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Abstract: We prove a new recursive relation between the correlators〈τd1γ1 . . .
τdn

γn〉g,β , which together with known relations allows one to express all of them
through the full system of Gromov–Witten invariants in the sense of Kontsevich–Manin
and the intersection indices of tautological classes onMg,n, effectively calculable in
view of earlier results due to Mumford, Kontsevich, Getzler, and Faber. This relation
shows that a linear change of coordinates of the big phase space transforms the potential
with gravitational descendants to another function defined completely in terms of the
Gromov–Witten correspondence and the intersection theory onV n × Mg,n. We then
extend the formalism of gravitational descendants from quantum cohomology to more
general Frobenius manifolds and Cohomological Field Theories.

0. Introduction

This note furnishes a list of relations between the correlators of the topological sigma-
model coupled to the topological gravity

〈τd1γ1 . . . τdn
γn〉g,β .

Hereγi ∈ H∗(V ), whereV is a smooth projective algebraic manifold, the target space of
the model. These relations allow one to express all the correlators through the following
data:

(i) The (full) quantum cohomology ofV in the sense of [KM], consisting of the maps
IV
g,n,β : H∗(V n) → H∗(Mg,n).

(ii) The intersection indices of tautological classes onMg,n, effectively calculable in
view of the known results of Mumford, Kontsevich, Getzler, and Faber (cf. [F]).
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The correlators in question, for the physical discussion of which we refer to [W1, W2,
DijW], as well to the more recent works [EHX1, EHX2], are polylinear functions on
the extended phase space⊕∞

d=0H
∗(V )[d], which is the infinite sum of copies ofH∗(V ).

The elementsγ ∈ H∗(V ) are calledthe primary fields, whereas the respective elements
τdγ ∈ H∗(V )[d] for d ≥ 1 are calledthe gravitational descendants.

The mathematical definition of the correlators, spelled out in (1) below, is given in
terms of the intersection theoryon the moduli stackMg,n(V, β) of stable maps toV.Our
choice of this interpretation of the physical correlatorsdiffers from that made in [RT]
in the context of symplectic geometry (see the last seven lines of [RT], p. 458) in the
following way: Ruan and Tian use the monomials in Chern classes of the tautological
bundles onV n × Mg,n (“downstairs”) whereas we use their analogs onMg,n(V, β)
(“upstairs”). The latter classes arenot the lifts of the former ones, and the discrepancy
between the two is the source of the divergence of the definitions (see Theorem 1.1
and its proof). Ruan’s and Tian’s correlators are called heremodified correlators.In the
notation of (2) below they are

〈τ0,e1γ1 . . . τ0,en
γn〉g,β .

As a justification of our interpretation of physicists’ constructions, we may refer to
[W2], Subsect. 3c, pp. 275–276. Witten speaks there explicitly about the space of stable
maps rather than space of maps of stable curves, even if the former notion was not
mathematically defined before [KM]. More to the point, the Virasoro constraintL0e

F = 0
for the standard generating function of the correlators and with the standard choice of
the operatorL0 (see e. g. [EHX1]) holds for the upstairs correlators but fails for the
downstairs (modified) correlators (the standardL−1 works for the modified correlators
as well). This argument, which was conveyed to us by R. Pandharipande, unambiguously
favors our definition. In [M2] the formulaL0e

F = 0 was checked in the algebraic
geometric context.

The first result of this note consists in establishing the exact relationship between
the correlators and the modified correlators. Essentially, they are related by an overall
invertible linear transformationT of the extended phase space (cf. Theorem 2.1 and the
Remark after it). So it might seem that there is not much point in insisting upon either
choice, except for comparison with the physicists’ usage.

However, there is a hidden subtlety which is worth looking into more closely.
The point is that the natural definition domains of the correlators and the modified

correlators are slightly different: the latter ones are directly defined onlyin the stable
range2g − 2 + n ≥ 3 because in the unstable rangeMg,n is empty. But the matrix
coefficients ofT aregenus zero two point correlatorsand so belong to the unstable
range (see (20) below). The correlators can be in fact extended to the unstable range
either by passing toMg,n(V, β), or formally, by using a generalization of the Divisor
Axiom of [KM], which by now is of course proved in both algebraic-geometric and
symplectic contexts (Lemma 1.4 below). The latter trick is necessary if we want to
calculate the operatorT itself without appealing to the space of stable maps.

