ρ) ≈ 1

|γ |
∫

ρ

ω′′
h

for any path ρ transversal to ω′
h (here we assume that the total area of the

surface measured in the flat metric is normalized to one). By construction
the integral of 1

|γ | · ω′′
h along a piece of leaf of ω′ is close to zero (provided

this piece of leaf is much shorter than γ ). Thus, choosing γ sufficiently long
we can make ω′

h and 1
|γ | · ω′′

h arbitrarily close. Hence, the resulting Abelian

differential determined by a pair of closed 1-forms (ωv,
1

|γ | · ω′′
h) is close to

the initial Abelian differential corresponding to (ωv, ωh).
Now we are ready to prove Proposition 4.

Proof of Proposition 4. Given a connected component S′ of a stratum
H(k1, ..., kn), choose an Abelian differential ω in this component as in
Lemma 18. Consider the diagram of its horizontal foliation. Consider saddle
connections of this diagram. It is easy to see that any choice of strictly
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positive lengths of these saddle connections gives a solution of the system
of linear equations (as in Lemma 5).

Since the union of all nonsingular leaves of the horizontal foliation
forms a single cylinder, the underlying graph of the diagram is connected.
In particular, every saddle is connected to at least one other saddle by
a separatrix.

Consider a diagram obtained by shrinking this saddle connection to
a point. The diagram is obviously realizable; it represents an Abelian differ-
ential from the stratum H(k1 +k j1, k2, k3, . . . , k̂ j1, . . . , kn). (For the moment
we cannot control the index j1; we just know that j1 	= 1.) We may shrink
the saddle connection continuously without changing other parameters of
the diagram. Thus we get a continuous path with interior in the chosen
component of H(k1, . . . , kn) and with one of the endpoints belonging to
H(k1 + k j1, k2, k3, . . . , k̂ j1, . . . , kn). We have proved that the connected
component S′ is adjacent to some connected component of a stratum with
a smaller number of zeroes. Repeating inductively this procedure we con-
clude that S′ is adjacent to some connected component S1 ∈ H(2g − 2) of
the minimal stratum.

By Corollary 2 there exist a connected component S ⊂ H(k1 + k2,
k3, . . . , kn) adjacent to S1. By Corollary 3 there exist a connected com-
ponent S′′ ⊂ H(k1, . . . , kn) adjacent to S and to S1. Since both connected
components S′, S′′ ∈ H(k1, . . . , kn) are adjacent to S1 ∈ H(2g − 2) Corol-
lary 2 implies that S′ = S′′. By construction S′′ is adjacent to the stratum
H(k1 + k2, k3, . . . , kn) which completes the proof of Proposition 4. ��

It would be convenient to formulate an intermediate result of our proof
as a separate corollary.

Corollary 4. The closure of any component of any stratum H(k1, . . . , kn)
contains a connected component of the stratum H(2g−2), where 2g−2 =
k1 + · · · + kn.

5.4. Connected components of general strata. First note that any stratum
H(k1, . . . , kn) is nonempty for any collection of positive integers ki , such
that the sum of all ki is even, see [12]. Another way to see this is to perturb
Abelian differentials from H(2g − 2) (see Corollary 2) which we have
constructed directly, see Lemma 15.

Moreover, for any positive integers l1, . . . , ln , l1 + · · · + ln = g − 1,
perturbing an Abelian differential ω ∈ H(2g − 2) we obtain an Abelian
differential ω′ ∈ H(2l1, . . . , 2ln), having the same parity of the spin struc-
ture as the initial Abelian differential ω ∈ H(2g − 2), as follows from
invariance of the parity of the spin-structure under continuous deforma-
tions, see [1], [14]. Thus, using our direct construction of hyperelliptic
components Hhyp(2g − 2) and Hhyp(g − 1, g − 1), and perturbing Abelian
differentials from the connected components Hodd(2g − 2), H even(2g − 2)
we can get all the components listed in Theorems 1 and 2. To complete the
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proofs of these theorems we have to prove that all the components listed in
the theorems are connected, and that there are no other components.

Lemma 19. Any stratum H(k1, . . . , kn) has at most three connected com-
ponents.

Proof. The statement follows immediately from combination of Corol-
lary 1, Corollary 2, and Corollary 4. ��

A component of H(2g − 2) uniquely determines the embodying com-
ponent of H(k1, . . . , kn), but the embodying component may contain in the
closure two, or even three components of H(2g − 2), see Propositions 5
and 6 below.

