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Abstract: We prove a new recursive relation between the correlatogsy; .. .

T4, Vn)g,3, Which together with known relations allows one to express all of them
through the full system of Gromov-Witten invariants in the sense of Kontsevich—Manin
and the intersection indices of tautological classes\by,, effectively calculable in

view of earlier results due to Mumford, Kontsevich, Getzler, and Faber. This relation
shows that a linear change of coordinates of the big phase space transforms the potential
with gravitational descendants to another function defined completely in terms of the
Gromov-Witten correspondence and the intersection theofy’oxx M, ,,. We then

extend the formalism of gravitational descendants from quantum cohomology to more
general Frobenius manifolds and Cohomological Field Theories.

0. Introduction

This note furnishes a list of relations between the correlators of the topological sigma-
model coupled to the topological gravity

(Tay 71+ Td, Yn)g.B-

Herey; € H*(V), whereV is a smooth projective algebraic manifold, the target space of
the model. These relations allow one to express all the correlators through the following
data:

(i) The (full) quantum cohomology &f in the sense of [KM], consisting of the maps
1Y, 50 HY (V™) — H*(Mg).

(i) The intersection indices of tautological classesdy ,,, effectively calculable in
view of the known results of Mumford, Kontsevich, Getzler, and Faber (cf. [F]).
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The correlators in question, for the physical discussion of which we refer to [W1, W2,
Dijw], as well to the more recent works [EHX1, EHX2], are polylinear functions on
the extended phase spagg,H *(V)[d], which is the infinite sum of copies @i *(V).

The elementy € H* (V') are calledhe primary fieldswhereas the respective elements
T4y € H*(V)[d] for d > 1 are calledhe gravitational descendants.

The mathematical definition of the correlators, spelled out in (1) below, is given in
terms of the intersection theooy the moduli stack/ , ,,(V, 3) of stable maps t&. Our
choice of this interpretation of the physical correlatdiféers from that made in [RT]
in the context of symplectic geometry (see the last seven lines of [RT], p. 458) in the
following way: Ruan and Tian use the monomials in Chern classes of the tautological
bundles onV™ x M, ,, (“downstairs”) whereas we use their analogsidy ,,(V, 3)
(“upstairs”). The latter classes ametthe lifts of the former ones, and the discrepancy
between the two is the source of the divergence of the definitions (see Theorem 1.1
and its proof). Ruan’s and Tian’s correlators are called heydified correlatorsin the
notation of (2) below they are

<7'07el'71 e TO,en'Yn>g,ﬁ'

As a justification of our interpretation of physicists’ constructions, we may refer to
[W2], Subsect. 3c, pp. 275-276. Witten speaks there explicitly about the space of stable
maps rather than space of maps of stable curves, even if the former notion was not
mathematically defined before [KM]. More to the point, the Virasoro constfaint = 0

for the standard generating function of the correlators and with the standard choice of
the operatotly (see e. g. [EHX1]) holds for the upstairs correlators but fails for the
downstairs (modified) correlators (the standard works for the modified correlators

as well). This argument, which was conveyed to us by R. Pandharipande, unambiguously
favors our definition. In [M2] the formuldoe” = 0 was checked in the algebraic
geometric context.

The first result of this note consists in establishing the exact relationship between
the correlators and the modified correlators. Essentially, they are related by an overall
invertible linear transformatioi of the extended phase space (cf. Theorem 2.1 and the
Remark after it). So it might seem that there is not much point in insisting upon either
choice, except for comparison with the physicists’ usage.

However, there is a hidden subtlety which is worth looking into more closely.

The point is that the natural definition domains of the correlators and the modified
correlators are slightly different: the latter ones are directly definediartlye stable
range2g — 2 +n > 3 because in the unstable randg, ,, is empty. But the matrix
coefficients ofT" are genus zero two point correlatond so belong to the unstable
range (see (20) below). The correlators can be in fact extended to the unstable range
either by passing taZ, ,,(V, 8), or formally, by using a generalization of the Divisor
Axiom of [KM], which by now is of course proved in both algebraic-geometric and
symplectic contexts (Lemma 1.4 below). The latter trick is necessary if we want to
calculate the operatdr itself without appealing to the space of stable maps.