This remark makes it possible to approach the problem of coupling to topological
gravity of those theories which do not necessarily come from the topological sigma-
models. The largest natural class of such theories in genus zero essentially coincides
with that of Frobenius manifolds ([D, M1]), locally given by the solutions of the Witten–
Dijkgraaf–Verlinde–Verlinde Associativity Equations (potentials). Coefficients of the
Taylor series of the potential in flat coordinates are the genus zero correlators of primary
fields. The Second Reconstruction Theorem of [KM] (for the detailed proof see [KMK])
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allows then to construct themodified genus zero correlators with gravitational descen-
dants in the stable range for arbitrary Frobenius manifolds, which solves a part of the
coupling problem (see Proposition 3.1). If we insist on non-modified correlators, we
have to provide the operatorT that is, two point correlators. But the potential is defined
only up to terms of degree≤ 2. It can be normalized further on a subclass of Frobenius
manifolds which we introduce in Sect. 3 and call the manifolds of qc type (for Quantum
Cohomology). The additional structure postulated for such manifolds generalizes the
Divisor Axiom. This provides the operatorT valid for any genus.

However, the problem of higher genus correlators for general Frobenius manifolds
seems to be wide open. Even if we somehow construct the correlators of the primary
fields for higher genus, this would not suffice for the reconstruction of the full-fledged
Cohomological Field Theory of [KM] which we and [RT] use to calculate the modified
correlators with descendants. For some interesting recent work on the genus 1 and 2
numerical geometry see [Ge1, Ge2, KT, Z], this might give a clue for generalizations.

Now a few words about the plan of this note. Our main trick consists in introducing
the generalized correlators which we denote〈τd1,eiγ1 . . . τdn,enγn〉g,β and in deriving
for them a general recursion relation. This is the content of Theorem 1.1 which is the
central result of Sect. 1. In the remaining part of Sect. 1 we collect some further (and well
known) recursion formulas for the reader’s convenience: cf. [W1, W2, DijW, DijVV,
EHX1, EHX2]. Taken together, they provide transparent computation algorithms.

In Sect. 2 we apply these formulas to the comparison of two generating functions
involving the upstairs and downstairs gravitational descendants respectively. We prove
that the two functions are related by an invertible linear transformationT of the big
phase space, common for all genera, and defined entirely in terms of two-point genus
zero correlators with descendants at one point. This might shed some light to the problem
of Virasoro constraints, cf. [EHX1, EHX2]. In fact, any system of differential equations
for any generating function of the correlators with descendants equally well serves for
the modified correlators after the coordinate change defined byT.On the other hand, the
transition to the modified correlators almost decouples thea-indices from thed-indices:
cf. formula (27) below. As an example, applyingT to the standard Virasoro generators
Li we easily see thatL−1 remains of the same form, but inL0 the cup product by
the canonical class gets replaced by the quantum product. And although the Virasoro
constraintsLn look more complicated when written with respect to the downstairs
descendants, certain vanishing results are clearer in this picture: for example, in a recent
article, Eguchi and Xiong [EX] make use of the vanishing of correlation functions with
more than 3g − 3 +n descendants to obtain simple topological recursion relations for
the generating functions of the theory.

Finally, in Sect. 3 we extend the new formalism of the gravitational descendants from
quantum cohomology to the more general Frobenius manifolds and Cohomological Field
Theories as was explained above.

1. Generalized Correlators

1.1. The setting.The mathematical definition of the conventional correlators in the
notation of [BM] is

〈τd1γ1 . . . τdnγn〉g,β :=∫
Jg,n(V,β)

c1(L1;g,n(V, β))d1 ∪ ev∗
1(γ1) ∪ · · · ∪ c1(Ln;g,n(V, β))dn ∪ ev∗

n(γn), (1)
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whereJg,n(V, β) ∈ A∗(Mg,n(V, β)) is the virtual fundamental class, the line bundle
Li;g,n(V, β), i = 1, . . . , n has the geometric fiberT ∗

xi
C at the point [(C, x1, . . . , xn, f :

C → V )], andevi sends this point tof (xi). Recall also thatβ varies in the semigroup
of the effective algebraic classes ofH2(V,Z)/(tors).

Putψi := c1(Li;g,n(V, β)).
In the stable range 2g − 2 − n > 0 we have the absolute stabilization mapst :

Mg,n(V, β) → Mg,n, and the respective bundlesLi onMg,n. Putφi := st∗(c1(Li)).
Our generalized correlators, by definition, are:

〈τd1,e1γ1 . . . τdn,en
γn〉g,β :=∫

Jg,n(V,β)
ψd1

1 φ
e1
1 ∪ ev∗

1(γ1) ∪ . . . ∪ ψdn
n φen

n ∪ ev∗
n(γn). (2)

SinceM0,2(V, 0) = ∅, we have

〈τd1γ1 τd2γ2〉0,0 = 0. (3)

Furthermore, in the stable range we have

〈
n∏

i=1

τdi,0γi〉g,β = 〈
n∏

i=1

τdi
γi〉g,β .

