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PRODUCT FORMULAS FOR MODULAR FORMS ON O(2, n)

[after R. Borcherds]

by Maxim KONTSEVICH

1. INTRODUCTION

1.1. Product formulas

A few years ago, R. Borcherds found a remarkable multiplicative correspondence

between classical modular forms with poles at cusps and meromorphic modular forms

on complex varieties SO(n)×SO(2)\SO(n, 2)/Γ , where Γ is an arithmetic subgroup

in the real Lie group SO(n, 2). He was motivated by generalized Kac-Moody algebras,

the Monster group and vertex operator algebras. The first proof of his formulas in

completely classical terms (see [3]) was rather indirect and complicated.

In 1995 physicists J. Harvey and G. Moore wrote a paper on string duality where

they found a new approach to Borcherds’ identities (see [12]). They used divergent

integrals, which look formally like integrals in the classical theta correspondence in

the theory of automorphic forms. R. Borcherds recently wrote a preprint (see [5])

where he generalized his earlier results using the idea of Harvey and Moore. My

exposition is based mainly on this new preprint.

Here is one of Borcherds’ theorems:

Theorem. Let Λ be an even unimodular lattice of signature (s + 1, 1) where s =

8, 16, . . . and v0 ∈ Λ⊗R be a generic vector of negative norm. Let F =
∑∞

−n0
c(n)qn ∈

Z((q)) be a meromorphic modular form of weight (−s/2) for the group SL(2,Z) with

poles only at the cusp. Then there is a unique vector ρ ∈ Λ such that the function

defined for v ∈ Λ ⊗ C close to it v0, t ≫ 1, by the formula

Ψ(v) = e2πi(ρ,v)
∏

γ∈L, (γ,v0)>0

(
1 − e2πi(γ,v)

)c(−(γ,γ)/2)

can be analytically continued to a meromorphic modular form of weight c(0)/2 for
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the group O(s + 2, 2;Z)+. In particular, the analytic continuation of Ψ satisfies the

equation Ψ(2v/(v, v)) = ± ((v, v)/2)
c(0)/2

Ψ(v) .

In my exposition I will formulate results only in examples. One reason for this is

that what is now known is still far from the complete generality. Another reason is that

I want to avoid heavy notations in order not to obscure the logic of the construction.

1.2. An elementary example of a product formula

Product formulas can be considered as statements about formal power series of

algebro-geometric origin. The general proof uses analysis: integrals, infinite series

and non-holomorphic functions. Here I will show a purely algebraic proof of a simple

product formula. Both this formula and the proof are not new. They were discovered

by D. Zagier many years ago. Analogous formulas can be found in [11].

We fix notations: H = {τ ∈ C| Im(τ) > 0} denotes the upper-half plane and j :

H−→C is the classical elliptic invariant which identifies the quotient space H/SL(2,Z)

with M1 ≃ C, the coarse moduli space of complex elliptic curves. We will compactify

it to M1 ≃ CP 1. Function q = exp (2πiτ) can be considered as a holomorphic

coordinate at a neighborhood of point j = ∞. We expand the meromorphic function

j on CP 1 in the coordinate q:

j(q) =
∞∑

n=−1

c(n)qn = q−1 + 744 +
∞∑

n=1

c(n)qn .

Theorem. For 0 < |p|, |q| ≪ 1 one has the equality

j(p) − j(q) = (p−1 − q−1)
∏∞

k,l=1(1 − pkql)c(kl).

From this equality follows an infinite sequence of algebraic identities between

integer numbers c(k), k ≥ 1. The first non-trivial identity is

c(4) = c(3) +
c(1)2 − c(1)

2
, 20245856256 = 864299970 +

1968842 − 196884

2

For each integer n ≥ 1 there is an algebraic curve Cn ⊂ C × C, the graph of

the Hecke correspondence. In coordinates (q1, q2) at the neighborhood of the point

(∞,∞) ∈ CP 1 × CP 1 this curve is again algebraic and its branches are given by

equations qd1
1 = qd2

2 where d1d2 = n, d1, d2 ≥ 1. The Hecke operator Tn is defined

in the usual way using the correspondence Cn. It acts on meromorphic functions on

CP 1, on meromorphic 1-forms (=modular forms of weight 2), etc.
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The main object will be a meromorphic differential 2-form on CP 1 × CP 1

Ω = dalong j1dalong j2 (log (j1 − j2)) =
1

(j1 − j2)2
dj1 ∧ dj2

where (j1, j2) are coordinates on CP 1 × CP 1.