Proposition 5. For any genus g ≥ 3 and any k, 1 ≤ k < g − 1, there is
a continuous path γ : [0; 1] → Hg such that γ(]0, 1[) ⊂ H(k, 2g − k − 2),
endpoint γ(1) belongs to the hyperelliptic component of H(2g−2), and end-
point γ(0) belongs to one of two nonhyperelliptic components of H(2g − 2).

Proof. The path is presented at Fig. 9. Every diagram is easily seen to be
realizable. Note that we may preserve the heights and the widths (measured
in our flat metric) of all cylinders along the path; we just change the iden-
tification of the boundary components. This implies the continuity of the
path.

The bottom diagram is centrally symmetric and obeys the conditions of
Lemma 8. Thus it corresponds to an Abelian differential from Hhyp(2g−2).
By assumption of the proposition k > 0 and g − k − 1 > 0. Thus the top
diagram is not centrally symmetric (see Fig. 9). Hence it corresponds to
a nonhyperelliptic component. ��
Proposition 6. For any genus g ≥ 4 and any k, 1 ≤ k ≤ g/2, there is a con-
tinuous path γ : [0; 1]→Hg such that γ(]0, 1[) ⊂ H(2k −1, 2(g−k) − 1),
one of the endpoints lies in the component H even(2g − 2) and another end-
point lies in the component Hodd(2g − 2).

Proof. The path is presented at Fig. 10. Again it is easy to see that all
the diagrams are realizable, and that we may preserve the heights and the
widths of all cylinders along the path. It is easy to see that neither top nor
bottom diagram is centrally symmetric, thus they represent nonhyperelliptic
components of H(2g − 2).

Let us prove that the parities of the spin structure corresponding to the
top and the bottom diagrams are different. Constructing the diagrams we
may “bubble” the handle painted in black at the very last step. Thus we
may “erase” corresponding pair of simple loops both on the top and on the
bottom diagram. After erasing this pair of simple loops we obtain the same
diagram on top and at the bottom. Let ϕ0 be the parity of the spin structure
corresponding to the diagram thus obtained. By Lemma 13 the parity of
the spin structure corresponding to the initial top diagram equals ϕ0, while
the parity of the spin structure corresponding to the initial bottom diagram
equals ϕ0 + 1. ��
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Fig. 9. A path in H(k, 2g − 2 − k) joining hyperelliptic and nonhyperelliptic components
of H(2g − 2)
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Fig. 10. A path in H(2k − 1, 2(g − k) − 1) joining Heven(2k − 2) and Hodd(2k − 2)
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Now we are ready to finish the proof of the classification Theorems 1
and 2. Recall that we already have a surjection from the set of connected
components of the minimal stratum H(2g − 2) to the set of connected
components of any other stratum, and also two invariants (to be or not to be
hyperelliptic, or to have even or odd spin structure) separating connecting
components.

Let us start with the case g ≥ 4. For stratum H(2g − 2) we have
achieved already the classification with three components, see Corollary 1.
Similarly, we treat the case of the stratum H(2l, 2l), l ≥ 2. For all the
other strata of the form H(2l1, . . . , 2ln) we will have only two connected
components distinguished by the parity of spin structure. The reason is that
the component adjacent to the hyperelliptic component in H(2g−2) is also
adjacent to a nonhyperelliptic component, as follows from Proposition 5
and Corollary 3.

For strata H(2k − 1, 2k − 1) with k ≥ 2 we will have only two compo-
nents distinguished now by hyperellipticity, now we use Proposition 6 and
Corollary 3.

For any other stratum we will have at least one of multiplicities which
is odd and not equal to g − 1. In this case Propositions 5 and 6 together
with Corollary 3 finish the job, showing that we have only one connected
component. Thus, we proved Theorem 1.

In the case g = 3 the upper bound of the number of connected com-
ponents is 2. We treat cases H(4) and H(2, 2) as above and get two com-
ponents. In all other cases we will have at least one of multiplicities equal
to 1 and here we apply Proposition 5. In the case g = 2 the upper bound is
already equal to 1 and we conclude that all strata are connected. ��

Appendix A. Rauzy classes and zippered rectangles

A.1. Interval exchange transformations. In this section we recall the
notions of interval exchange transformation, of Rauzy class, see [15], and
the construction of a complex curve endowed with an Abelian differential
by means of “zippered rectangles”, see [17].

Consider an interval I ⊂ R, and cut it into m subintervals of lengths
λ1, . . . , λm . Now glue the subintervals together in another order, according
to some permutation π ∈ Sm and preserving the orientation. We again
obtain an interval I of the same length, and hence we get a mapping
T : I → I , which is called interval exchange transformation. Our map-
ping is a piecewise isometry, and it preserves the orientation and Lebesgue
measure. It is singular at the points of cuts, unless two consecutive inter-
vals separated by a point of cut are mapped to consecutive intervals in the
image.