Theorem 1.1. If 2g − 2 +n > 0, then for anyj with dj ≥ 1 we have

〈
n∏

i=1

τdi,eiγi〉g,β = 〈
n∏

i=1

τdi−δij ,ei+δijγi〉g,β

+
∑

a, β1+β2=β

±〈τdj−1γj τ01
a〉0,β1〈τ0,ej

1a

∏
i: i6=j

τdi,ei
γi〉g,β2. (4)

Here(1a), (1a) are Poincaŕe dual bases ofH∗(V ), and the sign arises from permuting
γj with γi for all i < j.

Corollary to Theorem 1.1. For g = 0, n = 3, d1 ≥ 1 we have:

〈τd1γ1τd2γ2τd3γ3〉0,β =
∑

a, β1+β2=β

〈τd1−1γ1 τ01
a〉0,β1〈τ01a τd2γ2 τd3γ3〉0,β2. (4a)

In fact, φi = 0 here, so one should putei = 0 in (4), and the first summand will
vanish.

This is a well known identity.

Sketch of proof.Consider the morphism of universal curvess̃t : Cg,n(V, β) → Cg,n

coveringst. It induces the morphism of relative 1-form sheavesω → ω(V, β), at least
at the complement of singular points of the fiber. Restricting the latter to thejth section
(j ∈ S being fixed), we get the morphismst∗(Lj;g,n) → Lj;g,n(V, β) onMg,n(V, β).
It is a local isomorphism everywhere except for the points in this stack over which the
j th section lies on the component of fiber which gets contracted bys̃t. These points
constitute the union of boundary strataM (V, σ(β1, β2)), whereσ(β1, β2) is a one-edge,
two-vertexn-graph with one vertex of genus 0, classβ1, with tail j, and another of genus
g, classβ2, with tails 6= j.Naively, one would expect that all these boundaries are divisors,
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and over them sections ofst∗(Lj;g,n) have an extra zero of the first order. Hence in (2)
we could replace one factorψj byφj +

∑
β1+β2=β [M (V, σ(β1, β2))]. Then the restriction

to the boundary would give (4). A more precise reasoning uses the pullback property of
the virtual fundamental classesJ(V, σ) similar to Lemma 10 of [B]. The details will be
treated in [M2].

Clearly, these relations allow us to reduce all the generalized (in particular, the
conventional ones) correlators to those withβ = 0, to the conventional ones in the
unstable range and to the generalized ones with alldi = 0 in the stable range. Using (2)
and the projection formula, one can rewrite the latter in the form

〈τ0,e1γ1 . . . τ0,en
γn〉g,β :=∫

Ig,n(V,β)
c1(pr∗

2(L1))e1 ∪ pr∗
1(γ1) ∪ . . . ∪ c1(pr∗

2(Ln))en ∪ pr∗
1(γn),

where this time the integration refers toV n × Mg,n, I = (ev, st)∗J is the Gromov–
Witten correspondence, andpri are the two projections. Hence the correlators in the
stable range withdi = 0 are calculable if we know the full (not just top) Gromov–Witten
invariants. We will call the expressions abovethe modified correlators.

Notice that forβ = 0 we haveψi = φi, henceτd,e = τd+e, so that (4) gives no new
information and is tautologically true because of (3). So we will recall what happens in
the caseβ = 0, dimV > 0 separately.

1.2. The mapping to a point case.Recall thatMg,n(V, 0) is canonically isomorphic to
Mg,n × V , and with this identification,

[Mg,n(V, 0)]virt = Jg,n(V, 0) = cG(E � TV ) ∩ [Mg,n × V ], (5)

whereE = R1π∗OC , π : C → Mg,n is the universal curve, andG = g dimV.Consider
the Chern classes and Chern roots ofE andTV :

ct(E) =
g∏

i=1

(1 +ait) =
g∑

i=0

(−1)iλi;g,nt
i,

whereλi are Mumford’s tautological classes defined as Chern classes ofπ∗(ωπ),

ct(TV ) =
δ∏

j=1

(1 + vjt) =
δ∑

j=0

cj(V )tj , δ = dimV.

