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1 Introduction

1.1 Counting problems for 3-dimensional Calabi-Yau

varieties

LetX be a compact complex 3-dimensional Kähler manifold such that c1(TX) =
0 ∈ Pic(X) (hence by Yau theorem X admits a Calabi-Yau metric). We can
associate with X several moduli spaces which have the virtual dimension
zero:

a) moduli of holomorphic curves in X with fixed genus and degree;
b) moduli of holomorphic vector bundles on X (or, more generally, of

coherent sheaves) with a fixed Chern character;
c) moduli of special Lagrangian submanifolds1 with a fixed homology class

endowed with a U(1) local system.
In order to have a well-defined virtual number of points of the moduli

space one needs compactness and a perfect obstruction theory with virtual
dimension zero (see [4], [67], [68]).2 The compactification is known in the
case a). It is given by the moduli of stable maps. The corresponding virtual
numbers are Gromov-Witten invariants (GW-invariants for short). Donald-
son and Thomas in [19],[68] addressed the cases b) and c). Analytical dif-
ficulties there are not completely resolved. The most understood example
is the one of torsion-free sheaves of rank one with the fixed Chern charac-
ter of the form (1, 0, a, b) ∈ Hev(X). The corresponding virtual numbers
are called Donaldson-Thomas invariants (DT-invariants for short). One sees
that the number of (discrete) parameters describing GW-invariants is equal
to 1 + dimH2(X) (genus and degree) and coincides with the number of
parameters describing DT-invariants. The conjecture from [47] (proved in
many cases) says that GW-invariants and DT-invariants can be expressed
one through another. The full putative virtual numbers in the case b) should

1Recall that a Lagrangian submanifold L ⊂ X is called special iff the restriction to L
of a holomorphic volume form on X is a real volume form on L.

2The latter means that the deformation theory of a point is controlled by a differential-
graded Lie algebra g such that Hi(g) = 0 for i 6= 1, 2 and dimH1(g) = dim H2(g).
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depend on as twice as many parameters (i.e. dimHev(X)). By mirror sym-
metry one reduces the case c) to the case b) for the dual Calabi-Yau manifold.
Unlike to GW-invariants and DT-invariants these virtual numbers should de-
pend on some choices (the Kähler structure in the case b) and the complex
structure in the case c), see [68]). In particular, in the case c), for a compact
3d Calabi-Yau manifold X we should have an even function

ΩSLAG : H3(X,Z) \ {0} → Q ,

which depends on the complex structure on X in such a way that for any
non-zero γ ∈ H3(X,Z) the number ΩSLAG(γ) is a constructible function with
respect to a real analytic stratification of the moduli space of complex struc-
tures. Moreover this number is integer for a generic complex structure. The
invariant ΩSLAG(γ) is the virtual number of special Lagrangian submanifolds
L ⊂ X in the class γ (or more generally, special Lagrangian submanifolds
endowed with local systems of arbitrary rank).

Our aim in this paper is to describe a framework for “generalized Donaldson-
Thomas invariants” and their wall-crossing formulas in the case of non-
commutative compact 3d Calabi-Yau varieties. A choice of polarization
(“complexified Kähler structure”) will be encoded into a choice of “stability
condition” on C. Then we define a generalized Donaldson-Thomas invari-
ant Ω(γ) as the “number” of stable objects in C with a fixed class γ in the
K-group. Similar problem for abelian categories was addressed in the series
of papers by Joyce [32][33][34] and in the recent paper of Bridgeland and
Toledano Laredo [10]. Our paper can be thought of as a generalization to
the case of triangulated categories (the necessity of such a generalization is
motivated by both mathematical and physical applications, see e.g. [67],
[21]). One of motivations for our counting formula was the microlocal for-
mula by K. Behrend (see [2]) for the virtual number in the case of so called
symmetric obstruction theory (see [4]), which is the case for objects in 3d
Calabi-Yau categories. The above example b) corresponds to the bounded
derived category Db(X) of coherent sheaves on X (more precisely to its A∞-
enrichment). The example c) corresponds to the Fukaya category. In that
case the wall-crossing formulas describe the behavior of ΩSLAG. Even in
the geometric situation our formalism extends beyond the case of smooth
compact Calabi-Yau varieties.
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1.2 Non-commutative varieties with polarization

All A∞-categories in this paper will be ind-constructible. This roughly means
that their spaces of objects are countable inductive limits of constructible
sets (for more details see Section 3). We define a non-commutative proper
algebraic variety over a base field k as an Ext-finite ind-constructible k-
linear triangulated A∞-category C. For two objects E and F we denote by
Hom•(E,F ) the complex of morphisms and by Ext•(E,F ) its cohomology.

Here are few examples of such categories.

Example 1 a) A∞-version of Db(X), the bounded derived category of the
category of coherent sheaves on a smooth projective algebraic variety X/k. In
this case Db(X) coincides with the triangulated category Perf(X) of perfect
complexes on X.

b) More generally, for a (not necessarily proper) smooth variety X en-
dowed with a closed proper subset X0 ⊂ X, the corresponding triangulated
category is the full subcategory of Perf(X) consisting of complexes of sheaves
with cohomology supported on X0.

c) Also for a (not necessarily proper) smooth variety X we can consider
the the full subcategory of Perf(X) consisting of complexes of sheaves with
compactly supported cohomology.

d) The A∞-version of the category Perf(X) of perfect complexes on a
proper, not necessarily smooth scheme X over k.

e) If A is an A∞-algebra with finite-dimensional cohomology then C =
Perf(A) is the category of perfect A-modules.

f) If k is the field of characteristic zero and A is finitely generated in the
sense of [71], (in particular it is homologically smooth, see [42]) then C is the
category of A-modules of finite dimension over k.

g) If the category C is ind-constructible and E ∈ Ob(C) then left and right
orthogonal to the minimal triangulated subcategory generated by E are also
ind-constructible (since the conditions Ext•(X,E) = 0 and Ext•(E,X) = 0
are “constructible”).

Let us make few comments on the list. Example a) is a particular case of
examples b),c),d). Using the results of [7] we can reduce geometric examples
b),d) to the algebraic example e), and also the example c) to the example
f). Let us discuss a typical (and most important) example e) at the level
of objects of the category. We claim that the set of isomorphism classes
of objects of C can be covered by an inductive limit of constructible sets.
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First, replacing A by its minimal model we may assume that A is finite-
dimensional. Basic examples of perfect A-modules are direct sums of shifts
of A, i.e. modules of the type

M = A[n1]⊕A[n2]⊕ · · · ⊕ A[nr], r > 0

and their “upper-triangular deformations” (a.k.a. twisted complexes). The
latter are described by solutions to the Maurer-Cartan equations

∑

1≤l≤r−1

ml(α, . . . , α) = 0

where α = (aij)i<j is an upper-triangular r× r matrix with coefficients in A
and deg aij = ni − nj + 1.

This gives a closed scheme. For a point x of this scheme we have the
corresponding A∞-module Mx over A. In order to describe all other objects
of Perf(A) we need to take direct summands (up to homotopy) of such mod-
ules Mx. The set of such summands is parametrized by all A∞-morphisms of
the non-unital algebra P = k · p with the product given by p2 = p (and with
the trivial differential) to End•(Mx). Every such morphism is described by
a collection of linear maps fn : P⊗n → End1−n(Mx) satisfying a system of
polynomial equations. Notice that if n is large then fn = 0 because the cor-
responding negative graded components of End•(Mx) are trivial. Therefore
we again have a finite system of polynomial equations.

For given N =
∑

1≤j≤r(|nj |+ 1) we obtain a scheme of finite type ModN
parametrizing some objects of Perf(A). Clearly Ob(Perf(A)) = ∪N>1ModN .
Each isomorphism class of an object appears in the union for infinitely many
values of N . In order to avoid the “overcounting” we define a subscheme of
finite type Mod0

N ⊂ ModN consisting of objects not isomorphic to objects
from ModN ′ for N ′ < N . We conclude that objects of Perf(A) form an
ind-constructible set (more precisely, an ind-constructible stack). One can
take care about morphisms in the category in a similar way. This explains
the example e).