Remark 8. Note, that actually there are two ways to glue the subinter-
vals “according to permutation π”. We may send the k-th interval to the
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place π(k), or we may have the intervals in the image appear in the order
π(1), . . . , π(m). We use the first way; under this choice the second way
corresponds to permutation π−1.

Given an interval exchange transformation T corresponding to a pair
(λ, π), λ ∈ Rm+, π ∈ Sm , set β0 = 0, βi = ∑i

j=1 λ j , and Ii = [βi−1, βi[.
Define skew-symmetric m×m-matrix Ω(π) as follows:

Ωij(π) =
{

1 if i < j and π(i) > π( j)
−1 if i > j and π(i) < π( j)

0 otherwise.
(6)

Consider a translation vector δ = Ω(π) · λ. Our interval exchange trans-
formation T is defined as follows:

T(x) = x + δi, for x ∈ Ii , 1 ≤ i ≤ m.

A.2. Extended Rauzy classes. Consider an Abelian differential ω ∈
H(k1, ..., kn) on a surface of genus g ≥ 2. Consider corresponding ver-
tical (or horizontal) measured foliation on the Riemann surface. For generic
ω every nonsingular leaf of the foliation is dense on the surface. Take an
interval I transversal to the foliation. Our foliation is oriented, so it defines
the Poincaré map (the first return map) I → I . It is easy to see that the map
T is an interval exchange transformation. The number of intervals under
exchange is 2g + n − 1, 2g + n, or 2g + n + 1 depending on the choice
of I . (Morally, one has to place the endpoints of the transversal interval on
the critical leaves of the foliation to obtain the minimal possible number of
subintervals.) In particular the choice of transversal interval I determines
some permutation π. Consider the set Rex of all possible permutations
π ∈ S2g+n−1 which can be obtained by choosing different transversal inter-
vals I . It was proved by W.A. Veech in [17] that the setRex does not depend
on the choice of a generic representative ω in any connected component of
H(k1, . . . , kn). The setRex is called extended Rauzy class, see [15], [17].

Conversely, given an interval exchange transformation T : I → I
one can construct a complex curve Cg and an Abelian differential ω on
it, such that the Poincaré map induced by the vertical foliation on the
appropriate embedded subinterval would give the initial interval exchange
transformation. Though the choice of the pair (Cg , ω) is not unique, topology
of (Cg, ω) (genus, degrees k1, . . . , kn of zeroes of ω, and even the connected
component of H(k1, . . . , kn)) are uniquely determined by the permutation
π. We review the construction of suspension over an interval exchange
transformation in Appendix A.4, more details can be found in [11] or
in [17].

In the section below we present a direct combinatorial definition of the
extended Rauzy class, see [15], [17].
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A.3. Combinatorics of Rauzy classes. Note, that if for some k < m we
have π{1, . . . , k} = {1, . . . , k}, then the corresponding interval exchange
transformation T decomposes into two interval exchange transformations.
We consider only the class S0

m of irreducible permutations — those which
have no invariant subsets of the form {1, . . . , k}, where 1 ≤ k < m.

Permutation π is called degenerate if it obeys one of the following
conditions (see 3.1–3.3 in [11] or equivalent conditions 5.1–5.5 in [17]):
for some 1 ≤ j < m,

π( j) = m
π( j + 1) = 1

π(1) = π(m) + 1

for some 1 ≤ j < m,

π( j + 1) = 1
π(1) = π( j) + 1

for some 1 ≤ j < m,

π( j + 1) = π(m) + 1
π( j) = m.

Otherwise permutation π is called nondegenerate.
We denote by τk ∈ Sm , 1 ≤ k < m the following permutation:

τk = (1, 2, . . . , k, k + 2, . . . , m, k + 1) 1 ≤ k < m − 1
τm−1 = (1, 2, . . . , m) = id.

Permutation τk cyclically moves one step forward all the elements occurring
after the element k.

Consider two maps a, b : S0
m → S0

m on the set of irreducible permuta-
tions (see [15]):

a(π) = π · τ−1
π−1(m)

b(π) = τπ(m) · π

where one should consider product of permutations as composition of oper-
ators — from right to left. Say, b(2, 3, 1) = (1, 3, 2) · (2, 3, 1) = (3, 2, 1).
We may consider permutation as a pair of orderings of a finite set: a “do-
main” ordering and an “image” ordering. Operator b corresponds to the
modification of the image ordering by cyclically moving one step forward
those letters occurring after the image of the last letter in the domain, i.e.,
after the letter m. Operation a corresponds to the modification of the or-
dering of the domain by cyclically moving one step forward those letters
occurring after one going to the last place, i.e., after π−1(m).