Then we get

cG(E � TV ) =
g∏

i=1

δ∏
j=1

(ai � 1 + 1� vj) =
δ∏

j=1

g∑
i=0

(−1)iλi;g,n � vg−i
j

=
∑

(i1,...,iδ)

(−1)i1+···+iδλi1;g,n . . . λiδ ;g,n � vg−i1
1 . . . vg−iδ

δ

= (−1)G
∑

0≤i1≤···≤iδ≤g

λi1;g,n . . . λiδ ;g,n �mg−i1,...,g−iδ
(c0(V ), . . . , cδ(V )). (6)

Heremg−i1,...,g−iδ
is the symmetric function obtained by symmetrization of the obvious

monomial in−vj and expressed via the Chern classes ofV .
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Furthermore,Li;g,n(V, 0) is the lift ofLi;g,n wrt the projectionMg,n × V → Mg,n

andevi is the projectionMg,n × V → V. Hence we get

〈τd1γ1 . . . τdnγn〉g,0 =

= (−1)G
∑

0≤i1≤···≤iδ≤g

(∫
Mg,n

λi1;g,n . . . λiδ ;g,nψ
d1
1;g,n . . . ψ

dn
n;g,n

×
∫

V

mg−i1,...,g−iδ
(c0(V ), . . . , cδ(V ))γ1 . . . γn

)
, (7)

whereψi;g,n = c1(Li;g,n).
The generalized correlators give nothing new:τd,e = τd+e.
Most of the correlators (7) vanish for dimensional reasons. Here is the list of those

that may remain.

Proposition 1.2. The correlators (7) identically vanish except for the following cases:

a) g = 0, n ≥ 3,
∑
di = n− 3,

∑
|γi| = 2δ, whereγ ∈ H |γ|(V ), δ = dimV :

〈τd1γ1 . . . τdn
γn〉0,0 =

(d1 + . . . dn)!
d1! . . . dn!

∫
V

γ1 . . . γn. (8)

b) g = 1, n ≥ 1,
∑
di = n (resp.n− 1),

∑
|γi| = 0, (resp. 2):

〈τd11 . . . τdn1〉1,0 = degcδ(V )
∫

M1,n

ψd1
1;1,n . . . ψ

dn

n;1,n, (9)

〈τd1γ τd21 . . . τdn
1〉1,0 = −(cδ−1(V ), γ)

∫
M1,n

λ1,1,nψ
d1
1;1,n . . . ψ

dn

n;1,n (10)

for |γ| = 2.

c) g ≥ 2, n ≥ 0,
∑

|γi|/2 ≤ δ ≤ 3,
∑

(di + |γi|/2) = (g − 1)(3− δ) + n.

In particular, theg ≥ 2, β = 0 correlators vanish fordimV ≥ 4.

Proof. First of all, E = Eg,n is lifted fromM≥2,0, M1,1 or M0,3. For g = 0, E is the

zero bundle, andJ0,n(V, 0) = [M0,n × V ]. Formula (8) follows from this and from the
known expression forg = 0,V = a point correlators:∫

M0,n

ψd1
1;0,n . . . ψ

dn

n;0,n =
(d1 + · · · + dn)!
d1! . . . dn!

. (11)

Forg = 1, (6) becomes

cδ(E � TV ) = cδ(V ) � 1 − cδ−1(V ) � λ1,1,n

from which (9) and (10) follow.
Finally, for g ≥ 2 one sees that the virtual fundamental class can be non-zero only

if the virtual dimension forn = 0 is non-negative, which means that dimV ≤ 3. The
remaining inequalities follow from the dimension matching.
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One can further specialize (7) and write formulas similar to (8)–(10) separately for
curves, surfaces and threefolds,g ≥ 2.

1.3. Unstable range case.If 2g − 2 +n ≤ 0, we cannot use the absolute stabilization
morphism as in Theorem 1.1 and Subsect. 1.2 becauseMg,n is empty, whereas forβ 6= 0,
the stackMg,n(V, β) may well be non-empty. Always assuming this (otherwise the
relevant correlators vanish), we will use instead the forgetful morphismMg,n+1(V, β) →
Mg,n(V, β) to produce recursion.

Proposition 1.3. All the unstable range correlators can be calculated through the genus
zero and one primary (di = 0) stable range correlators, and theβ = 0 correlators.

Proof. We will be considering the cases (g, n) = (0, 2), (0, 1), (0, 0), (1, 0) in this order,
reducing each in turn to the previously treated ones.