We define a polarization on a non-commutative proper algebraic variety
over k (a version of Bridgeland stability condition, see [9]) by the following
data and axioms:

• an ind-constructible homomorphism cl : K0(C) → Γ, where Γ ≃ Zn

is a free abelian group of finite rank endowed with a bilinear form3

3In physics literature Γ is called the charge lattice.
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〈•, •〉 : Γ⊗Γ→ Z such that for any two objects E,F ∈ Ob(C) we have

〈cl(E), cl(F )〉 = χ(E,F ) :=
∑

i

(−1)i dim Exti(E,F ) ,

• an additive map Z : Γ→ C, called the central charge,

• a collection Css of (isomorphism classes of) non-zero objects in C called
the semistable ones, such that Z(E) 6= 0 for any E ∈ Css, where we
write Z(E) for Z(cl(E)),

• a choice LogZ(E) ∈ C of the logarithm of Z(E) defined for any E ∈
Css.

Making a connection with [9] we say that the last three items define a
stability structure (or stability condition) on the category C.

For E ∈ Css we denote by Arg(E) ∈ R the imaginary part of LogZ(E).
The above data satisfy the following axioms:

• for all E ∈ Css and for all n ∈ Z we have E[n] ∈ Css and

ArgZ(E[n]) = ArgZ(E) + πn ,

• for all E1, E2 ∈ Css with Arg(E1) > Arg(E2) we have

ExtC
≤0 (E1, E2) = 0 ,

• for any object E ∈ Ob(C) there exist n > 0 and a chain of morphisms
0 = E0 → E1 → · · · → En = E (an analog of filtration) such that the
corresponding “quotients” Fi := Cone(Ei−1 → Ei), i = 1, . . . , n are
semistable and Arg(F1) > Arg(F2) > · · · > Arg(Fn),

• for each γ ∈ Γ \ {0} the set of isomorphism classes of a Cssγ ⊂ Ob(C)γ
consisting of semistable objects E such that cl(E) = γ and Arg(E) is
fixed, is a constructible set,

• (Support Property) Pick a norm ‖ · ‖ on Γ⊗R, then there exists C > 0
such that for all E ∈ Css one has ‖ E ‖≤ C|Z(E)|.

7



In the above definition one can allow Γ to have a torsion. In geometric
examples a), d) for k = C one can take Γ = K0

top(X(C)) where K0
top denotes

the topological K0-group. Similarly, in examples b),c) one should take the
K0-groups with appropriate supports. Another choice for Γ is the image of
the algebraic K0-group under the Chern character. Yet another choice is
Γ = Knum

0 (C), which is the quotient of the group K0(C) by the intersection
of the left and right kernels of the Euler form χ(E,F ). Finally one can pick
a finite collection of ind-constructible functors Φi : C → Perf(k), 1 ≤ i ≤ n
and define

cl(E) = (χ(Φ1(E)), . . . , χ(Φn(E))) ∈ Zn =: Γ ,

where χ : K0(Perf(k))→ Z is the isomorphism of groups given by the Euler
characteristic.

Remark 1 The origin of the Support Property is geometric and can be ex-
plained in the case of the category of A-branes (the derived Fukaya category
Db(F(X))) of a compact 3-dimensional Calabi-Yau manifold X. Let us fix
a Calabi-Yau metric g0 on X. Asymptotically, in the large volume limit (as
the rescaled symplectic form approaches infinity) it gives rise to the stability
condition on Db(F(X)) such that stable objects are special Lagrangian sub-
manifolds, and |Z(L)| is the volume of L with respect to g0. Then for any
harmonic form η one has |

∫
L
η| ≤ C|Z(L)|. It follows that the norm of the

cohomology class of L is bounded (up to a scalar factor) by the norm of the
linear functional Z.

The Support Property implies that the set {Z(E) ∈ C |E ∈ Css} is a
discrete subset of C with at most polynomially growing density at infinity.
It also implies that the stability condition is locally finite in the sense of
Bridgeland (see [9]). Any stability condition gives a bounded t-structure
on C with the corresponding heart consisting of semistable objects E with
Arg(E) ∈ (0, π] and their extensions.

Remark 2 The case of the classical Mumford notion of stability with respect
to an ample line bundle (and its refinement for coherent sheaves defined by
Simpson) is not an example of the Bridgeland stability condition, it is rather
a limiting degenerate case of it (see [1], [73] and Remark at the end of Section
2.1).
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For given C and a homomorphism cl : K0(C)→ Γ as above, let us denote
by Stab(C) := Stab(C, cl) the set of stability conditions (Z, Css, (LogZ(E))E∈Css).
Space Stab(C) can be endowed with a Hausdorff topology, which we discuss
in detail in Section 3.4. Then we have an ind-constructible version of the
following fundamental result of Bridgeland (see [9]).

Theorem 1 The forgetting map Stab(C) → Cn ≃ Hom(Γ,C) given by
(Z, Css, (LogZ(E))E∈Css) 7→ Z, is a local homeomorphism.

Hence, Stab(C) is a complex manifold, not necessarily connected. Under
appropriate assumptions one can show also that the group of autoequiva-
lences Aut(C) acts properly and discontinuously on Stab(C). On the quo-
tient orbifold Stab(C)/Aut(C) there is a natural non-holomorphic action of
the group GL+(2,R) of orientation-preserving R-linear automorphisms of
R2 ≃ C.

1.3 Donaldson-Thomas invariants for non-commutative

3d Calabi-Yau varieties

Recall that a non-commutative Calabi-Yau variety of dimension d (a.k.a
Calabi-Yau category of dimension d) is given by an Ext-finite triangulated
A∞-category C which carries a functorial non-degenerate pairing

(•, •) : Hom•C(E,F )⊗ Hom•C(F,E)→ k[−d]

(see e.g. [42], [65], [44]), such that the polylinear forms (mn(f0, . . . , fn), fn+1)
defined on ⊗0≤i≤n+1 Hom•C(Ei, Ei+1) by higher compositions mn are cyclically
invariant. We will discuss mainly the case d = 3 and assume that our non-
commutative 3d Calabi-Yau variety is ind-constructible and endowed with
polarization.

Under these assumptions we define motivic Donaldson-Thomas invariants
which take values in certain Grothendieck groups of algebraic varieties (more
details are given in Sections 4 and 6). Assuming some “absence of poles”
conjectures, which we discuss in detail in Section 7 one can pass to the
“quasi-classical limit” which corresponds to the taking of Euler characteristic
of all relevant motives. In this way we obtain the putative numerical DT-
invariants Ω(γ) ∈ Q, γ ∈ Γ \ {0}. Morally, Ω(γ) counts semistable objects
of C with a given class γ ∈ Γ \ {0}.
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There is a special case when our formulas can be compared with those
from [2] (see Section 7.1). Namely, let us define a Schur object E ∈ Ob(C) as
such that

Ext<0(E,E) = 0,Ext0(E,E) = k · IdE .

By the Calabi-Yau property in the dimension d = 3 we know that the only
possibly non-trivial groups Exti(E,E), i = 0, 1, 2, 3 are

Ext0(E,E) ≃ Ext3(E,E) ≃ k , Ext1(E,E) ≃ (Ext2(E,E))∗ .

In other words the ranks are (1, a, a, 1), a ∈ Z>0. Recall (see [41], [42])
that the deformation theory of any object E ∈ Ob(C) is controlled by a
differential-graded Lie algebra (DGLA for short) gE such that H i(gE) ≃
Exti(E,E), i ∈ Z. For a given Schur object E instead of gE we can use a
DGLA ĝE = τ≤2(gE)/τ≤0(gE) where τ≤i is the truncation functor. This makes
sense since τ≤0(gE) is an ideal (in the homotopy sense) in gE . The modified
deformation theory gives rise to a perfect obstruction theory in the sense
of [2], [4]. The corresponding moduli space is the same as the original one,
although controlling DGLAs are not quasi-isomorphic. The contribution of
Schur objects to Ω(γ) can be identified with the Behrend microlocal formula
for DT-invariants. From this point of view objects of the category C should
be interpreted as critical points of the function (called the potential), which
is obtained from the solution to the so-called classical master equation. The
latter has a very natural interpretation in terms of the non-commutative
formal symplectic dg-scheme defined by the A∞-category C endowed with a
Calabi-Yau structure (see [42]).