This remark makes it possible to approach the problem of coupling to topological
gravity of those theories which do not necessarily come from the topological sigma-
models. The largest natural class of such theories in genus zero essentially coincides
with that of Frobenius manifolds ([D, M1]), locally given by the solutions of the Witten—
Dijkgraaf—\Verlinde—Verlinde Associativity Equations (potentials). Coefficients of the
Taylor series of the potential in flat coordinates are the genus zero correlators of primary
fields. The Second Reconstruction Theorem of [KM] (for the detailed proof see [KMK])
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allows then to construct thaodified genus zero correlators with gravitational descen-
dants in the stable range for arbitrary Frobenius manifgldéich solves a part of the
coupling problem (see Proposition 3.1). If we insist on non-modified correlators, we
have to provide the operat@rthat is, two point correlators. But the potential is defined
only up to terms of degre€ 2. It can be normalized further on a subclass of Frobenius
manifolds which we introduce in Sect. 3 and call the manifolds of gc type (for Quantum
Cohomology). The additional structure postulated for such manifolds generalizes the
Divisor Axiom. This provides the operat@t valid for any genus.

However, the problem of higher genus correlators for general Frobenius manifolds
seems to be wide open. Even if we somehow construct the correlators of the primary
fields for higher genus, this would not suffice for the reconstruction of the full-fledged
Cohomological Field Theory of [KM] which we and [RT] use to calculate the modified
correlators with descendants. For some interesting recent work on the genus 1 and 2
numerical geometry see [Gel, Ge2, KT, Z], this might give a clue for generalizations.

Now a few words about the plan of this note. Our main trick consists in introducing
the generalized correlators which we den@ig c,v1 . . - 74, e, Yn) g3 @nd in deriving
for them a general recursion relation. This is the content of Theorem 1.1 which is the
central result of Sect. 1. In the remaining part of Sect. 1 we collect some further (and well
known) recursion formulas for the reader’'s convenience: cf. [W1, W2, Dijw, DijVV,
EHX1, EHX2]. Taken together, they provide transparent computation algorithms.

In Sect. 2 we apply these formulas to the comparison of two generating functions
involving the upstairs and downstairs gravitational descendants respectively. We prove
that the two functions are related by an invertible linear transformafiaf the big
phase space, common for all genera, and defined entirely in terms of two-point genus
zero correlators with descendants at one point. This might shed some light to the problem
of Virasoro constraints, cf. [EHX1, EHX2]. In fact, any system of differential equations
for any generating function of the correlators with descendants equally well serves for
the modified correlators after the coordinate change definéd &y the other hand, the
transition to the modified correlators almost decouplesthnelices from thei-indices:
cf. formula (27) below. As an example, applyifigto the standard Virasoro generators
L; we easily see thab_; remains of the same form, but iy the cup product by
the canonical class gets replaced by the quantum product. And although the Virasoro
constraintsL,, look more complicated when written with respect to the downstairs
descendants, certain vanishing results are clearer in this picture: for example, in a recent
article, Eguchi and Xiong [EX] make use of the vanishing of correlation functions with
more than 3 — 3 + n descendants to obtain simple topological recursion relations for
the generating functions of the theory.

Finally, in Sect. 3 we extend the new formalism of the gravitational descendants from
guantum cohomology to the more general Frobenius manifolds and Cohomological Field
Theories as was explained above.

1. Generalized Correlators

1.1. The setting. The mathematical definition of the conventional correlators in the
notation of [BM] is

(Tay M-+ TdYn)gp =

/ Cl(Ll;g,n(Va ﬁ))dl U 6”;(71) U---u Cl(Ln;g,n(Vv 6))dn U ev:(’)/n)a (1)
Jg,n(V,0)
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whereJ, ,(V,8) € A.(M,.(V, 7)) is the virtual fundamental class, the line bundle
Lign(V,B), i =1,...,n has the geometric fibar; C at the point [(, 21, ..., 2y, f :
C — V)], andev; sends this point tg(x;). Recall also that varies in the semigroup
of the effective algebraic classesBEb(V, Z2)/(tors).