Note, that

(a(π))−1 = b(π−1).
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In components the maps a, b are represented as follows:

a(π)( j) =





π( j) j ≤ π−1(m)

π(m) j = π−1(m) + 1
π( j − 1) other j

b(π)( j) =





π( j) π( j) ≤ π(m)

π( j) + 1 π(m) < π( j) < m
π(m) + 1 π( j) = m.

Definition 6. The Rauzy class R(π) of an irreducible permutation π is the
subset of those permutations inS0

m which can be obtained from π by some
composition of maps a and b.

Consider the permutation π0 = (m, m − 1, . . . , 2, 1), and the map

Adπ0 : π �→ π−1
0 ππ0 = π0ππ0.

Note that the map Adπ0 maps an irreducible permutation to an irreducible
one.

Definition 7. The extended Rauzy class Rex(π) of an irreducible permuta-
tion π is the subset of permutations which can be obtained from π by some
composition of the maps a, b, and Adπ0 .

Remark 9. A Rauzy class R(π) (extended Rauzy class Rex(π)) of a non-
degenerate permutation π contains only nondegenerate permutations.

Theorem (W.A. Veech, [17]). The extended Rauzy classes of nondegener-
ate permutations are in the one-to-one correspondence with the connected
components of the strata in the moduli spaces of Abelian differentials.

Using classification of the strata obtained in the current paper, article [21]
presents an explicit construction of a representative of any extended Rauzy
class.

Lemma (G. Rauzy, [15]). Any Rauzy class R contains at least one per-
mutation π with the property

π(m) = 1 π(1) = m.

For the convenience of the reader we give a sketch of the proof. We want
to fulfill constraints π(m) = 1 and π−1(m) = 1. Suppose that it is not the
case. Let us compare numbers π(m) and π−1(m). If the smallest of them
is greater than 1, then applying one of operations a or b several times one
can make another number strictly smaller. If the smallest among π(m) and
π−1(m) is equal to 1, then applying one of operations a or b several times
one can make both numbers π(m) and π−1(m) equal to 1. ��

We need the following modification of this lemma.
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Lemma 20. Any extended Rauzy classRex of nondegenerate permutations
contains at least one permutation π with the following two properties

π(m) = 1 π(1) = m.

The permutation

π ′ :=
(

π(2) , π(3) , · · · , π(m − 2) , π(m − 1)
2 , 3 , · · · , m − 2 , m − 1

)

obtained as a restriction of π to the ordered set {2, 3, . . . , m − 1} is irre-
ducible.

Proof. Consider a permutation π as in the previous lemma. Suppose that
the restriction π ′ of π to the ordered subset {2, 3, . . . , m − 1} is reducible.
Choose the maximal integer a < m −1 such that π ′ leaves the set {2, . . . , a}
invariant. In other words chose the rightmost position where we can break
permutation π ′ into two nonempty permutations.

Consider the following ordered subsets:

A :={2, . . . , a}
B1 :={a + 1, . . . , π(m − 1) − 1}
B2 :={π(m − 1), . . . , m − 1}

where B1 is an empty set when π(m − 1) = a + 1. Replace the initial
permutation π by the following one contained in the same extended Rauzy
class:

(
m 1 π(A) π(B1) π(B2)

B2 1 A | B1 m

)

.(7)

This permutation is obtained from permutation π by composition of the
following two operations. We first make modification from the right by
cyclically moving one step forward the elements of the top line occurring
after the letter m. Then we make modification from the left by cyclically
moving card(B2) steps forward the elements of the bottom line occurring
before letter m.

After reenumeration of the elements in the standard order we see that in
this standard enumeration our new permutation π2 again has the property
π2(1) = m and π2(m) = 1. Restriction π ′

2 of this new permutation to the
subset {2, . . . , m − 1} may be again reducible. We are going to prove that
the restricted permutation may split only to the right of the marked place. In
other words we are going to prove that if the subset {2, . . . , a2} is invariant
under π ′

2 then a2 ≥ a + Card B2 > a.
Since the initial permutation π is nondegenerate we have π(m − 1) 	=

m − 1 (to see this let j = m − 1 in the second condition on degenerate
permutations at the beginning of this section). Thus card B2 > 1. Hence
the letter 1 cannot be the second letter in the bottom line of (7). Thus,
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if the splitting occurs, the leftmost invariant subset contains more than
one element. Looking at the top line of (7) we see that this means that
the leftmost invariant subset must contain at least one element of π(A).
Looking at the bottom line we see that the leftmost invariant subset contains
at least one element of B2. Note that the set A considered as an unordered
set was chosen to be invariant under the permutation π. Thus π(A) does
not intersect with B2. Hence the splitting may occur only to the right of the
word π(A) in the top line. Thus the leftmost invariant subset must contain
all the elements of the unordered set π(A) = A. Thus the splitting may
mapped only to the right of the marked position at the bottom line.