Let us write j(q1)−j(q2) as an infinite product (q−1
1 −q−1

2 )×
∏∞

k,l=1(1−qk
1ql

2)
b(k,l).

We want to prove that b(k, l) = c(kl). Using symbols b(k, l) we can write an explicit

formula for the q-expansion of Ω:

Ω =
1

(q1 − q2)2
dq1 ∧ dq2 +

∞∑

k,l=1

b(k, l)
kl qk−1

1 ql−1
2

(1 − qk
1 ql

2)
2
dq1 ∧ dq2 .

Now we calculate the following double residue for N,M ≥ 1:

Resq2=0 Resq1=0

(
j(q1)j(q2)

[
T

(1)
N ◦ T

(2)
M (Ω)

])
.

This expression is equal to 0 because Resq1=0(. . .) is a meromorphic 1-form on

CP 1 with pole only at j2 = ∞. We replace Ω by the sum as above. In the first term

Resq2=0 Resq1=0

(
j(q1)j(q2)

[
T

(1)
N ◦ T

(2)
M

(
1

(q1 − q2)2
dq1 ∧ dq2

)])

we can substitute q−1
1 for j(q1) because of the regularity at q1 = 0 of all other factors

for generic q2. Thus the first term can be expressed linearly in numbers c(n). The

second term is equal to

Resq2=0 Resq1=0


j(q1)j(q2)

∞∑

k,l=1

(. . .)


 = Resq2=0 Resq1=0


q−1

1 q−1
2

∞∑

k,l=1

(. . .)




because of the regularity at zero of the double sum. This term can be expressed

linearly in numbers b(k, l). I leave to the reader the rest of the calculation.

2. STANDARD FACTS ABOUT AUTOMORPHIC FORMS

2.1. Definition of automorphic forms

Let G be a connected unimodular Lie group, K a maximal compact subgroup,

and Γ a discrete subgroup of G of finite covolume. Let us fix a homomorphism
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χ : Z(U(g))−→C from the center of the universal enveloping algebra of the Lie

algebra g := Lie(G) to C. Automorphic forms are complex-valued C∞-functions

on G/Γ which are K-finite and annulated by a finite power of the ideal Ker(χ). A

more general definition is obtained if one considers not just functions but sections of

a local system associated with a finite-dimensional representation ρ : Γ−→GL(N,C).

Any automorphic form is automatically real analytic because it satisfies an elliptic

differential equation with real analytic coefficients.

Usually people consider functions satisfying certain growth conditions at cusps,

i.e. they consider l2-integrable functions or functions with polynomial growth at

infinity. In the classical case of G = SL(2,R) and Γ = SL(2,Z) automorphic forms

include (anti)-holomorphic modular forms of weights k = 4, 6, ... and Maass wave

forms (eigenfunctions of the Laplace operator on H/Γ = K\G/Γ). The standard

growth condition can be formulated for holomorphic modular forms in terms of q-

expansion as the absence of terms c(k)qk with k < 0. One of reasons to ignore

automorphic forms with exponential growth at cusps is that the algebra of Hecke

operators acts “freely” on such forms.

2.2. Theta correspondence

Theta correspondence transforms automorphic forms from one Lie group G1 to

another Lie group G2, where G1 × G2 is a subgroup of the symplectic linear group

(see [14]). The typical example is G1 = Sp(V1) and G2 = SO(V2) where (V1, (, )1)

is a symplectic real vector space and (V2, (, )2) is a real vector space with a non-

degenerate symmetric bilinear form. The tensor product V = V1 ⊗ V2 carries the

natural symplectic structure (, )1 ⊗ (, )2.

We denote by W = W (V ) the Hilbert space of the Weil representation of the

double covering ˜Sp(V ) of the symplectic group Sp(V ). The space W can be naturally

identified with the space of l2-integrable functions on any Lagrangian subspace of

V . Thus one can speak about the nuclear space W−∞ consisting of distributions of

moderate growth. Restricting the Weil representation of ˜Sp(V ) to ˜Sp(V1) × ˜SO(V2)

one gets a partially defined correspondence between projective representations of G1

and G2. R. Howe observed that this is a partial bijection in many cases.