Lemma 1.4. Letγ0 be a divisor class onV or more generally, a class inH2(V ). Then
we have

〈γ0 τd1γ1 . . . τdnγn〉g,β = (γ0, β) 〈τd1γ1 . . . τdnγn〉g,β

+
∑

k: dk≥1

〈τd1γ1 . . . τdk−1(γ0 ∪ γk) . . . τdnγn〉g,β . (12)

(We omit sometimesτ0 in notation.)
This is a generalization of the Divisor Axiom in [KM] following from the properties

of J(V, β). To treat the two-point correlators with, sayd1 > 0, we first use (12) and

write for someγ0 with (γ0, β) 6= 0:

〈τd1γ1 τd2γ2 〉0,β =
1

(γ0, β)

(
〈γ0 τd1γ1 τd2γ2 〉0,β

−〈τd1−1(γ0 ∪ γ1) τd2γ2〉0,β − 〈τd1γ1 τd2−1(γ0 ∪ γ2)〉0,β

)
.

(13)

The last two terms in (13) contain only two-point correlators with the smaller sum
d1 + d2 − 1. To the first term we apply Corollary 1.3:

〈γ0 τd1γ1 τd2γ2〉0,β =
∑

a, β1+β2=β

〈τd1−1γ1 1a〉0,β1〈1a γ0 τd2γ2〉0,β2. (14)

The right-hand side contains only two-point correlators with the smaller sumd1 − 1
and three-point correlators with the maximum oneτd, d 6= 0. If necessary, we can
again apply (14) to the three-point correlators there, again reducing the order of the
gravitational descendants involved.

Iterating this procedure, we will arrive at the expressions containing only primary
correlators. Finally, the two-point primary correlators can be reduced to the three-point
stable range ones:

〈γ1γ2〉0,β =
1

(γ0, β)
〈γ0γ1γ2〉0,β . (15)

For later use, we register the following explicit reduction of some two-point correlators
to the three-point ones following from (13):

〈τdγ1 τ0γ2〉0,β =
d+1∑
j=1

(−1)j+1(γ0, β)−j〈γ0 τd+1−jγ1 τ0(γj−1
0 ∪ γ2)〉0,β . (15a)
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Clearly, one can invoke (12) in the same way in order to calculate the one-point and
zero-point correlators. Alternatively, one can exploit the following identity, calledthe
dilaton equation:

Lemma 1.5. We have

〈τ11τd1γ1 . . . τdnγn〉g,β = (2g − 2 +n) 〈τd1γ1 . . . τdnγn〉g,β .

This again follows from the axioms forJ(V, β) stated in [BM] and proved in [B].

1.4. Correlators for zero-dimensionalV . This case is covered by the Witten–Kontsevich
theory and additional relations summarized in [F].

2. Generating Functions on the Big Phase Space

2.1. The big phase space.The conventional gravitational potential is a generating series
for the correlators (1) considered as a formal function on the extended phase (super)space
⊕∞

d=0H
∗(V )[d ]. The dth copy of H∗(V ) accommodatesτdγ’s. Thus the symbolτd

acquires an independent meaning as the linear operator identifyingH∗(V ) = H∗(V )[ 0 ]
with H∗(V )[d ] or even shifting eachH∗(V )[e ] to H∗(V )[e + d ] so that we can write
τd = τd

1 .
For convenience choose a basis{1a | a = 0, . . . r} of H∗(V,C). Denote by{xd,a}

the dual coordinates to{τd1a} and by0 =
∑

a,d xd,aτd1a the generic even element
of the extended phase superspace. As usual,xd,a has the sameZ2-parity as1a, and the
odd coordinates anticommute. The formal functions we will be considering are formal
series in weighted variables, where the weight ofxd,a is d.

We need the universal characterB(V ) → 3 : β 7→ qβ with values in the Novikov
ring3 which is the completed semigroup ring ofB(V ) eventually localized with respect
to the multiplicative systemqβ . It is topologically spanned by the monomialsqβ =
qβ1

1 . . . qbm
m , whereβ = (b1, . . . , bm) in a basis of the numerical class group of 1-cycles,

and (q1, . . . , qm) are independent formal variables. We will not need the genus expansion
parameter because our main formula does not mix genera. We now put formally

Fg(x) =
∑

β

qβ〈e0〉g,β =
∑

β

qβ
∑

n

〈0⊗n〉g,β

n!

=
∑

n,(a1,d1),...,(an,dn)

ε(a)
xd1,a1 . . . xdn,an

n!