Puty; 1= c1(Lig,n(V, B)).

In the stable range@2— 2 — n > 0 we have the absolute stabilization m&p:
Mg, (V,8) — M,,,, and the respective bundlés on M, ,,. Pute; := st*(c1(L;)).

Our generalized correlators, by definition, are:

(Tdy,ex Y1+ - Td,enVn)g,8 =
/ PP Uevf (7)) U. .. U o3 ge U evs (n). (2)
Jg,n(vaﬁ)

SinceMo2(V,0) =0, we have

(Ta1 71 Ta,V2)0,0 = O. (3

Furthermore, in the stable range we have

n n
<H Tdi,07i>9ﬂ = <H Tdi’yi>gﬁ'
=1 =1

Theorem 1.1. If 2g — 2 +n > 0, then for any; with d; > 1 we have
<H Td,;,ei’)/i>g7ﬁ = <H Td;—8;5,6i+6; ryi>gﬁ
i=1 i=1

+ Z :l:<7-dj*l’y‘7‘ TOAa>0ﬁl <TO,€]‘ Aq H Tdi,617i>9752' (4)
a, B1+S2=p 17
Here(A,), (A“) are Poincaé dual bases aff *(1), and the sign arises from permuting
~; With~; forall 4 < j.

Corollary to Theorem 1.1. For g =0, n =3, d; > 1we have:

(TanTa2Ta 308 = Y, (Tar-1m170A%)0,6,(T0AG Ta, V2 TasV3)o,5,-  (44)
a, Br+B2=

In fact, ¢; = 0 here, so one should paf = 0 in (4), and the first summand will
vanish.
This is a well known identity.

Sketch of proofConsider the morphism of universal curvgs: C, ,(V,3) — Cy.,
coveringst. It induces the morphism of relative 1-form sheaxes- w(V, 3), at least

at the complement of singular points of the fiber. Restricting the latter tgtisection

(j € S being fixed), we get the morphiset*(L;.; ) — Lj.g..(V,8) on M, (V. 3).

It is a local isomorphism everywhere except for the points in this stack over which the
4™ section lies on the component of fiber which gets contractedtbf¥hese points
constitute the union of boundary strat&(V, o(51, 32)), whereo (31, 32) is a one-edge,
two-vertexn-graph with one vertex of genus 0, clagswith tail j, and another of genus

g, class3,, with tailsZ j. Naively, one would expect that all these boundaries are divisors,
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and over them sections ef*(L;.,.») have an extra zero of the first order. Hence in (2)
we could replace one factar; by ¢; + Zﬂl%zﬁ [M(V, o(531, 32))]. Then the restriction

to the boundary would give (4). A more precise reasoning uses the pullback property of
the virtual fundamental classd$V/, o) similar to Lemma 10 of [B]. The details will be
treated in [M2].

Clearly, these relations allow us to reduce all the generalized (in particular, the
conventional ones) correlators to those with= 0, to the conventional ones in the
unstable range and to the generalized ones witlh; &l 0 in the stable range. Using (2)
and the projection formula, one can rewrite the latter in the form

<To,e171 e TO,en7n>g,,8 =
/ pr3L))™ U pri(n) U .. U el @) U pri(om),
I,,(V,B)

where this time the integration refers Yo" x M, ,,, I = (ev, st)..J is the Gromov—
Witten correspondence, and; are the two projections. Hence the correlators in the
stable range witll; = 0 are calculable if we know the full (not just top) Gromov—Witten
invariants. We will call the expressions abdhe modified correlators.

Notice that for3 = 0 we havey; = ¢;, hencery . = 74+, SO that (4) gives no new
information and is tautologically true because of (3). So we will recall what happens in
the case¢? = 0, dimV > O separately.