Let Λ1 ⊂ V1 and Λ2 ⊂ V2 be integral lattices. Then Λ := Λ1 ⊗ Λ2 is an inte-

gral lattice in V . Denote by Γ1, Γ2, Γ arithmetic subgroups of G1, G2, G = Sp(V )

consisting of automorphisms of these lattices. The space of invariants (W−∞)
Γ

is

finite-dimensional and consists of certain theta functions. Theta correspondence is
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given by an integral operator from G1/Γ1 to G2/Γ2 with the kernel equal to a theta

function. In the next section we will consider an important example.

2.3. Siegel theta function

Let (V1,Λ1) be (R2,Z2) with the standard symplectic form and Λ2 be an even

unimodular lattice of signature (n+, n−). We denote by Gr the set of orthogonal

decompositions of V2 := Λ2⊗R into the sum V+⊕V− of positive definite and negative

definite subspaces. Gr can be considered as an open subset of the Grassmanian of

n−-dimensional subspaces in V2. If p ∈ Gr is such a decomposition we denote by

p+, p− projectors onto V+, V− respectively. The Siegel theta function (see [16])

is the restriction of the standard theta function for Sp(V1 ⊗ V2) to the symmetric

subspace H× Gr ⊂ Sp(V1 ⊗ V2)/U(n+ + n−). The explicit formula for it is

Θ(τ, p) =
∑

λ∈Λ2

exp

(
2πi

(
(p+(λ), p+(λ))

2
τ +

(p−(λ), p−(λ))

2
τ

))
=

=
∑

λ∈Λ2

q
(λ,λ)

2 |q|−(p−(λ),p−(λ)) .

This function is invariant under the action of Γ2 = Aut(Λ2) on Gr. It transforms

under the action of Γ1 = SL(2,Z) on τ ∈ H as

Θ

(
aτ + b

cτ + d
, p

)
= ±(cτ + d)n+/2(cτ + d)n−/2Θ(τ, p) .

If F is a holomorphic modular form for Γ1 = SL(2,Z) of weight n−−n+

2 , or a

Maass form for n− = n+, then the theta transform of F is defined as

Φ(p) =

∫

H/PSL(2,Z)

Θ(τ, p)F (τ)y
n
−

2
dxdy

y2
,

where τ = x + iy, x, y,∈ R. This integral converges for parabolic F .

The image of theta transform satisfies differential equations. Namely, there is

a homomorphism α : Z(U(g2))−→Z(U(g1)) such that for any vector v in the Weil

representation W (V1 ⊗ V2) and any z ∈ Z(U(g2)) one has z(v) = (α(z))(v). If we

apply it to the theta function we get the formula for the annulator of Φ in Z(U(g2)).

The Siegel theta function also appears in string theory where it is the partition

function of the torus C/(Z + τZ) in the Narain model associated with the indefinite

lattice Λ2 and the orthogonal decomposition p.
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3. BORCHERDS-HARVEY-MOORE CONSTRUCTION

3.1. Classical modular forms with poles at cusps

The main idea of Borcherds-Harvey-Moore construction is a formal application

of theta correspondence to modular forms for arithmetic subgroups in SL(2,R) with

at most exponential growth at the cusps. In holomorphic case and for Γ1 = SL(2,Z)

any such form is meromorphic on H/Z ⊔ {∞} with only pole at the cusp. It can

be presented as ∆(τ)−kF0(τ) where k ≥ 0, ∆ = q
∏∞

n=1(1 − qn)24, and F0 is a

parabolic holomorphic modular form. Unlike in the classical theory, holomorphic

modular forms with poles at cusps can have negative weights. In the case of Maass

forms for any λ ∈ C there is an infinite-dimensional vector space of solutions of the

equation ∆F = λF on H/Γ1 with exponential growth at the cusp.

There are also other automorphic forms like E′
2(τ) := 1 − 24

∑∞
n=1

n qn

1−qn − 3
πy ,

real analytic Eisenstein series, Siegel theta functions, etc.

All these forms have the following common property: there exists M ≥ 0 such

that for any N ≥ 0 the form can be expanded in a neighborhood of the cusp as

o(y−N ) +
∑

m:|m|<M

e2π(imx+|m|y)


 ∑

j∈ finite set

cm,j(log (y))km,j yσm,j + ǫm(y)




where km,j ∈ Z≥0, m ∈ Z, cm,j, σm,j ∈ C and ǫm(y) = o(y−N ) depends on y only.