1.4 Multiplicative wall-crossing formula

The wall-crossing formulas for the numerical Donaldson-Thomas invariants
do not depend on their origin and can be expressed in terms of graded Lie
algebras. This is explained in Section 2. Our main application is the case of
3d Calabi-Yau categories. Let us recall that if C is an Ext-finite Calabi-Yau
category of the odd dimension d (e.g. d = 3) then the Euler form

χ : K0(C)⊗K0(C)→ Z, χ(E,F ) :=
∑

n∈Z

(−1)n dim Extn(E,F )

10



is skew-symmetric. In this case we also assume that if C is endowed with
polarization, then a skew-symmetric bilinear form 〈•, •〉 : Γ⊗Γ→ Z is given
and satisfies

〈cl(E), cl(F )〉 = χ(E,F ) ∀E,F ∈ Ob(C) .
In general, having a free abelian group Γ of finite rank endowed with an

integer-valued skew-symmetric form 〈•, •〉, we define a Lie algebra over Q

gΓ := g(Γ,〈•,•〉), with the basis (eγ)γ∈Γ and the Lie bracket

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉 eγ1+γ2 .

This Lie algebra is isomorphic (non-canonically) to the Lie algebra of
regular functions on the algebraic Poisson torus Hom(Γ,Gm) endowed with
the natural translation-invariant Poisson bracket.4

An additive map Z : Γ → C is called generic if there are no two Q-
independent elements of the lattice Γ which are mapped by Z into the same
straight line in R2 = C. The set of non-generic maps is a countable union of
real hypersurfaces in Cn = Hom(Γ,C). These hypersurfaces are called walls.

Let us choose such an additive map Z and an arbitrary norm ‖ • ‖ on
the real vector space ΓR = Γ ⊗R. We will keep the same notation for the
R-linear extension of Z to ΓR. Finally, assume that we are given an even
map Ω : Γ\{0} → Z supported on the set of γ ∈ Γ such that ‖ γ ‖≤ C|Z(γ)|
for some given constant C > 0.

Let (Zt)t∈[0,1] be a generic piece-wise smooth path in Cn = Hom(Γ,C)
such that Z0 and Z1 are generic. The wall-crossing formula calculates the
function Ω1 corresponding to Z1 in terms of the function Ω = Ω0 correspond-
ing to Z0. This is analogous to the analytic continuation of a holomorphic
function expressed in terms of its Taylor coefficients. The continuation is
unique if it exists, and is not changed under a small deformation of the path
with the fixed endpoints.

Let us call strict a sector in R2 with the vertex at the origin (0, 0) which
is less than 180◦. With a strict sector V ⊂ R2 we associate a group element
AV given by the infinite product

AV :=

−→∏

γ∈Z−1(V )∩Γ

exp

(
−Ω(γ)

∞∑

n=1

enγ
n2

)
.

4Later we will use the multiplication as well. It is given explicitly by eγ1
eγ2

=
(−1)〈γ1,γ2〉 eγ1+γ2

.
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The product takes value in a certain pro-nilpotent Lie group GV :=
GV,Γ,〈•,•,〉, which we will describe below. The right arrow in the product
sign means that the product is taken in the clockwise order on the set of
rays R+ ·Z(γ) ⊂ V ⊂ C. For the product in the anti-clockwise order we will
use the left arrow.

Let us describe the Lie algebra gV = Lie(GV ) of the pro-nilpotent Lie
group GV . We denote by C(V ) a convex cone in ΓR which is the convex hull
of the set of points v ∈ Z−1(V ) such that ‖ v ‖≤ C|Z(v)|. The Lie algebra
Lie(GV ) is the infinite product

∏
γ∈Γ∩C(V ) Q ·eγ equipped with the above Lie

bracket.
Now we can formulate the wall-crossing formula. It says (roughly) that

AV does not change as long as no lattice point γ ∈ Γ with Ωt(γ) 6= 0 crosses
the boundary of the cone Z−1

t (V ) (here Ωt corresponds to the point t ∈ [0, 1]).
By our assumptions, if t = t0 corresponds to a non-generic central charge Zt0
then there exists a 2-dimensional lattice Γ0 ⊂ Γ such that Zt0(Γ0) belongs to
a real line Reiα for some α ∈ [0, π].

The wall-crossing formula describes the change of values Ω(γ) for γ ∈ Γ0

and depends only on the restriction Ω|Γ0
of Ω to the lattice Γ0. Values Ω(γ) for

γ /∈ Γ0 do not change at t = t0. Denote by k ∈ Z the value of the form 〈•, •〉
on a fixed basis γ1, γ2 of Γ0 ≃ Z2 such that C(V )∩Γ0 ⊂ Z>0 ·γ1⊕Z>0 ·γ2. We
assume that k 6= 0, otherwise there will be no jump in values of Ω on Γ0. The
group elements which we are interested in can be identified with products
of the following automorphisms5 of Q[[x, y]] preserving the symplectic form
k−1(xy)−1dx ∧ dy:

T
(k)
a,b : (x, y) 7→

7→
(
x · (1− (−1)kabxayb)−kb, y · (1− (−1)kabxayb)ka

)
, a, b > 0, a+ b > 1 .

For γ = aγ1 + bγ2 we have

T
(k)
a,b = exp

(
−
∑

n>1

enγ
n2

)

in the above notation. Any exact symplectomorphism φ of Q[[x, y]] can be

5Here we write an automorphism as acting on elements of the algebra of functions. The
corresponding automorphism on points is given by the inverse formula.
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decomposed uniquely into a clockwise and an anti-clockwise product:

φ =

−→∏

a,b

(
T

(k)
a,b

)ca,b

=

←−∏

a,b

(
T

(k)
a,b

)da,b

with certain exponents ca,b, da,b ∈ Q. These exponents should be interpreted
as the limiting values of the functions Ω±t0 = limt→t0±0 Ωt restricted to Γ0.
The passage from the clockwise order (when the slope a/b ∈ [0,+∞]∩P1(Q)
decreases) to the anti-clockwise order (when the slope increases) gives the

change of Ω|Γ0
as we cross the wall. It will be convenient to denote T

(1)
a,b

simply by Ta,b. The pro-nilpotent group generated by transformations T
(k)
a,b

coincides with the one generated by transformations Ta,|k|b.
The compatibility of the wall-crossing formula with the integrality of the

numbers Ω(γ) is not obvious but follows from:

Conjecture 1 If for k > 0 one decomposes the product T1,0 · T0,k in the
opposite order:

T1,0 · T0,k =
∏

a/b increases

(Ta,kb)
d(a,b,k),

then d(a, b, k) ∈ Z for all a, b, k.

An equivalent form of this conjecture says that if one decomposes T k1,0 ·T k0,1
in the opposite order then all exponents will belong to kZ.

Here are decompositions for k = 1, 2

T1,0 · T0,1 = T0,1 · T1,1 · T1,0 ,

T
(2)
1,0 · T (2)

0,1 = T
(2)
0,1 · T (2)

1,2 · T (2)
2,3 · · · · · (T (2)

1,1 )−2 · · · · · T (2)
3,2 · T (2)

2,1 · T (2)
1,0 ,

or equivalently

T1,0 · T0,2 = T0,2 · T1,4 · T2,6 · · · · · T−2
1,2 · · · · · T3,4 · T2,2 · T1,0 .

Greg Moore and Frederik Denef pointed out that the factors in the last
formula correspond to the BPS spectrum of N = 2, d = 4 super Yang-Mills
model studied by Seiberg and Witten in [63]. A “physical” explanation of
our formulas in this context was given in [24], see also our Section 2.7.
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For k > 3 or k ≤ −1 the decomposition of T
(k)
1,0 · T (k)

0,1 is not yet known
completely. Computer experiments give a conjectural formula for the diago-
nal term with the slope a/b = 1. The corresponding symplectomorphism is
given by the map

(x, y) 7→ (x · Fk(xy)−k, y · Fk(xy)k),

where the series Fk = Fk(t) ∈ 1+ tZ[[t]] is an algebraic hypergeometric series
given for k > 3 by the formulas:

∞∑

n=0

(
(k − 1)2n+ k − 1

n

)
tn

(k − 2)n+ 1
= exp

(
∞∑

n=1

(
(k − 1)2n

n

)
k

(k − 1)2

tn

n

)
.