1.2. The mapping to a point cas®ecall thatd/, ,,(V, 0) is canonically isomorphic to
M, , x V, and with this identification,

[Mg,n(v: 0)]’“”15 = Jg,n(Va 0) = CG(S X TV) N [Mg,n X V]v (5)

where¢ = R'r,O¢, 7 C — Mg, is the universal curve, ar@ = g dim V. Consider
the Chern classes and Chern root§ @nd 7y, :

g g
@) =[[A+ait) = > (1) Xignt,

=1 =0
where); are Mumford’s tautological classes defined as Chern classegwof),

1) 1)
c(Ty) = [[@+vit) = ¢ (V) 6 =dimV.
j=1 5=0

Then we get

g 6 s g
ca€RT)=[[[J(@B1+18v) =[] D (-1 Nign Ro? ™"
i=1 j=1 j=1 =0
= > (DTN g Ay B0 0T
(i1,--,15)
= (-1° Z Aigigm - Aigigm Bmg_i;
0<iy<-+<ig<g
Heremg_s, ... 4—i, IS the symmetric function obtained by symmetrization of the obvious
monomial in—v; and expressed via the Chern classe of

g—is((V), ..., c5(V)).  (6)

yeeey
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FurthermoreL;., »(V, 0) is the lift of L., ,, wrt the projectionM , ,, x V — M, ,,
andev; is the projectiomV/, ,, x V — V. Hence we get

(TdyV1- - Td, Yn) g0 =

— d n
=(-¢ ¥ </ Nivigan -+ Nigigm il o U

0<ir<-<ig<g \Y/ Mo

‘ /V Mgirgis €OV). e s (V). .%) , @)

wherey;.q », = c1(Lign)-

The generalized correlators give nothing new. = 74...

Most of the correlators (7) vanish for dimensional reasons. Here is the list of those
that may remain.

Proposition 1.2. The correlators (7) identically vanish except for the following cases:
a) g=0,n>3,3d;=n—3, % || =26, wherey € H(V), 6 =dimV :

di+...dp)!
<Td1ryl"'7.dn'7n>0,ozg/’Yl-”’yn' (8)
dil . dyt )y

b) g=1,n>1 > d;, =n(resp.n—1), > |v| =0, (resp. 2):

<Td11- - Td, 1>1’0 = degC5(V) /7 ’(/}:‘Li’lln R dji?l,n? (9)
Min

(lefy szl. .. Td, l>170 = —(05_1(‘/), ’y) [ /\1,17,11#31;11’” .. wgnlm (10)
My n

for |y| = 2.
€) 9g=2,n=0 Y |vl/2<6<33(di+]vl/2) = —1)EB-0d)+n.
In particular, theg > 2, 8 = 0 correlators vanish fodimV > 4.

Proof. First of all, £ = &, ,, is lifted from M >0, M11 Or Mog. Forg = 0, € is the

zero bundle, andy,,(V, 0) = [Mo,, x V]. Formula (8) follows from this and from the
known expression fog = 0,V = a point correlators:

) L (dit--+dy)!
R N N

11
Mo, di!...d,! (11)

Forg =1, (6) becomes

cs(EXRTy)=cs(VIRL—cs1(V)R A11n

from which (9) and (10) follow.

Finally, for g > 2 one sees that the virtual fundamental class can be non-zero only
if the virtual dimension fom = 0 is non-negative, which means that dim< 3. The
remaining inequalities follow from the dimension matching.
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One can further specialize (7) and write formulas similar to (8)—(10) separately for
curves, surfaces and threefolgs> 2.

1.3. Unstable range casdf 2g — 2 +n < 0, we cannot use the absolute stabilization
morphism as in Theorem 1.1 and Subsect. 1.2 bedalysgis empty, whereas fgi 7 0,

the stackM, ,,(V, 3) may well be non-empty. Always assuming this (otherwise the
relevant correlators vanish), we will use instead the forgetful morphism.1(V, 8) —

M, ,,(V, 3) to produce recursion.

Proposition 1.3. Allthe unstable range correlators can be calculated through the genus
zero and one primaryd; = 0) stable range correlators, and th&= 0 correlators.