3.2. Regularization of divergent integrals

Let us assume that F is a holomorphic modular form of weight (n−−n+)/2 with

poles at cusps. We want to make sense of the divergent integral

Φ(p) =

∫

H/PSL(2,Z)

Θ(τ, p)F (τ) y
n
−

2
dxdy

y2
.

After the expansion of Θ(τ, p) and F (τ) at y = Im τ−→ + ∞ there are only

finitely many divergent terms of the form

∫

x∈[0,1], y≥const

exp (2πimx + 2π|m|y − Ly) yn−/2−2 dxdy ,

where L is a non-negative real-valued function on Gr.
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If m 6= 0 then we define the regularized value of this integral to be 0. It is the

natural choice if we perform the integration along the variable x first. If m = 0

and L > 0 then the integral is absolutely convergent. The trouble arises only when

m = L = 0. In this case we can subtract the divergent term yk from the integral in

domain y > y0. The result will be a function of y0.

In the more general case for non-holomorphic forms there are finitely many diver-

gent components of the product F (τ)Θ(τ, p) with frequency m = 0 along coordinate

x. All these components are of type
(
log (y)

)k
yσ. One can multiply F by y−s, or

(better) by a real analytic Eisenstein series. Then we can assign a value to the in-

tegral for Re(s) ≫ 0 and continue it to a meromorphic function for all s ∈ C. The

regularized integral can be defined as the constant term of the Laurent expansion at

s = 0.

3.3. Automorphic forms with singularities at locally homogeneous sub-

manifolds

Let us see what kind of divergences our integral has for holomorphic form F =
∑

n c(n)qn. First of all, if the c(0) 6= 0 then the constant term in the series for Θ

corresponding to the vector λ = 0 produces troubles. This problem is independent of

the point p in the Grassmanian, and we can resolve it in one way or another. The

result is that we still can define F modulo an additive constant.

Other divergent terms appear when there is a non-zero lattice vector λ ∈ Λ2 such

that λ belongs to the the positive subspace V+ and has a special length. Namely, a

term q−(λ,λ)/2 should be present in the q-expansion of F .

Thus we see that the singular set of Φ in X = Gr/Γ2 consists of a finite union

of certain totally geodesic submanifolds of type X ′ = K′\G′/Γ′. The same fact

holds for non-holomorphic modular forms Φ admitting an asymptotic expansion at

infinity as in 3.1. Also, one can write explicitly the types of singularities of Φ, i.e.

functions Φ′ defined at a neighborhood of X ′ such that Φ−Φ′ can be continued to a

real-analytic function. These functions Φ′ are finite linear combinations of functions

x 7→ (log (dist(x,X ′))k(dist(x,X ′))σ where dist(x,X ′) is the distance between x and

X ′ in a natural metric.

The function Φ on the domain of definition satisfies differential equations. If

c(0) = 0 then these will be homogeneous linear differential equations z(Φ) = 0 for

some z ∈ ZU(g2) (see the end of 2.3). The divergent term c(0)q0 produces certain

universal r.h.s. for these equations.
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In the case n+ = 1 submanifolds X ′ are locally hyperplanes in the hyperbolic

space. In the case n+ = 2 they are complex hypersurfaces. The same is true for G2 =

SU(N, 1). If G2 = SP (2g,R) and we consider G1 = PSL(2,R) as the orthogonal

group SO(2, 1)) then subvarieties X ′ are complex subvarieties of codimension g.

If (G2,Γ2) = (SL(2,R), SL(2,Z)) then the forms Φ on M1 have singularities at

Heegner points, i.e. moduli of elliptic curves with complex multiplication, or equiva-

lently, points with the coordinate τ in an imaginary quadratic field, τ = x+ iy, where

x ∈ Q and y2 ∈ Q.

3.4. Fourier expansions at cusps

In theta correspondence one can write an expansion of Φ at cusps via Fourier

coefficients of F . The usual trick (Rankin-Selberg method) consists in replacing of the

integral over the fundamental domain of SL(2,Z) by an integral over the fundamental

domain of Z in H. In the case of divergent integrals one should be cautious when

interchanging infinite sums and integrals.