The function Fk satisfies the equation

Fk(t)
(
1− tF k−2

k (t)
)k − 1 = 0 .

Remark 3 The above example for k = 1 is compatible with the expected
behavior of Donaldson-Thomas invariants when we have two spherical objects
E1, E2 ∈ C (sphericity means that Ext•(Ei, Ei) = H•(S3)) such that

Ext1(E2, E1) = k, Extn(E2, E1) = 0 for n 6= 1 .

In this case on the one side of the wall we have two semistable objects E1, E2,
and on the other side we have three semistable objects E1, E2, E12 where E12

is the extension of E2 by E1. In the case of the derived of the Fukaya cat-
egory the objects Ei, i = 1, 2 can correspond to embedded special Lagrangian
spheres intersecting transversally at one point. Then E12 corresponds to their
Lagrangian connected sum.

The automorphisms Ta,b are a special case of the more general ones.
Namely, we can consider the following rational automorphisms of gΓ (consid-
ered as a Poisson algebra):

Tγ : eµ 7→ (1− eγ)〈γ,µ〉eµ, γ, µ ∈ Γ .

The group element AV in the above notation has the form

AV =

−→∏

γ∈Z−1(V )∩Γ

T Ω(γ)
γ
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and acts on a completion of gΓ. It is easy to quantize this Poisson alge-
bra. The corresponding algebra (quantum torus) is additively generated by
quantum generators êγ, γ ∈ Γ subject to the relations

êγ êµ = q
1
2
〈γ,µ〉êγ+µ ,

where q is a parameter (with the classical limit q
1
2 → −1). Then one has

formulas similar to the above for the “quantum” analogs of automorphisms
Tγ, γ ∈ Γ (see Sections 6.4 and 7.1).

For general k ≥ 2 the decomposition of the product T1,0 · T0,k as in Con-
jecture 1, describes numerical DT-invariants of the Calabi-Yau category as-
sociated with the Kronecker quiver consisting of two vertices and k parallel
arrows (see Section 8 for a general theory). Recent paper [58] gives an ex-
plicit formula for d(a, b, k) in terms of the Euler characteristic of the framed
moduli space of semistable representations of the quiver. Moreover, a weak
form of the integrality Conjecture 1 is proved in [58].

1.5 Some analogies and speculations

The above formulas for symplectomorphisms are partially motivated by [40],
Section 10, where similar formulas appeared in a different problem. Both
formulas involve Hamiltonian vector fields associated with the dilogarithm
function. The problem discussed in [40] was the reconstruction of the rigid
analytic K3 surface from its skeleton, which is a sphere S2 equipped with an
integral affine structure, singular at a finite set of points. The group which
is very similar to the pro-nilpotent group GV was introduced in the loc. cit.
where we assigned symplectomorphisms to edges of a certain tree in S2. That
tree should be thought of as an analog of the walls in the space of stability
structures. Edges of the tree (we called them “lines” in [40]) correspond to
pseudo-holomorphic discs with the boundary on the Lagrangian toric fibers
of the dual K3 surface. When we approach the “large complex structure
limit” cusp in the moduli space of K3 surfaces, the discs degenerate into
gradient lines of some smooth functions on S2, thus defining edges of the
tree. Hence the reconstruction problem for K3 surfaces (and for higher-
dimensional Calabi-Yau manifolds, see [27], [28]) is governed by the counting
of rational curves in the mirror dual Calabi-Yau manifold. This observation
suggests by analogy the questions below.

1) First, let us note that we may assume that the bilinear form 〈•, •〉 is
non-degenerate on Γ by replacing Γ by a “larger” lattice (e.g. by Γ ⊕ Γ∨,
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where Γ∨ = Hom(Γ,Z) is the dual lattice, see Section 2.6). Then the Lie
algebra gΓ will be realized as the Lie algebra of exact Hamiltonian vector
fields on the algebraic symplectic torus Hom(Γ,Gm). The collection of for-
mal symplectomorphisms AV defined above give rise to a rigid analytic space
X an over any non-archimedean field, similarly to [40]. This space carries an
analytic symplectic form and describes “the behavior at infinity” of a (possi-
bly non-algebraic) formal smooth symplectic scheme over Z. String Theory
suggests that there exists an actual complex symplectic manifoldM (vector
or hyper multiplet moduli space) admitting a (partial) compactification M
and such that

X an(C((t))) =M(C[[t]]) \ (M(C[[t]]) ∪ (M\M)(C[[t]])) ,

i.e. it is the space of formal paths hitting the compactifying divisor but
not belonging to it). In the case of the Fukaya category of a complex 3d
Calabi-Yau manifold X the spaceM looks “at infinity” as a deformation of
a complex symplectic manifoldMcl where dimM = dimMcl = dimH3(X).
The latter is the total space of the bundle Mcl → MX , where MX is the
moduli space of complex structures on X. The fiber of the bundle is isomor-
phic to the space

(H3,0(X) \ {0})× (H3(X,C)/H3,0(X)⊕H2,1(X)⊕H3(X,Z))

parametrizing pairs (holomorphic volume element, point of the intermediate
Jacobian).6 Furthermore, as we discuss in Section 7.2, we expect that there
is a complex integrable system associated with an arbitrary homologically
smooth 3d Calabi-Yau category and the fiber being the “Deligne cohomology”
of the category.

2) Is it true that the counting of the invariants Ω(γ) for C is equivalent to
the counting of (some) holomorphic discs “near infinity” inM? Is it possible
to construct an A∞-category associated with those discs and to prove that
it is a 3-dimensional Calabi-Yau category?

3) The study of the dependence of BPS states on a point of the moduli
space of vector and hyper multiplets given in [18] and [13] suggests thatM
is hyperkähler and the invariants Ω(γ) for C (counting of objects of C) can
be interpreted as the counting of some “quaternion curves” inM. Punctures

6In a very interesting paper [24] a construction of the hyperkähler structure onM was
suggested by means of our wall-crossing formulas.
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“at infinity” of those curves can be interpreted as 4d black holes. It would
be nice to think about the problem of counting such maps as a “quaternionic
analog” of the counting of rational Gromov-Witten invariants. Hopefully
(by the analogy with the “Gromov-Witten story”) one can define an appro-
priate A∞-category (“quaternionic Fukaya category”) and prove that it is a
3-dimensional Calabi-Yau category. This would relate our invariants Ω(γ)
with “quaternionic” Gromov-Witten invariants.

4) Geometry similar to the one discussed in this paper also appears in the
theory of moduli spaces of holomorphic abelian differentials (see e.g. [78]).
The moduli space of abelian differentials is a complex manifold, divided by
real “walls” of codimension one into pieces glued from convex cones. It also
carries a natural non-holomorphic action of the group GL+(2,R). There is
an analog of the central charge Z in the story. It is given by the integral of an
abelian differential over a path between marked points in a complex curve.
This makes plausible the idea that the moduli space of abelian differentials
associated with a complex curve with marked points, is isomorphic to the
moduli space of stability structures on the (properly defined) Fukaya category
of this curve.

5) We expect that our wall-crossing formulas are related to those in the
Donaldson theory of 4d manifolds with b+2 = 1 (cf. e.g. recent paper [52])
as well as with Borcherds hyperbolic Kac-Moody algebras and multiplicative
automorphic forms. The formulas from [12] also look very similar.