Proof. We will be considering the caseg () = (0, 2), (0, 1), (0, 0), (1, 0) in this order,
reducing each in turn to the previously treated ones.

Lemma 1.4. Let~, be a divisor class of or more generally, a class iff?(V). Then
we have

(YoTayV1---Tdp¥n)g.8 = (Y0, B) (Tay Y1 - - - TduYn) 9.8

+ Z (Tay71- - Tae—1(YOUVR) - - - T, Yn)g,5- (12)
kidp>1

(We omit sometimesy in notation.)
This is a generalization of the Divisor Axiom in [KM] following from the properties
of J(V, 3). To treat the two-point correlators with, sdy > 0, we first use (12) and

write for somey with (v, ) # O:

( o = ({ )
T V1 T = T V1 T
di Y1 Td, Y2 0,8 (’Yo,ﬂ) YO Tdy V1 Tdy, V2 0,3 (13)

—(Ta—1(70 U 1) Ta,72)0.8 — (Tay 11 Tap—1(0 U 72))0,3) -

The last two terms in (13) contain only two-point correlators with the smaller sum
d1 + dy — 1. To the first term we apply Corollary 1.3:

(YoTa 72005 = > (Ta-171 Aa)os (A" Y0 Ta,12)0.,6,- (14)
a, B1+B2=0

The right-hand side contains only two-point correlators with the smaller gum 1
and three-point correlators with the maximum onged # 0. If necessary, we can
again apply (14) to the three-point correlators there, again reducing the order of the
gravitational descendants involved.

Iterating this procedure, we will arrive at the expressions containing only primary
correlators. Finally, the two-point primary correlators can be reduced to the three-point
stable range ones:

(7172)0,8 = WTlﬁ) {(Y07172)0,5- (15)

For later use, we register the following explicit reduction of some two-point correlators
to the three-point ones following from (13):

d+1

(e 7072)0.8 = Y _(—1V" 30, 8) 7 (o ran— i o( U 2o (158)
j=1
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Clearly, one can invoke (12) in the same way in order to calculate the one-point and
zero-point correlators. Alternatively, one can exploit the following identity, cated
dilaton equation

Lemma 1.5. We have

(ml7rg,y. .. Tdn7n>g,[3 =29 —2+n)(Ta,71 - - «Tdn’7n>g,ﬂ'
This again follows from the axioms fof(V, ) stated in [BM] and proved in [B].

1.4. Correlators for zero-dimensiongl. This case is covered by the Witten—Kontsevich
theory and additional relations summarized in [F].

2. Generating Functions on the Big Phase Space

2.1. The big phase spac&he conventional gravitational potential is a generating series
forthe correlators (1) considered as a formal function on the extended phase (super)space
©LH*(V)[d]. The d™ copy of H*(V) accommodates,y's. Thus the symbok,
acquires an independent meaning as the linear operator identHyi(ig) = H*(V)[0]
with I{l*(V)[d] or even shifting eacti*(V)[e] to H*(V)[e + d] so that we can write
Td =Tq-

For convenience choose a ba§is, |a = 0,...r} of H*(V,C). Denote by{z4,}
the dual coordinates tr;A,} and byT" = Zmd z4,aTdl, the generic even element
of the extended phase superspace. As usyal has the samg,-parity asA,, and the
odd coordinates anticommute. The formal functions we will be considering are formal
series in weighted variables, where the weight f, is d.

We need the universal charact@(V) — A : 3 — ¢” with values in the Novikov
ring A which is the completed semigroup ringB{V) eventually localized with respect
to the multiplicative systemy”. It is topologically spanned by the monomiajé =
qfl ...qbm whereB = (by, ..., b,,) in a basis of the numerical class group of 1-cycles,
and @, . . ., ¢,) are independent formal variables. We will not need the genus expansion
parameter because our main formula does not mix genera. We now put formally

_ B,y s (098
Fy@) =) a"e)gp =3 d">
B B n

Tdy,ag - - - Ld,, ,an
= > e(a) T > Pt Aay . Ta Moy )g s (16)
n,(a1,d1),....(an,dn) ' B

wheree is the standard sign in superalgebra. We deﬁp%(x) by the same formula in
which the last summation is restricted to the stable range,af)(that is,n > 3 for
g=0andn > 1forg =1

We will introduce the generating functia@,(x) for modified correlators by the
same formula asF;t in which everyr; in the stable range correlators is replaced by
70,d .