Let λ0 ∈ Λ2 be a primitive null-vector, (λ0, λ0) = 0. Such vector always exists for

undefinite lattices of sufficiently large rank, including all even unimodular lattices. We

define smaller lattice Λ̃ as λ⊥
0 /Zλ0. It is easy to see that any orthogonal decomposition

p of V2 = Λ2 ⊗R defines an orthogonal decomposition p̃ of Ṽ = Λ̃⊗R using natural

isomorphism between Ṽ and (R p+(λ0) + R p−(λ0))
⊥

.

Using Poisson summation formula in direction Zλ0 one can rewrite Θ(τ, p) as

Θ(τ, p) =
1√

2y(p+(λ0), p+(λ0))

∑

λ′∈Λ2/Zλ0

∑

l∈Z

exp (. . .)

where exp (. . .) is the exponent of an explicit algebraic expression.

Let us choose an additional lattice vector λ1 such that (λ0, λ1) = 1. Then we

can embed Λ̃ in Λ2 as (Zλ0 + Zλ1)
⊥. Moreover, we can parametrize Λ2/Zλ0 by

Λ̃ × {k λ1| k ∈ Z}. The total sum becomes a sum over (k, l) ∈ Z2 of certain twisted

theta series associated with the lattice Λ̃ and the orthogonal decomposition p̃. The

total formula is quite cumbersome.

Main Identity. Let F be a bounded measurable function on H satisfying the equa-

tion

F

(
aτ + b

cτ + d

)
= (cτ + d)

n
−

−n+
2 F (τ) .
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Then the following identity holds:

∫

H/SL(2,Z)

Θ(τ, p)F (τ)y
n
−

2
dxdy

y2
=

1√
2 ǫ

∫

H/SL(2,Z)

Θ(τ, p̃)F (τ)y
n
−

−1

2
dxdy

y2
+

+
2√
2 ǫ

∑

n>0

∫

H/Z

F (τ) exp

(
−πn2

2y ǫ

) ∑

λ̃∈Λ̃

e2πin(λ̃,µ)q(λ̃,λ̃)/2|q|−(p̃−(λ̃),p̃−(λ̃))y
n
−

−1

2
dxdy

y2
.

Here ǫ = (p+(λ0), p+(λ0)) > 0 and

µ = (λ1 + (p+(λ0) − p−(λ0))/2ǫ) modRλ0 ∈ λ0
⊥/Rλ0 = Λ̃ ⊗ R .

Correspondence p 7→ (p̃, ǫ, µ) can be considered as a local parametrization of Gr.

This identity follows from the formula for Θ(τ, p) as a sum over pairs of integers

(k, l). The first term comes from the term corresponding to k = l = 0. Any other pair

of integers (k, l) can be presented as (nc, nd) where n > 0 and c and d are coprime.

We identify in the usual way SL(2,Z)/

{(
1 n
0 1

) ∣∣∣ n ∈ Z

}
with the set of primitive

vectors (c, d) in Z2 and rewrite the sum over non-zero pairs (k, l) as the sum over

n > 0 and over the set of copies in H/Z = {(x + iy| 0 < x ≤ 1, 0 < y < +∞} of the

classical fundamental domain of SL(2,Z) in H.

Now let us see what happens for functions F which admit an asymptotic ex-

pansion at the cusp as in 3.1. The divergence of the sum above as y−→∞ is of the

same form as one of the original integral for Φ. In the integral over H/SL(2,Z) one

might expect a priori divergences near cusps on Q ⊂ R. In fact, the function F has

exponential growth at these points. Nevertheless the integral near R is absolutely

convergent because of the factor exp (−π/2ǫy) which makes the total integrand small

enough, as ǫ ≪ 1. Thus the exchange of the order of the sum and of the integral is

justified for small ǫ = (p+(λ0), p+(λ0)).

One can calculate explicitly integrals over H/Z corresponding to individual terms

in q-expansion of F . It reduces to classical integrals for Bessel functions

∫

y>0

exp (−β/y − αy)yν−1dy = 2(β/α)ν/2Kν(2
√

αβ) .

3.5. Hyperbolic case

Let us consider the case of hyperbolic even unimodular lattices, n− = 1 and

n+ > 1. As in the previous section, we pick a primitive null-vector λ0 ∈ Λ2. The
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additional vector λ1 such that (λ0, λ1) = 1 is chosen now among null-vectors. Lattice

Λ̃ ≃ (Zλ0 + Zλ1)
⊥ is considered as a sublattice of Λ. Thus we have a decompositon

Λ2 = Zλ0 + Zλ1 + Λ̃.