∑
β

qβ〈τd11a1 . . . τdn1an〉g,β , (16)

whereε is the standard sign in superalgebra. We defineF st
g (x) by the same formula in

which the last summation is restricted to the stable range of (g, n) that is,n ≥ 3 for
g = 0 andn ≥ 1 for g = 1.

We will introduce the generating functionGg(x) for modified correlators by the
same formula asF st

g in which everyτd in the stable range correlators is replaced by
τ0,d :

Gg(x) =
∑

n,(a1,d1),...(an,dn)

ε(a)
xd1,a1 . . . xdn,an

n!

∑
β

qβ〈τ0,d11a1 . . . τ0,dn1an
〉g,β .

(17)
We will prove that the two functions are connected by a linear change of coordinates of
the big phase space.
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Theorem 2.1. We have for allg ≥ 0,

F st
g (x) = Gg(y), (18)

where
yc,b = xc,b +

∑
(a,d),d≥c+1

∑
β

qβxd,a〈τd−c−11a τ01
b〉0,β . (19)

Proof. Ford ≥ 1, define the linear operators

Ud : H∗(V,3) → H∗(V,3)

by the formula

Ud(γ) :=
∑
a,β

qβ〈τd−1γ τ01a〉0,β1a (20)

and putU0(γ) = γ.
The formula (4) means that in the stable range and ford ≥ 1 the correlator of any

element of the form
τd,eγ − τd−1,e+1γ − τ0,e(Ud(γ))

with any product of otherτdi,ei
γi vanishes; the same is true ford = 0 by the definition

of U0. Hence by induction, in any stable range correlator we can replace any expression
τd,0γ by

∑d
j=0 τ0,j(Ud−j(γ)) without changing the value of the correlator. In particular,

F st
g (x) =

∑
n,β

qβ

n!
〈

n∏
i=1

∑
ai,di

xdi,ai
τdi

1ai
〉g,β

=
∑
n,β

qβ

n!
〈

n∏
i=1

∑
ai,di

xdi,ai

di∑
ji=0

τ0,ji
(Udi−ji

(1ai
))〉g,β

=
∑
n,β

qβ

n!
〈

n∏
i=1

∑
ci,bi

yci,biτ0,ci1bi〉g,β = Gg(y).

To obtain the last equality, use (20) in order to represent each sum in the correlator
product as a linear combination of termsτ0,c1b. The straightforward calculation of
coefficients furnishes (19).

Remark.The operatorT defined byy = T (x) is a linear transformation of the big phase
space with coefficients in3 defined entirely in terms of genus zero two-point correlators.
It is invertible, because (19) shows that it is the sum of identity and the operator which
strictly raises the gravitational weightc. Hence we may define the corrected version of
Gg(x) by G̃g(x) := Fg(T−1(x)). Equivalently, we can extend the modified correlators
to the unstable range keeping the natural functional equations.

One can also use these formulas in order to give independent meaning to the symbols
τ0,d as linear operators on the infinite sum of the3-modulesH∗(V,3)[d ].

2.2. ExpressingT through the three-point primary correlators.Formulas (16) and (19)
make the following definition natural:
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〈τd1γ1 . . . τdn
γn〉g :=

∑
β

qβ〈τd1γ1 . . . τdn
γn〉g,β . (21)

We will write simply 〈. . . 〉 wheng = 0. These correlators are3-polylinear functions
on the3-module⊕d≥0H

∗(V,3)[d ]. Setting in (14)d2 = 0, multiplying by qβ and
summing, we obtain:

〈γ0 τdγ1 γ2〉 =
∑

a

〈τd−1γ1 1a〉〈1a γ0 γ2〉. (22)

Put

γ0 · γ2 :=
∑

a

1a〈1aγ0 γ2〉 (23)

(this is essentially the product in “small” quantum cohomology where the structure
constants are the third derivatives of the genus zero potential restricted toH2).

Then we can rewrite (22) as

〈γ0 τdγ1 γ2〉 = 〈τd−1γ1 γ0 · γ2〉. (24)

Now let l be any linear function onH2(V,3). It defines the derivation∂l : 3 →
3, ∂lq

β := l(β) qβ . We extend it to formal series over3 coefficientwise. Ifγ0 is an
ample divisor class considered as a linear function onH2, we write∂γ0 for this derivation.
Turning now to Eq. (15a), multiply it byqβ and sum over allβ. The left-hand side of
(15a) vanishes forβ = 0, and the right-hand side does not make sense, so we get:

〈τdγ1 γ2〉 =

d+1∑
j=1

(−1)j+1∂−j
γ0

[〈γ0 τd+1−jγ1 τ0(γj−1
0 ∪ γ2)〉 − 〈γ0 τd+1−jγ1 τ0(γj−1

0 ∪ γ2)〉0,0].