G,(z) = 3 e(a) % 3 P04 Bay - T0d, Aa )5
n,(a1,d1),...(an,dyn) B
17)
We will prove that the two functions are connected by a linear change of coordinates of
the big phase space.



Correlators of Topological Sigma-Model Coupled to Gravity 393

Theorem 2.1. We have for ally > 0,

F'(x) = Gy(y), (18)
where
Ye,b = Leyb + Z Z qﬁxd,a<7dfcflAa TOAb>0,,3' (19)
(a,d),d>c+l 3

Proof. Ford > 1, define the linear operators
Ug: H*(V,A) — H*(V,A)

by the formula

Ua(7) =Y ¢ (ra-17 T0Aq)0,3A" (20)
a,B
and putUp(7y) = .
The formula (4) means that in the stable range andifor 1 the correlator of any
element of the form

Td,eY — Td—1,e+17 — T0,e(Ua(7))
with any product of othery;, .,7; vanishes; the same is true i@~ 0 by the definition
of Uy. Hence by induction, in any stable range correlator we can replace any expression
Td,07 by Z?:o 70,;(Ua— (7)) without changing the value of the correlator. In particular,

n

B
F;t(m) = Z % <H Z Ld;,a;Td; Aal>g,6

n,8 i=1a,d;
qﬁ n d;
= LY e Y105 Ui Ba s
n,B  i=la,,d; §:i=0
qﬁ n
=3 T LD e Toe A = Gyly).
n,3 =1 ¢i,by

To obtain the last equality, use (20) in order to represent each sum in the correlator
product as a linear combination of termg.A;,. The straightforward calculation of
coefficients furnishes (19).

Remark. The operatofl’ defined byy = T'(x) is a linear transformation of the big phase
space with coefficients in defined entirely in terms of genus zero two-point correlators.

It is invertible, because (19) shows that it is the sum of identity and the operator which
strictly raises the gravitational weight Hence we may define the corrected version of
Gy(x) by Gy(z) := F,(T~(x)). Equivalently, we can extend the modified correlators
to the unstable range keeping the natural functional equations.

One can also use these formulas in order to give independent meaning to the symbols
70,4 as linear operators on the infinite sum of themodulesH*(V, A)[d].

2.2. Expressing’ through the three-point primary correlators:ormulas (16) and (19)
make the following definition natural:
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(Ta - Ta, V) = D@ (Tan - Ta, Tndg e (21)
5

We will write simply (...) wheng = 0. These correlators ar&-polylinear functions
on the A-module ® >0 H*(V, A)[d]. Setting in (14)d, = 0, multiplying by ¢” and
summing, we obtain:

(YoTan2) = Y (Ta-171 Aa) (A% Y072)- (22)

a

Put
%0725 Y Aa(A%072) (23)

a

(this is essentially the product in “small” quantum cohomology where the structure
constants are the third derivatives of the genus zero potential restricié?) to
Then we can rewrite (22) as

<’Yo TdY1 72) = <7_d—l'}/l Y0 - ’72)- (24)

Now let ! be any linear function orfif>(V, A). It defines the derivatiod, : A —
A, 019° = 1(B) ¢°. We extend it to formal series ovey coefficientwise. Ifyq is an
ample divisor class considered as a linear functioilgywe writed., for this derivation.
Turning now to Eq. (15a), multiply it by” and sum over alB. The left-hand side of
(15a) vanishes foff = 0, and the right-hand side does not make sense, so we get:

(Tav172) =

d+l

e . -
> (1Y (o Tarn—m 70(8 T U 42)) — (Yo Tar— 71 70(38 T U 2))ool-
j=1

To interpret this, notice that sinceq, 3) # 0 for all algebraic effective non-zero 2-
homology classes olf, 0-'F makes sense for any seri€swhose coefficients are
correlators not involving thg = 0 ones. As the result of this “integration” we take the
series again not involving theé = 0 terms.