We identify the space Gr with the (half of the) hyperboloid

H = {v ∈ Λ2 ⊗ R| (v, v) = −1, (v, λ0) > 0} .

Projector p− corresponding to v is the orthogonal projector to 1-dimensional space

R v. In terms of parameters (ǫ, µ) ∈ R+ × (Λ̃⊗R) from the previous section we have

v = v(ǫ, µ) =
− 1√

ǫ
−√

ǫ(µ, µ)

2
λ0 +

√
ǫλ1 +

√
ǫµ .

Parameter p̃ does not vary because Λ̃ is positive definite and G̃r is a one point set.

Let F =
∑

n c(n)qn ∈ C((q)) be a holomorphic modular form of weight
1−n+

2 .

Theorem. Theta transform Φ of F is locally the restriction of a continuous piecewise

linear function on Λ̃ ⊗ R to the hyperboloid H.

The rest of this section is devoted to the proof of this Theorem. Function Φ has

the following expansion as ǫ−→0:

Φ = Φ(ǫ, µ) =
1√
2 ǫ

∫

H/SL(2,Z)

Θ(τ, p̃)F (τ)
dxdy

y2
+

+
2√
2 ǫ

∑

n>0

∫

H/Z

F (τ) exp

(
−πn2

2y ǫ

) ∑

λ̃∈Λ̃

e2πin(λ̃,µ)q(λ̃,λ̃)/2 dxdy

y2
.

Notice that each integral in this formula can be unambigously regularized using rules

from 3.2. We denote terms in this formula by Φ(1) and Φ(2).

Term Φ(1) is proportional to (v, λ0)
−1 because (v, λ0) =

√
ǫ.

After the expansion of F into the series we see that in the term Φ(2) we have to

calculate integrals ∫

H/Z

qm+
(λ̃,λ̃)

2 exp

(
−πn2

2y ǫ

)
dxdy

y2
.

If m + (λ̃,λ̃)
2 = 0 then this integral is equal to 2ǫ/πn2, otherwise it vanishes. Thus we

see that the second term is

Φ(2) =
4π

√
ǫ√

2

∑

λ̃∈Λ̃

c
(
−(λ̃, λ̃)/2

) ∑

n>0

e2πin(λ̃,µ)

n2
.
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Every vector λ̃ appears in this formula together with the opposite vector −λ̃. It

implies that we can replace in the formula from above exponent by the cosine. Now

we use the formula

∑

n>0

cos (2πnx)

n2
= π2

(
x2 + α(x)x +

1

6

)
, x ∈ R

where α(x) is a locally constant function of x: α(x) = −2n − 1 for n ≤ x < n + 1.

Finally, we get a formula for Φ as a finite sum:

Φ(ǫ, µ) = Φ(1) +
π√
2

∑

λ̃∈Λ̃

c
(
−(λ̃, λ̃)/2

)
· 4

√
ǫ

{
(λ̃, µ)2 + α((λ̃, µ))(λ̃, µ) +

1

6

}
.

Terms (locally) proportional to
√

ǫ(λ̃, µ) are restrictions of linear functions v =

v(ǫ, µ) 7→ const(v, λ̃). Terms proportional to
√

ǫ are restrictions of linear functions

v 7→ const(v, λ0). We claim that the rest is also the restriction of linear function

(proportional to v 7→ (v, λ1) in fact).

Using the fact that Φ(1)(v) = const (v, v)/(v, λ0) we see that

Φ = Φ(v) = (piecewise linear function of v)+
1

(v, λ0)
(quadratic polynomial of v) .

Applying the following automorphism of Λ2:

λ0 7→ λ1, λ1 7→ λ0, λ̃ 7→ λ̃ for λ̃ ∈ Λ̃

we see that

Φ(v) = (piecewise linear function of v) +
1

(v, λ1)
(quadratic polynomial of v) .

Comparing two expressions for Φ(v) as above we conclude that Φ is a piecewise

linear function of v.

This finishes the proof of the Theorem of this section. R. Borcherds calculated

theta transform in a more general situation and obtained that Φ is the restriction of

a piecewise polynomial function on the hyperboloid H.