To interpret this, notice that since (γ0, β) 6= 0 for all algebraic effective non-zero 2-
homology classes onV , ∂−1

γ0
F makes sense for any seriesF whose coefficients are

correlators not involving theβ = 0 ones. As the result of this “integration” we take the
series again not involving theβ = 0 terms.

Actually, in view of (8), theβ = 0 terms vanish unlessj = d + 1. Separating this
summand and replacing the remaining triple correlators with the help of (24), we get the
following result.

Proposition 2.2. The matrix coefficients ofT can be expressed inductively through the
triple primary correlators, that is, Gromov–Witten invariants, of genus zero: ford ≥ 1,

〈τdγ1 γ2〉 =
d∑

j=1

(−1)j+1∂−j
γ0

〈τd−jγ1 γ0 · (γj−1
0 ∪ γ2)〉+

(−1)d∂−(d+1)
γ0

[〈γ0 γ1 γ
d
0 ∪ γ2〉 − 〈γ0 γ1 γ

d
0 ∪ γ2〉0,0]. (25)
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3. Coupling of Frobenius Manifolds and Cohomological Field Theories to
Topological Gravity

3.1. Coupling of Frobenius manifolds to topological gravity.The restriction8(x) to
the small phase space (xd,a = 0 for d > 0) of the genus zero potentialF0(x) from (16)
satisfies the so called Associativity Equations and defines onH∗(V,3) the structure of
the formal Frobenius manifold, or the tree level quantum cohomology ofV. The notion
of Frobenius manifold was axiomatized and studied by B. Dubrovin in [D]. There are
many interesting examples which do not come from quantum cohomology. In Sect. of
[D] Dubrovin sets to reconstruct the whole potential with gravitational descendants from
its small phase space part. Our previous discussion shows how one can do it for quantum
cohomology potentials. In this subsection we show how to do this for a wider class of
formal Frobenius manifolds which are not supposed to come from quantum cohomology.
Our approach considerably differs from that of [D]. It would be important to relate it to
the integrable hierarchies as in [D].

We will divide our discussion into two steps.
First, we will introduce the modified potential with gravitational descendants which

reduces toG0(x) in the quantum cohomology case.
Second, we will discuss the additional conditions needed to define the analog of the

linear transformationT and the conventional potential with gravitational descendants
F0(x) := G0(T (x)).

3.1.1. The big phase space and the modified potential.We will use the formalism of
Frobenius manifolds as it was presented in [M1].

Let 3 be aQ-algebra (playing role of the Novikov ring),H a freeZ2-graded3-
module of finite rank (in the quantum cohomology caseH = H∗(V,3) ), η a symmetric
non-degenerate pairing onH replacing the Poincaré form. To keep intact as much nota-
tion as possible, we introduce formallythe big phase spaceas linear infinite dimensional
formal supermanifold⊕d≥0H[d ] with basisτd1a and coordinatesxd,a as in Sect. 6
above. Putxa = x0,a, x = {xa}. By definition, a Frobenius potentialon (H, η) is a
formal series8(x) ∈ 3[[x]] whose third derivatives8ab

c (with one index raised by
η) form the structure constants of the commutative, associative3[[x]]-module spanned
by ∂a := ∂/∂xa. Finally, any such tripleM = (H, η,8) is calleda formal Frobenius
manifold(over3).

The primary correlatorsof M are by definition the symmetric polylinear functions
H⊗n → 3, n ≥ 3, whose values on the tensor products ofτ01a are essentially the
coefficients of8 written as in (16):

8(x) =
∑

n,a1,...,an

ε(a)
xa1 . . . xan

n!
〈τ01a1 . . . τ01an

〉. (26)

In the case of quantum cohomology this agrees with our notation (21). Notice that the
Associativity Equations do not constrain the terms of8 of degree≤ 2. In this subsection
we will use only correlators with≥ 3 arguments.

In order to extend the potential8 to a formal function on the big phase space
which in the quantum cohomology case will coincide withG0, we will use the Second
Reconstruction Theorem of [KM], proved in [KMK] and [M1]:

Proposition 3.1. For any Frobenius manifoldM as above, there exists a unique se-
quence of3-linear mapsIM

n : H⊗n → H∗(M0,n,3), n ≥ 3, satisfying the folowing
properties:
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(i) Sn-invariance and compatibility with restriction to boundary divisors (cf. [KM] or
[M1], p. 101).