1.6 About the content of the paper

In Section 2 we work out in detail the approach to the invariants Ω(γ) and
the wall-crossing formula sketched in the Introduction in the framework of
graded Lie algebras. It is based on the notion of stability data which admits
two equivalent descriptions: in terms of a collection of elements a(γ) of a
graded Lie algebra g = ⊕γ∈Γgγ and in terms of a collection of group ele-
ments AV which satisfy the “Factorization Property”. The latter says that
AV1AV2 = AV for any strict sector V and its decomposition into two sectors
V1, V2 (in the clockwise order) by a ray emanating from the vertex. We de-
fine the topology on the space of stability data. It immediately leads to the
wall-crossing formula. Then we discuss a special case when the lattice carry
an integer-valued skew-symmetric bilinear form. The skew-symmetric form
on the lattice Γ gives rise to a Poisson structure on the torus Hom(Γ,Gm)
of its characters. Then we introduce a double symplectic torus, which cor-
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responds to the lattice Γ ⊕ Γ∨. This allows us to construct an embedding
of the pro-nilpotent groups GV (see Section 1.4) into the group of formal
symplectomorphisms of the double torus. We show how the “numerical DT-
invariants” Ω(γ) arise from a collection of elements AV which satisfy the
Factorization Property AV1AV2 = AV for any strict sector V . We intro-
duce the notion of the “wall of second kind” such that (in the categorical
framework) crossing such a wall corresponds to a change of the t-structure.
Then the multiplicative wall-crossing formula is equivalent to the triviality
of the monodromy of a “non-linear connection” on the space of numerical
stability data. Also we discuss the relationship with the works of Joyce, and
Bridgeland and Toledano-Laredo by introducing (under certain conditions)
a connection with irregular singularities on C. In Section 2.7. we explain
how stability data arise from complex integrable systems. We illustrate our
consideration by an example of Seiberg-Witten curve. Arising geometry is
the same as in the “string junction” interpretation of Seiberg-Witten model
(see e.g. [53]). The last section is devoted to stability data on gl(n,Q). It
is related to the study of vacua in N = 2 supersymmetric Quantum Field
Theories (see [11]).

Section 3 is devoted to some basics on ind-constructible categories, in-
cluding the definition of the topology on the space of stability structures.
Also we discuss the notion of the potential of an object of Calabi-Yau cat-
egory and the categorical version of the wall-crossing formula. The way it
is formulated is close intuitively to the physics considerations: we look how
the “motive” of the moduli space of semistable objects changes when some
of exact triangles become unstable.

Section 4 is devoted to motivic functions and motivic Milnor fiber. We
start by recalling basics on motivic functions and motivic integration, includ-
ing their equivariant versions (motivic stack functions, see also [35]). Then
we discuss the notion of motivic Milnor fiber introduced by Denef and Loeser
as well as its l-adic incarnation. Rough idea is to use the motivic Milnor fiber
of the potential of the 3d Calabi-Yau category in order to define invariants
of the ind-constructible set of semistable objects. The technical question
arises: there might be two quadrics with the same rank and determinant but
different Chow motives. In order to resolve this difficulty we introduce cer-
tain equivalence relation on motivic functions, so that in the quotient such
quadrics are the same. Also, we discuss an important integral identity which
will play the key role in Section 6.

Section 5 is devoted to an additional structure, which we call orientation
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data. It is a super line bundle on the space of objects of our category.
Roughly, it is a square root of the super line bundle of cohomology. Although
the numerical DT-invariants do not depend on the orientation data, the
motivic DT-invariants introduced in Section 6 depend on it in an essential
way.

Section 6 is devoted to the definition of motivic DT-invariants. First
we define the motivic Hall algebra of an ind-constructible triangulated A∞-
category and prove its associativity. It generalizes the derived Hall algebra
introduced by Toën in [70]. We define the motivic version AHall

V of the element
AV as an invertible element of the completed motivic Hall algebra associated
with the sector V . The elements AHall

V satisfy the Factorization Property.
Basic idea behind the Factorization Property (and hence the multiplicative
wall-crossing formula) is that the infinite product in the latter corresponds
to the integration over the space of all objects of the category CV generated
by extensions of semistable objects with the central charge in V . The latter
can be easily controlled when we cross the wall.

Motivic DT-invariants appear as elements of a certain quantum torus with
the coefficient ring given by the equivalence classes of motivic functions. Ba-
sic fact is the theorem which says that in the case of 3d Calabi-Yau category
there is a homomorphism of the motivic Hall algebra into the motivic quan-
tum torus defined in terms of the motivic Milnor fiber of the potential. In
many cases the images of the elements AHall

V can be computed explicitly in
terms of the motivic version of the quantum dilogarithm function. The im-
ages of AHall

V are denoted by AmotV . This collection (one element for every
strict sector V ) is called the motivic DT-invariant. The collection of these
elements satisfy the Factorization Property. Replacing motives by their Serre
polynomials, we obtain q-analogs of Donaldson-Thomas invariants, denoted
by AV,q. We discuss their properties as well as the “quasi-classical limit”
AV as q1/2 → −1. We formulate the conjectures about the existence of the
limit (absence of poles conjecture) and integrality property of the limits (in-
tegrality conjecture). The latter are related to the Conjecture 1 from Section
1.4. These conjectures are discussed in detail in Section 7, where we present
various arguments and computations in their favor. Presumably, the tech-
nique developed by D. Joyce can lead to the proof of our conjectures. The
numerical DT-invariants Ω : Γ \ {0} → Z are defined as coefficients in the

decomposition of symplectomorphism AV into the product of powers T
Ω(γ)
γ

in the clockwise order.
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In Section 8 we consider in detail the case of 3-dimensional Calabi-Yau
category endowed with a finite collection of spherical generators satisfying
some extra property (cluster collection). Such categories correspond to quiv-
ers with potentials (Theorem 9). Applying general considerations from the
previous sections we formulate some results about quivers and mutations.
They are almost obvious in the categorical framework, but seem to be new
in the framework of quivers. Finally we explain that cluster transformations
appear naturally as birational symplectomorphisms of the double torus in
the case when crossing of the wall of second kind corresponds to a mutation
at a vertex of the quiver (equivalently, to a mutation at the corresponding
spherical object of the Calabi-Yau category).

Several parts of the theory presented here have to be developed in more
detail. This concerns ind-constructible categories and motivic stack func-
tions. Also, we present only a sketch of the proof of the l-adic version of the
main identity in Section 4.4, leaving aside few technical details (which are
not difficult to restore), and the definition of the orientation data for cluster
categories in Section 8.2 is left as a conjecture (although there is no doubt
that it should be true).

Acknowledgments. We thank to Mina Aganagic, Roma Bezrukavnikov,
Tom Bridgeland, Frederik Denef, Emanuel Diaconescu, Pierre Deligne, Sasha
Goncharov, Mark Gross, Dominic Joyce, Greg Moore, Andrew Neitzke, Nikita
Nekrasov, Andrei Okounkov, Rahul Pandharipande, Markus Reineke, Balazs
Szendröi, Don Zagier for useful discussions and correspondence. Y.S. thanks
to IHES and the University Paris-6 for excellent research conditions. His
work was partially supported by an NSF grant.

2 Stability conditions for graded Lie algebras

2.1 Stability data

Let us fix a free abelian group Γ of finite rank, and a graded Lie algebra
g = ⊕γ∈Γgγ over Q.7

Definition 1 Stability data on g is a pair σ = (Z, a) such that:
1) Z : Γ → R2 ≃ C is a homomorphism of abelian groups called the

central charge;

7In examples g is a R-linear Lie algebra, where R is a commutative unital Q-algebra.

20



2) a = (a(γ))γ∈Γ\{0} is a collection of elements a(γ) ∈ gγ,
satisfying the following

Support Property:

Pick a norm ‖ • ‖ on the vector space ΓR = Γ ⊗Z R. Then there exists
C > 0 such that for any γ ∈ Supp a (i.e. a(γ) 6= 0) one has

‖ γ ‖≤ C|Z(γ)| .
Obviously the Support Property does not depend on the choice of the

norm. We will denote the set of all stability data on g by Stab(g). Later we
will equip this set with a Hausdorff topology.