3.6. Product formulas for meromorphic forms

Now we consider the case when n− = 2 and F is a holomorphic modular form

with pole at the cusp.
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As in the previous section we fix decomposition Λ2 = Zλ0 + Zλ1 + Λ̃ where Λ̃

is now a hyperbolic lattice. The space Gr is convenient to parametrize by vectors

v ∈ Λ̃ ⊗ C such that (Im(v), Im(v)) < 0. Projector p in Λ2 ⊗ R and corresponding

parameters (p̃, ǫ, µ) from the Section 3.4 are given by the following formulas:

p−(Λ2 ⊗ R) = R · Re(u) + R · Im(u) ⊂ Λ2 ⊗ R where u = − (v, v)

2
λ0 + λ1 + v,

p̃−(Λ̃ ⊗R) = R · Im(v),

ǫ =
−1

(Im(v), Im(v))
.

µ = −Re(v) .

The integral over H/SL(2,Z) in the first term of the formula for the Fourier

expansion at cusps (Section 3.4) was evaluated in the pervious section. The result is

that the first term has the form

Φ(1) = Φ(1)(v) = (W (v), Im(v))

where W (v) is a locally constant function on Gr with values in Λ̃ ⊗ C.

Now we consider Φ(2), the sum of integrals over H/Z.

The contribution of terms with λ̃ = 0 and n > 0 is a divergent sum const +

2 c(0)
∑

n>0 1/n. Nevertheless, if we use some regularization procedure, we obtain

2 c(0)
∑

n>0 ǫs/n2s+1 as s−→0. An easy calculation shows that the regularized value

is const + c(0)log (ǫ).

The contribution of the term corresponding to λ̃ 6= 0 and n > 0 is equal to

2 c
(
−(λ̃, λ̃)/2

) 1

n
e2πin(λ̃,−Re(v)) exp


−2πn

√
−(p̃−(λ̃), p̃−(λ̃)

ǫ


 .

Here we use the classical formula K−1/2(z) =
√

π/2z · exp (−z).

Elementary calculations show that

√
−
(
p̃−(λ̃),p̃−(λ̃)

)
ǫ = |(λ̃, Im(v))|. The sum

over n and two opposite vectors ±λ̃ gives

−4 c
(
−(λ̃, λ̃)/2

)
log |1 − exp (2πi(λ̃+, v)|

where λ̃+ is the one of two vectors (λ̃,−λ̃) which has positive scalar product with

Im(v).
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The resulting formula for Φ is (up to an additive constant)

(W (v), Im(v)) + c(0)log (ǫ) − 4
∑

λ̃: (λ̃,Im(v))>0

c
(
−(λ̃, λ̃)/2

)
log |1 − exp (2πi(λ̃+, v)| .

Notice that all terms here except c(0) log (ǫ) are locally sums of holomorphic and

anti-holomorphic functions of v.

Let us now assume that the coefficients c(n) of F are integers. Denote by L an

equivariant complex line bundle over Gr whose total space is the complex cone

{w ∈ Λ2 ⊗ C| (w,w) = 0,
(
Im(w), Im(w)

)
< 0} .

Projection L−→Gr is w 7→ u = w/(w, λ0). Bundle L carries invariant hermitean

scalar product ‖w‖ :=
√

−(w,w)/2. We claim that there exists a meromorphic section

Ψ of (L)⊗(c(0)/2) such that

log ‖Ψ‖ = −Φ/4 .

Locally, it follows from the expression for Φ from above and from the identity

ǫ =
|(w, λ0)|2
‖w‖2

.

Globally, we use the information about singularities from 3.3. In general, Ψ is not

Γ2-equivariant and it gives a section on Gr/Γ2 of L⊗(c(0)/2) twisted with a unitary

character of Γ2/[Γ2,Γ2]. In this way one obtains a proof of the Theorem from 1.1.

R. Borcherds proved more general product formulas for congruence subgroup in

SL(2,Z), non-unimodular lattices, and proposed to consider the case G2 = SU(N, 1).

He also developed the formalism for generalized theta functions associated with har-

monic polynomials.

4. EXPLICIT EXAMPLES

I will present only 3 examples.

The simplest example of the product formula for the group SO(1, 2) is completely

trivial: η(q) = q1/24
∏∞

n=1(1 − qn)1 where all the exponents 1 are coefficients of qn2

of a form of weight 1/2, namely of the theta function 1/2 +
∑∞

n=1 qn2

.