(ii) The top degree term ofIM
n capped with the fundamental class is the correlator of

M with n arguments.

Moreover, in the quantum cohomology case

IM
n =

∑
β

qβIV
0,n,β ,

whereIV
0,n,β are the genus zero Gromov–Witten invariants discussed in [KM].

We now definethe modifiedM -correlatorswith gravitational descendants by

〈τ0,d11a1 . . . τ0,dn
1an

〉 :=
∫

[M0,n]
IM
n (τ01a1 ⊗ · · · ⊗ τ01an

) c1(L1)d1 . . . c1(Ln)dn .

(27)
Finally put

GM
0 (x) =

∑
n,(a1,d1),...(an,dn)

ε(a)
xd1,a1 . . . xdn,an

n!
〈τ0,d11a1 . . . τ0,dn

1an
〉, (28)

where this timex denotes coordinates on the big phase space. Clearly, ifM is quantum
cohomology, we have reproduced (17).

The expressions (27) are universal polynomials in the coefficients of8 andηab

depending only on the superrank ofH and (ai, di). They can be calculated using some
results of [Ka].

To explain this, recall thatH∗(M0,n) is spanned by the classes of the boundary strata
M0,τ indexed by trees whose tails are labelled by{1, . . . , n}. Any cohomology class is
uniquely defined by its values on these classes. ForIM

n these values are given in [KMK],
(0.7). Forφd1

1 . . . φdn
n they are products of multinomial coefficients over all vertices of

τ : put on each flagdi if this is a tail with labeli, 1 otherwise, and divide the factorial of
the sum of labels at each vertex by the product of factorials of labels.

It remains to calculate the cup product of the described classes. This problem was
solved in [Ka]. Admittedly, the explicit formula is rather complicated.

3.1.2. Higher genus case.If IM
n = IM

0n is extended to a Cohomological Field Theory
IM
gn, as defined in [KM], one can use the evident version of formula (26) in order to

define the modified correlators and functionsGg(x) of any genus. However, unlike the
genus zero case, a CohFT cannot be reconstructed only from its primary correlators.

3.2. The operatorT on the big phase space.If we want to extrapolate the construction
of T from the case of quantum cohomology to more general Frobenius manifolds, we
encounter several difficulties. The basic problem is that the inductive formula (25) for
the coefficients ofT involves some additional structures, not required in the general def-
inition of formal Frobenius manifolds. Namely, we need submodulesH2 andH2 in H,
a semigroup inH2 with indecomposable zero accomodatingβ, the ring3 with deriva-
tives∂γ0. All of these structures must satisfy several conditions, ensuring in particular
the independence of the right-hand side of (25) from the choice ofγ0.

The following seems to be the most straightforward way to describe the additional
restrictions starting with the more conventional data onM = (H, η,8).
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(i) Assume thatM is endowed with the flat identitye and an Euler vector fieldE,
such that adE is semisimple onH. Assume that the spectrumD, (da) belongs to
3 (see [M1], Ch.1, Sect. 2 for precise definitions).

(ii) Denote byH2 ⊂ H the submodule ofH corresponding to the zero eigenvalue of
adE. Assume that it is a free direct submodule. Denote byH2 ⊂ H the submodule
of H corresponding to the eigenvalue−D of adE. Assume that it is a free direct
submodule, and thatη makesH2 strict dual toH2.

(iii) Assume that a semigroupB ⊂ H2 with indecomposable zero and finite decompo-
sition is given such that8(x) can be expanded into a formal Fourier series with
respect to the part of the coordinates dual to a basis ofH2, with coefficients vanish-
ing outsideB. Denote by9 the part corresponding toβ 6= 0. Assume finally that
8 = 9 + c, wherec is a cubic form,E9 = (D + d0)9 (without additional terms of
degree≤ 2, cf. [M1], Ch.1, (2.7)) andE1c = (D + d0)c, whereE1 is the projection
of E to the orthogonal complement toH2.

These structures allow us to imitate the constructions of Sect. 2, starting withβ-
decomposition of the primary correlators, and to defineT via (25). For more details, see
[M3], Sect. 1.

Notice that the cup product onH and the〈. . . 〉0,0 correlators are defined using the
constant terms of the relevant Fourier decomposition. The independence of (25) from
the choice ofγ0 follows from the postulated properties.
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