The Support Property is equivalent to the following condition (which we
will also call the Support Property):

There exists a quadratic form Q on ΓR such that
1) Q|Ker Z < 0;
2) Supp a ⊂ {γ ∈ Γ \ {0}| Q(γ) > 0},
where we use the same notation Z for the natural extension of Z to ΓR.
Indeed, we may assume that the norm ‖ • ‖ is the Euclidean norm in

a chosen basis and take Q(γ) = − ‖ γ ‖2 +C1|Z(γ)|2 for sufficiently large
positive constant C1. Generically Q has signature (2, n− 2), where n = rk Γ.
In degenerate cases Q can have signature (1, n− 1) or (0, n).

For a given quadratic form Q on ΓR we denote by StabQ(g) ⊂ Stab(g)
the set of stability data satisfying the above conditions 1) and 2). Obviously
Stab(g) = ∪QStabQ(g), where the union is taken over all quadratic forms Q.

Remark 4 In the case of a 3-dimensional Calabi-Yau manifold X there
is a natural candidate for the quadratic form Q of the signature (2, n − 2)
needed to formulate the Support Property. Namely, identifyingH3(X,R) with
H3,0(X,C)⊕H2,1(X,C) we can equip H3(X,R) with the complex structure.
Furthermore, the natural symplectic form coming from the Hodge structure
gives rise to a pseudo-hermitian form on H3(X,R) of the signature (2, n−2),
where n = dimRH

3(X,R). One can ask whether this form is positive on ev-
ery special Lagrangian submanifold of X. If this is true, then the Support
Property gives rise to a bound on the support of the function Ω discussed in
Section 1.4.

Support Property implies the following estimate for the number of points
in the Supp a with the central charge inside of the disc of radius R:

# (Z(Supp a) ∩ {z ∈ C| |z| ≤ R}) = O(Rn) ,
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where R → ∞ and n = rk Γ, Therefore the set Z(Supp a) is discrete in C

and does not contain zero.

Remark 5 It seem reasonable to consider “limiting cases” of stability data
when the Support Property is not satisfied. Then the numbers ReZ and ImZ
are allowed to take values in arbitrary totally ordered fields, e.g. R((t)) (here
t is a formal parameter such that t > 0 and t < x for any x ∈ R>0). Some
of our considerations below make sense in this situation. In the framework
of stability conditions on triangulated categories such structures appeared in
[1], [73].

2.2 Reformulation of the stability data

In what follows we will consider various cones in ΓR and in R2 i.e. subsets,
which are closed under addition and multiplication by a positive real number.
We assume that the vertex of the cone (i.e. the zero of the vector space) does
not belong to the cone. We will call a cone strict if it is non-empty and does
not contain a straight line. In particular, all strict cones on the plane (we
will call them strict sectors) are sectors, which are smaller than 180 degrees
(not necessarily closed or open). We allow the sector to be degenerate (which
means that it is a ray with the vertex at the origin). We orient the plane
(and hence all sectors) in the clockwise direction. We write l1 ≤ l2 if the rays
l1, l2 bound a strict closed sector and l1 precedes l2 in the clockwise order
(we allow l1 = l2).

Let us fix a quadratic form Q on ΓR. We are going to describe below
another set of data and will show that it is naturally isomorphic to the set
StabQ(g). Let S be the set of strict sectors in R2 possibly degenerate (rays).

We denote by ŜtabQ(g) the set of pairs (Z,A) such that:
a) Z : Γ→ R2 is an additive map such that Q|KerZ < 0;
b) A = (AV )V ∈S is a collections of elements AV ∈ GV,Z,Q, where GV,Z,Q

is a pro-nilpotent group with the pro-nilpotent graded Lie algebra

gV,Z,Q =
∏

γ∈Γ∩C(V,Z,Q)

gγ ,

where C(V, Z,Q) is the convex cone generated by the set

S(V, Z,Q) = {x ∈ ΓR \ {0}|Z(x) ∈ V,Q(x) > 0} .
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The above definition makes sense because the cone C(V, Z,Q) is strict, as
one can easily see by elementary linear algebra. Hence for a triangle ∆ which
is cut from V by a straight line, any γ ∈ Z−1(∆) can be represented as a
sum of other elements of Γ∩C(V, Z,Q) in finitely many ways. Furthermore,
the triangle ∆ defines an ideal J∆ ⊂ gV,Z,Q consisting of elements y = (yγ) ∈
gV,Z,Q such that for every component yγ the corresponding γ does not belong
to the convex hull of Z−1(∆). Then the quotient g∆ := gV,Z,Q/J∆ is a
nilpotent Lie algebra, and gV,Z,Q = lim←−∆⊂V

g∆.

LetG∆ = exp(g∆) be the nilpotent group corresponding to the Lie algebra
g∆. Then GV,Z,Q = lim←−∆

G∆ is a pro-nilpotent group. If V = V1 ⊔ V2 (in the
clockwise order) then there are natural embeddings GVi,Z,Q → GV,Z,Q, i =
1, 2.

We impose the following axiom on the set of pairs (Z,A):
Factorization Property:

The element AV is given by the product AV = AV1AV2 where the equality
is understood in GV,Z,Q.

We remark that if Q1 ≤ Q and both forms Q,Q1 are negative on KerZ
then GV,Z,Q1 ⊂ GV,Z,Q for any V ∈ S. We say that the (Z,A) ∈ ŜtabQ(g)

and (Z ′, A′) ∈ ŜtabQ′(g) are equivalent if Z = Z ′ := Z and there exists Q0

such that Q ≤ Q0, Q
′ ≤ Q0, Q0|KerZ < 0 and moreover for any V ∈ S we

have AV = A′V as elements of the group GV,Z,Q0.

Theorem 2 1) For a fixed Q there is a natural bijection between sets ŜtabQ(g)
and StabQ(g).

2) Any two elements of ŜtabQ(g) and ŜtabQ′(g) are equivalent if and only
if they define the same element in Stab(g).

Proof. Suppose that we are given a pair (Z,A) ∈ ŜtabQ(g). In order to
construct the corresponding element in StabQ(g) we take the same Z as a
homomorphism Γ→ R2. What is left is to construct a collection a(γ) ∈ gγ .
We define it such as follows.

a) If Z(γ) = 0 then we set a(γ) = 0.
b) Suppose Z(γ) 6= 0. Let us consider the ray l = R>0Z(γ). Then we have

an element log(Al) ∈ gl,Z,Q ⊂
∏

γ∈Γ gγ . We denote by a(γ) the component
of log(Al) which belongs to gγ. This assignment gives rise to stability data
(Z, a) ∈ StabQ(g). In order to show that it is injective, we observe that
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the Factorization Property implies that AV =
∏−→

l⊂V Al, where the product
is taken in the clockwise order over the set of all rays l which belong to V .
Indeed, let us consider the image of AV in G∆. Then only finitely many rays
contribute to the product

∏−→
l⊂V Al, and the product formula follows from the

Factorization Property. Since GV,Z,Q = lim←−∆
G∆ the desired equality holds.

Conversely, if we have stability data (Z, a) ∈ StabQ(g) , then we construct
a pair (Z,A) taking the same Z and Q, and for any ray l we set

Al = exp


 ∑

γ∈Γ∩C(l,Z,Q)

a(γ)


 .

Notice that Al = 1 if there are no elements γ such that Z(γ) ∈ l. We define
AV for any V ∈ a using the Factorization Property, i.e. AV =

∏−→
l⊂V Al. This

proves part 1) of the theorem. Part 2) follows immediately from definitions.
The theorem is proved. �

Remark 6 We will use the same name “stability data” for either of the
set of data which appear in the above theorem and will denote either set by
Stab(g).

Remark 7 Let R2 \ {(0, 0)} = ⊔1≤i≤nVi, where Vi, 1 ≤ i ≤ n are strict
(semiclosed) sectors. Then the stability data with a given central charge Z
are uniquely determined by an arbitrary collection of elements AVi

∈ GVi,Z,Q

for some quadratic form Q.

There exists a generalization of stability data suitable for motivic Hall
algebras. Namely, let us assume that the Lie algebra g carries an automor-
phism η such that η(gγ) = g−γ for any γ ∈ Γ.

Definition 2 Symmetric stability data for (g, η) is a pair (Z, â) where Z :
Γ → C is an additive map and â is a map (γ, ϕ) 7→ â(γ, ϕ) ∈ gγ where
ϕ ∈ R, γ ∈ Γ is such that Z(γ) ∈ R>0e

iϕ and

â(γ, ϕ+ π) = η(â(γ, ϕ)) .