Actually, in view of (8), thes = 0 terms vanish unless= d + 1. Separating this
summand and replacing the remaining triple correlators with the help of (24), we get the
following result.

Proposition 2.2. The matrix coefficients af can be expressed inductively through the
triple primary correlators, that is, Gromov-Witten invariants, of genus zerodfor 1,

d

(raviv2) = Y (1057 (rajmv0- (01 U )+
=1

(10, D (v07 76 U 12) — (071 76 U 12)0.l- (25)
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3. Coupling of Frobenius Manifolds and Cohomological Field Theories to
Topological Gravity

3.1. Coupling of Frobenius manifolds to topological graviffhe restriction®(z) to
the small phase space, = 0 ford > 0) of the genus zero potentiah(z) from (16)
satisfies the so called Associativity Equations and defined div, A) the structure of
the formal Frobenius manifold, or the tree level quantum cohomolod¥ ®he notion
of Frobenius manifold was axiomatized and studied by B. Dubrovin in [D]. There are
many interesting examples which do not come from quantum cohomology. In Sect. of
[D] Dubrovin sets to reconstruct the whole potential with gravitational descendants from
its small phase space part. Our previous discussion shows how one can do it for quantum
cohomology potentials. In this subsection we show how to do this for a wider class of
formal Frobenius manifolds which are not supposed to come from guantum cohomology.
Our approach considerably differs from that of [D]. It would be important to relate it to
the integrable hierarchies as in [D].

We will divide our discussion into two steps.

First, we will introduce the modified potential with gravitational descendants which
reduces td@7o(x) in the quantum cohomology case.

Second, we will discuss the additional conditions needed to define the analog of the
linear transformatiorf” and the conventional potential with gravitational descendants
Fo(z) := Go(T(x))-

3.1.1. The big phase space and the modified potent\é. will use the formalism of
Frobenius manifolds as it was presented in [M1].

Let A be aQ-algebra (playing role of the Novikov ring}{ a freeZ,-gradedA-
module of finite rank (in the quantum cohomology cadse H*(V, A) ), n a symmetric
non-degenerate pairing di replacing the Poincarform. To keep intact as much nota-
tion as possible, we introduce formathe big phase spaas linear infinite dimensional
formal supermanifoldby>oH[d] with basisT,A, and coordinates, , as in Sect. 6
above. Pute, = 204, z = {z,}. By definition,a Frobenius potentiabn (H,n) is a
formal seriesd(x) € A[[«]] whose third derivativesb,;,° (with one index raised by
n) form the structure constants of the commutative, associatijz€]]-module spanned
by 9, := 9/0x,. Finally, any such triple\/ = (H, 7, ®) is calleda formal Frobenius
manifold(over A).

The primary correlator®f M are by definition the symmetric polylinear functions
H®™ — A, n > 3, whose values on the tensor productsr@h, are essentially the
coefficients of® written as in (16):

o@)= Y o) % (7oA, - .. ToA, )- (26)

n,A1,...,Qn

In the case of quantum cohomology this agrees with our notation (21). Notice that the
Associativity Equations do not constrain the termeaif degree< 2. In this subsection
we will use only correlators witk> 3 arguments.

In order to extend the potentid@ to a formal function on the big phase space
which in the quantum cohomology case will coincide with, we will use the Second
Reconstruction Theorem of [KM], proved in [KMK] and [M1]:

Proposition 3.1. For any Frobenius manifold/ as above, there exists a unique se-
quence ofA-linear mapsIM : H®" — H*(Moy,,, A), n > 3, satisfying the folowing
properties:
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(i) Sp-invariance and compatibility with restriction to boundary divisors (cf. [KM] or
[M1], p. 101).

(i) The top degree term df¥ capped with the fundamental class is the correlator of
M with n arguments.