An example for SO(2, 2) is the product formula for j(p) − j(q) in 1.2.
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The next example for the group SO(3, 2) is also very beautiful:

∑

m,n∈Z

(−1)m+npm2

qn2

rmn =
∏

a+b+c>0

(
1 − paqcrb

1 + paqcrb

)f(ac−b2)

where
∑

f(n)qn = 1/(
∑

n(−1)nqn2

) = 1 + 2q + 4q2 + 8q3 + 14q4 + . . ..

5. CONNECTIONS WITH OTHER PARTS OF MATHEMATICS

5.1. Generalized Kac-Moody algebras

There are many nice examples of so-called generalized Kac-Moody algebras con-

structed by R. Borcherds and later by V. Gritsenko and V. Nikulin. These Lie super-

algebras are graded by a lattice, and the generating function for the dimensions of

homogeneous components is essentially an automorphic form for O(n, 2). The product

formula is the Weyl-Kac-Borcherds denominator identity. The Weyl group for these

algebras is often an arithmetic group generated by reflections. Also the Monster group

appears as an automorphism group.

5.2. K3 surfaces, Mirror symmetry, string duality

Let Λ be an even hyperbolic sublattice of (unique) even unimodular lattice Λ3,19

of signature (3, 19). We define MΛ as the moduli space of algebraic K3-surfaces X

such that Λ ⊂ Pic(X) ⊂ H2(X,Z) ≃ Λ3,19. By the classification theorem for K3-

surfaces we see that MΛ is of the type where Borcherds’ products are defined. The

image of MΛ under the period map is

{w ∈ Λ⊥ ⊗C| (w,w) = 0, (w,w) < 0; ∀λ ∈ Λ3,19 ∩ Λ⊥ ∩ w⊥ (λ, λ) 6= −2 }/C× .

Thus Borcherds’ results mean that for some Λ the standard line bundle over MΛ

is a torsion element in Pic(MΛ). One of such lattices is the one-dimensional lattice

Λ = Zλ, (λ, λ) = 2. In general, product formulas produce linear relations between

certain divisors in Shimura varieties.

Also one can consider the moduli space of Riemannian metrics on 4-dimensional

manifolds, which are hyperkaehler metrics on K3-surfaces. This space is locally mod-

eled by SO(19, 3)/SO(19) × SO(3). Borcherds’ construction gives a certain real-

analytic function on it. Presumably, it is related to the regularized determinant of

the Laplace operator (see [15]).
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Gritsenko-Nikulin, Jorgenson-Todorov and Harvey-Moore (see [9,13,15]) made

conjectures about the relation between Kac-Moody algebras, K3-surfaces, Borcherds’

product formulas and mirror symmetry. One expects that certain numbers of curves

of various genera on a generic element of the family MΛ coincide with exponents in

a product formula associated with the dual family where Λ is equal to the lattice of

transcedental cycles on a generic element.

In fact, J. Harvey and G. Moore tried to find a conceptual construction of the

generalized Kac-Moody algebra associated with the K3-surface X. Conjecturally, it

is the direct sum of all cohomology groups of all moduli spaces of stable coherent

sheaves on X. The Lie bracket is given by a correspondence in the cube of the total

(disconnected) moduli space. This correspondence is expected to consist of triples of

sheaves from all possible short exact sequences.

The idea of the Harvey-Moore integral arose from a new duality in string theory

relating elliptic curves on one manifold to numbers of all curves of all genera on

another manifold. Thus the integral over the moduli space of elliptic curves appeared.

In some cases we get in the formula for Φ an infinite sum of 3-logarithm functions as

in the usual mirror symmetry. R. Dijkgraaf, G. Moore, E. Verlinde and H. Verlinde

proposed a Borcherds’ type identity involving elliptic genera, see [7].

5.3. Hyperbolic case and Donaldson invariants

It is well-known that in Donaldson theory 4-dimensional manifolds X with the

b+ = 1 are very special. The Donaldson invariant is a piecewise polynomial function

on the cone {x | x · x < 0} in the hyperbolic space H2(X,R). R. Borcherds observed

that in certain cases (like CP 2 blown up at 9 points) the Donaldson invariant coincides

with one of the functions Φ given by the theta correspondence.
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