All the considerations about stability data admit a straightforward gener-
alization to the symmetric case. We will use them without further comments.
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Remark 8 Let HΓ be a Γ-graded unital associative algebra considered as a
graded Lie algebra. Then the pro-nilpotent groups GV,Z,Q discussed above are
the groups of invertible elements of the form f = 1 + . . . in the pro-nilpotent
associative algebras which are completions of HΓ.

Remark 9 Decomposition g = ⊕γ∈Γgγ and the Lie algebras gV,Z,Q are sim-
ilar to the root decomposition and nilpotent subalgebras in Kac-Moody Lie
algebras. The involution γ 7→ −γ is similar to the “Cartan involution”.
These analogies deserve further study, since Donaldson-Thomas invariants
(more precisely, counting functions for BPS states) appear in physics as a
kind of character formulas (see e.g. [18], formula (2.7)). In particular our
multiplicative wall-crossing formulas in the case of wall of second kind should
be related to automorphic forms of Borcherds (see [8]). The motivic Hall al-
gebra defined below in Section 6 could be thought of as the motivic version of
the algebra of BPS states (see [29]).

2.3 Topology and the wall-crossing formula

Here we are going to introduce a Hausdorff topology on the set of stability
data in such a way that the forgetting map

Stab(g)→ Hom(Γ,C) ≃ Cn, (Z, a) 7→ Z

will be a local homeomorphism. In particular Stab(g) carries a structure of
a complex manifold (in general with an uncountable number of components,
each of which is paracompact). In order to define the topology we define the
notion of a continuous family of points in Stab(g).

Let X be a topological space, x0 ∈ X be a point, and (Zx, ax) ∈ Stab(g)
be a family parametrized by X.

Definition 3 We say that the family is continuous at x0 if the following
conditions are satisfied:

a) The map X → Hom(Γ,C), x 7→ Zx is continuous at x = x0.
b) Let us choose a quadratic form Q0 such that (Zx0, ax0) ∈ StabQ0(g).

Then there exists an open neighborhood U0 of x0 such that (Zx, ax) ∈ StabQ0(g)
for all x ∈ U0.

c) For any closed strict sector V such that Z(Supp ax0)∩∂V = ∅ the map

x 7→ log AV,x,Qx ∈ gV,Zx,Qx ⊂
∏

γ∈Γ

gγ
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is continuous at x = x0. Here we endow the vector space
∏

γ∈Γ gγ with the
product topology of discrete sets, and AV,x,Qx is the group element associ-
ated with (Zx, ax), sector V and a quadratic form Qx such that (Zx, ax) ∈
StabQx(g).

Remark 10 Part c) of the Definition 3 means that for any γ ∈ Γ \ {0} the
component of log AV,x,Qx belonging to gγ is locally constant as a function of
x in a neighborhood of x0.

The element log(AV,x,Qx) ∈
∏

γ∈Γ gγ does not depend on Qx, e.g. we can
take Qx := Q0 for x close to x0. The continuity means informally that for
any closed triangle ∆ ⊂ R2 with one vertex at the origin, the projection of
log AV,Zx,Qx into the vector space ⊕γ∈∆gγ does not depend on x ∈ X as long
as there is no element γ ∈ Supp ax such that Z(γ) crosses the boundary ∂∆.

It is easy to see that the above definition gives rise to a topology on
Stab(g).

Proposition 1 This topology is Hausdorff.

Proof. Let (Z, a) and (Z ′, a′) be two limits of a sequence (Zn, an) as n →
∞. We have to prove that (Z, a) = (Z ′, a′). It is clear that Z = Z ′ since
Hom(Γ,C) is Hausdorff. Let us now choose quadratic forms Q and Q′ which
are compatible with a and a′ respectively in the sense of Definition 3. Then
there exists a quadratic form Q0 such that Q0 is negative on KerZ = KerZ ′

and also Q ≤ Q0, Q
′ ≤ Q0. Then for all sufficiently large n the form Q0 is

compatible with an.
For a generic sector V ⊂ R2 its boundary rays do not intersect Z(Γ).

By part c) of the Definition 3 we have: AV,Z,Q0 = A′V,Z′,Q0
since the product∏

γ∈Γ gγ is Hausdorff. Since any ray in R2 with the vertex at the origin can
be obtained as an intersection of generic sectors then we conclude that a = a′.
The Proposition is proved. �

Let us fix an element Z0 ∈ Hom(Γ,C) and a quadratic form Q0 compati-
ble with Z0 (i.e. negative on its kernel). We denote by UQ0,Z0 the connected
component containing Z0 in the domain {Z ∈ Hom(Γ,C)| (Q0)|KerZ < 0}.
In what follows we will frequently use the following elementary observation.

Proposition 2 If Q is a quadratic form on a finite-dimensional vector space
ΓR and Z : ΓR → C is an R-linear map such that Q|KerZ < 0 then the
intersection {x ∈ ΓR|Q(x) > 0} ∩ Z−1(l) is a convex cone (possibly empty)
for any ray l ⊂ C with the vertex at the origin.
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Let γ1, γ2 ∈ Γ \ {0} be two Q-linearly independent elements such that
Q0(γi) > 0, Q0(γ1 + γ2) > 0, i = 1, 2. We introduce the set

WQ0
γ1,γ2

= {Z ∈ UQ0,Z0| R>0Z(γ1) = R>0Z(γ2)} .

In this way we obtain a countable collection of hypersurfacesWQ0
γ1,γ2
⊂ UQ0,Z0

called the walls corresponding to Q0, γ1, γ2. We denote their union by W1 :=
WQ0

1 and sometimes call it the wall of first kind (physicists call it the wall of
marginal stability).

Let us consider a continuous path Zt, 0 ≤ t ≤ 1 in UQ0,Z0 which intersects
each of these walls for finitely many values of t ∈ [0, 1]. Suppose that we have
a continuous lifting path (Zt, at) of this path such that Q0 is compatible with
each at for all 0 ≤ t ≤ 1. Then for any γ ∈ Γ \ {0} such that Q0(γ) > 0 the
element at(γ) does not change as long as t satisfies the condition

Zt(γ) /∈ ∪γ1,γ2∈Γ\{0}, γ1+γ2=γWQ0
γ1,γ2

.

If this condition is not satisfied we say that t is a discontinuity point for γ.
For a given γ there are finitely many discontinuity points.

Notice that for each t ∈ [0, 1] there exist limits

a±t (γ) = lim
ε→0, ε>0

at±ε(γ)

(for t = 0 or t = 1 only one of the limits is well-defined). Then the continuity
of the lifted path (Zt, at) is equivalent to the following wall-crossing formula
which holds for any t ∈ [0, 1] and arbitrary γ ∈ Γ \ {0}:

−→∏

µ∈Γprim, Zt(µ)∈lγ,t

exp

(∑

n>1

a−t (nµ)

)
=

= exp


 ∑

µ∈Γprim, Zt(µ)∈lγ,t , n>1

at(nµ)


 =

−→∏

µ∈Γprim, Zt(µ)∈lγ,t

exp

(∑

n>1

a+
t (nµ)

)
,

where lγ,t = R>0Zt(γ), and Γprim ⊂ Γ is the set of primitive vectors. The
first and the last products are taken in the clockwise order of Arg(Zt−ε) and
Arg(Zt+ε) respectively, where ε > 0 is sufficiently small. Moreover, for each
γ we have a−t (γ) = a+

t (γ) = at(γ) unless there exist non-zero γ1, γ2 such that
γ = γ1 + γ2 and Zt ∈ WQ0

γ1,γ2
.
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Remark 11 Informally speaking, the wall-crossing formula says that for a
very small sector V containing the ray lγ,t the corresponding element AV ,
considered as a function of time, is locally constant in a neighborhood of t.