Repeating inductively this procedure we finally obtain an irreducible
restricted permutation. ��
A.4. Zippered rectangles (after W.A. Veech). Having an interval ex-
change transformation T : I → I one can “suspend” a smooth closed
complex curve Cg and an Abelian differential ω over T . Here we present
the idea of the “suspension”; one can find all the details in the original paper
of W.A. Veech [17].

Place the interval I horizontally in the plane R2 = C. Place a rectangle
Ri over each subinterval Ii ⊂ I ; the rectangle Ri has the width λi = |Ii| and
some altitude hi . Later on we shall pose some restrictions on the altitudes.
Glue the top horizontal side of rectangle Ri to the interval T(Ii) at the base.
There are still no identifications between the vertical sides of the rectangles,
so we get a Riemann surface with several “holes”; each boundary component
is a union of the vertical sides of the rectangles (see Figs. 11, 12). Now start
“zipping” the holes (see Fig. 11). If the altitudes hi of the rectangles, and the
altitudes ai till which we “zipper” the rectangles obey some linear equations

Fig. 11. Suspension over the interval exchange transformation with the permutation π =
{4, 3, 2, 1} produces a surface of genus 2 with an Abelian differential having single zero of
order 2
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Fig. 12. The lengths of the sides of the hole for a suspension over an interval exchange
transformation with the permutation π = {4, 3, 2, 1}

and inequalities (see [17]), then we manage to eliminate all the holes.
The Riemann surface thus constructed has natural flat structure with cone-
type singularities; the complex structure, coming from the initial complex
structure on the plane C = R2, extends to the conical points. The Abelian
differential ω is locally represented as dz, where z is the standard coordinate
in C.

As we already mentioned the altitudes hi , and ai obey some linear
relations (cf. Fig. 12); it is proved in [17] that the family of solutions
is always nonempty. This family has dimension m = 2g + k − 1 =
dim H1(Cg, {zeroes of ω}), which coincides with the number m of subin-
tervals under exchange, π ∈ Sm .

Appendix B. Abelian differentials on hyperelliptic curves

Let ω be an Abelian differential on a hyperelliptic complex curve such that
all zeroes of ω are of even degrees. Let the canonical divisor K(ω) of ω be

K(ω) = 2(k1 Pi1 + · · · + kp Pip)(8)

+ 2
(
l1(P+

1 + P−
1 ) + · · · + lq(P+

q + P−
q )

)

where
p∑

i=1

ki + 2
q∑

j=1

l j = g − 1.

By Pin we denote the points which are invariant under hyperelliptic in-
volution; by P±

j we denote the pairs of points symmetrical to each other
under hyperelliptic involution. We assume that all the indicated points are
distinct.
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Proposition 7. The parity of the spin structure defined by an Abelian dif-
ferential on a hyperelliptic curve is given by the following formula:

ϕ(ω) ≡ dim

∣
∣
∣
∣
1

2
K(ω)

∣
∣
∣
∣ + 1(mod 2) =

p∑

i=1

[
ki

2

]

+
q∑

j=1

lq + 1(mod 2).

Proof. In our case a base of solutions of the linear system 1
2 K(ω) can be

constructed explicitly. ��
Corollary 5. Parity of the spin structure determined by an Abelian differ-
ential from the hyperelliptic component Hhyp(2g − 2) equals

ϕ(Hhyp(2g − 2)) ≡
[

g + 1

2

]

(mod 2).

Parity of the spin structure of the hyperelliptic component Hhyp(g − 1,
g − 1), for odd genera g equals

ϕ
(
Hhyp(g − 1, g − 1)

) ≡
(

g + 1

2

)

(mod 2) for odd g.

Acknowledgements. The authors thank M. Duchin, M. Farber, I. Itenberg, M. Kazarian,
E. Lanneau, and the referee for helpful comments. The second author is grateful to MPI für
Mathematik at Bonn, to FIM of ETH at Zürich, and to IHES for hospitality while preparation
of this paper, as well as to CNRS Projects 5376, 7726 for support of collaboration between
University of Rennes and Moscow Independent University.

References

1. Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. Éc. Norm. Supér., IV. Sér.
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