Moreover, in the quantum cohomology case

1711\4 — Z qﬁl(gfn,ﬂ’
B
Wherelg/,/_ﬂ are the genus zero Gromov-Witten invariants discussed in [KM].
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We now definghe modified\/ -correlatorswith gravitational descendants by

<TO,d1Au1 A TO,dn,Aaﬂ,> = / I,,]Lw(ToAal R ® ToAun) C]_(Ll)dl e C]_(L”)d".
[

Mo,n]
@7)

Finally put

) Tdyay -+ Tdy,an
GM(z) = > e(a) 20t Tdntn (0 Ay Toa, Da),  (28)

|
n:
n,(a1,d1),...(an,dn)

where this timex denotes coordinates on the big phase space. Cleahly,# quantum
cohomology, we have reproduced (17).

The expressions (27) are universal polynomials in the coefficients ahd
depending only on the superrankBfand ¢, d;). They can be calculated using some
results of [Ka].

To explain this, recall thall.(M ,,) is spanned by the classes of the boundary strata
M, , indexed by trees whose tails are labelled{ty. .., n}. Any cohomology class is
uniquely defined by its values on these classesI fFothese values are given in [KMK],
(0.7). Forg{: . .. ¢dn they are products of multinomial coefficients over all vertices of
7: put on each flag; if this is a tail with labeli, 1 otherwise, and divide the factorial of
the sum of labels at each vertex by the product of factorials of labels.

It remains to calculate the cup product of the described classes. This problem was
solved in [Ka]. Admittedly, the explicit formula is rather complicated.

3.1.2. Higher genus casdf 1M = 1} is extended to a Cohomological Field Theory
IM as defined in [KM], one can use the evident version of formula (26) in order to
dgefine the modified correlators and functid@ig(x) of any genus. However, unlike the
genus zero case, a CohFT cannot be reconstructed only from its primary correlators.

3.2. The operatof’ on the big phase spacéf we want to extrapolate the construction
of T from the case of quantum cohomology to more general Frobenius manifolds, we
encounter several difficulties. The basic problem is that the inductive formula (25) for
the coefficients of” involves some additional structures, not required in the general def-
inition of formal Frobenius manifolds. Namely, we need submodflgand H? in H,
a semigroup in, with indecomposable zero accomodatjfighe ringA with deriva-
tives 0,,. All of these structures must satisfy several conditions, ensuring in particular
the independence of the right-hand side of (25) from the choieg.of

The following seems to be the most straightforward way to describe the additional
restrictions starting with the more conventional data\érr (H, n, ®).
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(i) Assume thatM is endowed with the flat identity and an Euler vector field’,
such that adv is semisimple orf{. Assume that the spectrum, (d,,) belongs to
A (see [M1], Ch.1, Sect. 2 for precise definitions).

(i) Denote byH? c H the submodule off corresponding to the zero eigenvalue of
adE. Assume that it is a free direct submodule. Denotéhy- H the submodule
of H corresponding to the eigenvalueD of ad . Assume that it is a free direct
submodule, and thatmakesH strict dual toH?2.

(iii) Assume that a semigroup C H, with indecomposable zero and finite decompo-
sition is given such tha®(z) can be expanded into a formal Fourier series with
respect to the part of the coordinates dual to a basi&pivith coefficients vanish-
ing outsideB. Denote by the part corresponding t6& 7 0. Assume finally that
® = ¥ + ¢, wherec is a cubic form EW¥ = (D + do) ¥ (without additional terms of
degree< 2, cf. [M1], Ch.1, (2.7)) andEyc = (D + dp)c, whereE is the projection
of E to the orthogonal complement fé?.

These structures allow us to imitate the constructions of Sect. 2, startingGwith
decomposition of the primary correlators, and to definga (25). For more details, see
[M3], Sect. 1.

Notice that the cup product ol and the(. .. )o o correlators are defined using the
constant terms of the relevant Fourier decomposition. The independence of (25) from
the choice ofy, follows from the postulated properties.
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