For each γ ∈ Γ\{0} the wall-crossing formula allows us to calculate a1(γ)
is terms of a0(γ

′) for a finite collection of elements γ′ ∈ Γ \ {0}. Morally it is
an inductive procedure on the ordered set of discontinuity points ti ∈ [0, 1].
The only thing we need to check is that for each γ ∈ Γ\{0} the computation
involves finitely many elements of Γ. For that we need some preparation.
First we introduce a partial order on the set SQ0 = (Γ ∩ Q−1

0 (R>0)) × [0, 1]
generated by the following relations:

a) (γ, t) > (γ, t′) if t > t′;
b) if γ =

∑
1≤i≤m γi, Q0(γi) > 0, Zt(γi) ∈ R>0Zt(γ), 1 ≤ i ≤ m,m > 2,

where not all γi belong to Q · γ, then (γ, t) > (γi, t) for all 1 ≤ i ≤ m.

Lemma 1 For any (γ, t) ∈ SQ0 the set (γ′, t′) ∈ SQ0 such that (γ′, t′) ≤ (γ, t)
is a finite union of sets of the form {γα} × [0, tα].

The Lemma immediately implies the desired result.

Corollary 1 The element at(γ) is a finite Lie expression of the elements
a0(γα).

Proof of the Lemma. Let us assume the contrary. Then we have an
infinite sequence t1 > t2 > t3 > . . . such that

(γ1, t1) >a) (γ2, t2) >b) (γ3, t3) >a) (γ4, t4) >b) . . . ,

where the subscript a) or b) denotes the two different possibilities for the
partial order defined above. Let t∞ = limn→∞ tn. It is easy to see that there
exists a Euclidean norm ‖ • ‖ on ΓR such that for any v1, v2 ∈ ΓR satisfying
the properties Q0(vi) > 0, Zt∞(v1) ∈ R>0Zt∞(v2) we have the inequalities
‖ vi ‖<‖ v1 + v2 ‖ for i = 1, 2.

Moreover the same property holds if we replace the map Zt∞ by an addi-
tive map Z which is close to it. Then we conclude that

‖ γ2n ‖>‖ γ2n+1 ‖=‖ γ2n+2 ‖

for all sufficiently large n. This contradicts to the fact the lattice Γ is discrete
in ΓR. The Lemma is proved. �
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The previous discussion allows us to lift a generic path Zt, 0 ≤ t ≤ 1 as
above to a unique continuous path (Zt, at) ∈ Stab(g), 0 ≤ t ≤ 1 which starts
at a given point (Z0, a0) ∈ Stab(g). In other words, we have the notion of
a parallel transport along a generic path. This observation is a part of the
following more general statement.

Theorem 3 For given quadratic form Q0 and (Z0, a0) ∈ StabQ0(g) there
exists a unique continuous map φ : UZ0,Q0 → Stab(g) such that it is a section
of the natural projection Stab(g)→ UZ0,Q0, and φ(Z0) = (Z0, a0).

Proof. We have already proved the existence of a lifted path (Zt, at) for
a generic path Zt provided the beginning point Z0 is fixed. What is left to
prove that the endpoint (a1, Z1) does not depend on a choice of the generic
path Zt. We are going to sketch the proof leaving the details for the reader.

Let us consider an infinitesimally small loop around the intersection point
Z of two or more walls. We would like to prove that the monodromy of the
parallel transport along the loop is trivial. There are two possibilities:

a) there are two different sublattices Γ1,Γ2 ⊂ Γ of ranks > 2 such that
Z(Γi), i = 1, 2 belong to two different lines in the plane R2;

b) there exists a sublattice Γ3 ⊂ Γ such that rk Γ3 > 3 and Z(Γ3) belongs
to a line in R2.

In the case a) the corresponding Lie subalgebras of the completion of
gΓ are graded by non-intersecting subsets of Γ. Hence the corresponding
wall-crossing transformations commute.

In the case b) let us choose a decomposition R2 \ {(0, 0)} = ⊔1≤i≤4Vi,
where Vi, 1 ≤ i ≤ 4 are strict sectors such that R ·Z(Γ3) ⊂ V1⊔V3⊔{(0, 0)}.
When we move around the infinitesimally small loop the element a(γ) can
change only for γ ∈ Γ3. Hence we can replace Γ by Γ3 in all computations.
The wall-crossing formula implies that the elements AVi

, 1 ≤ i ≤ 4 do not
change along the loop (moreover, by our assumption we have AV2 = AV4 = 1).
By Remark 7 from Section 2.2 we conclude that the stability data with the
central charge Z ′ which is close to Z are uniquely determined by Z ′ and the
collection of elements AVi

, 1 ≤ i ≤ 4. Hence the monodromy around the loop
is trivial.

Finally one has to check the the global monodromy around a loop in UZ0,Q0

is trivial. It follows from the fact that the fundamental group π1(UZ0,Q0) is
generated by the loop Z 7→ Ze2πit, t ∈ [0, 1]. But the monodromy around this
loop is trivial for generic Z, because the loop does not intersect the walls. �.
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We can write the wall-crossing formula in the way similar to the one from
the Introduction. In the case of generic path we have at a discontinuity point
t0 ∈ [0, 1] a two-dimensional lattice Γ0 ≃ Z2 which is projected by Zt0 into
a real line in R2. We choose an isomorphism Γ0 ≃ Z2 in such a way that
Q−1

0 (R>0) ∩ (Γ0 \ {0}) is contained in Z2
>0 ∪ Z2

<0. Also we assume that the
orientation of Γ0⊗R defined by Zt agrees with the one on Z2

>0 for t = t0− ε
and is opposite to it for t = t0 + ε, where ε > 0 is sufficiently small.

Then if γ = (m,n) ∈ Z2
>0, and a±t0(γ) := a±(m,n), we can write the the

wall-crossing formula in the following way:

−→∏

(m,n)=1

exp

(∑

k>1

a−(km, kn)

)
=

←−∏

(m,n)=1

exp

(∑

k>1

a+(km, kn)

)
,

where in the LHS we take the product over all coprime m,n in the increasing
order ofm/n ∈ Q, while in the RHS we take the product over all coprimem,n
in the decreasing order. Both products are equal to exp(

∑
m,n>0 at0(m,n)).

2.4 Crossing the wall of second kind

Here we will interpret the parallel transport in a different way, introducing
a wall of another kind. We use the notation from the previous section. In
particular, we fix the quadratic form Q0 and the connected component U of
the set {Z ∈ Hom(Γ,C)| (Q0)|KerZ < 0}.

For a given primitive γ ∈ Γ \ {0} we introduce the set WQ0
γ = {Z ∈

U |Z(γ) ∈ R>0}. It is a hypersurface in U . We call it a wall of second kind
associated with γ. We call the union ∪γWQ0

γ the wall of second kind and
denote it by W2.

Definition 4 We say that a path σ = (Zt)0≤t≤1 ⊂ U is short if the convex
cone Cσ which is the convex hull of

(
∪0≤t≤1Z

−1
t (R>0)

)
∩ {Q0 > 0} is strict.

With a short path we associate a pro-nilpotent group GCσ with the Lie
algebra gCσ =

∏
γ∈Cσ∩Γ

gγ.
The following result is obvious.

Proposition 3 For a generic short path σ = (Zt)0≤t≤1 there exists no more
than countable set ti ∈ [0, 1] and corresponding primitive γi ∈ Γ \ {0} such
that Zti ∈ WQ0

γi
. For each i we have: rkZ−1

ti (R) ∩ Γ = 1.
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Let us recall the continuous lifting map φ : U → Stab(g) from the previous
section. In the notation of the previous Proposition we define for any ti a
group element

Ati = exp

(
εi
∑

n>1

ati(nγi)

)
∈ GCσ ,

where εi = ±1 depending on the direction in which the path Zt(γi) crosses
R>0 for t sufficiently close to ti.

Theorem 4 For any short loop the monodromy
∏−→

ti
Ati is equal to the iden-

tity (here the product is taken in the increasing order of the elements ti).

Proof. Here we also present a sketch of the proof. Similarly to the proof
of the Theorem 3 we consider the case of infinitesimally small loop σ around
a point Z such that rk Γ2 = 2 where Γ2 := Z−1(R) ∩ Γ (i.e. Z is a point
where two, and hence infinitely many, walls of second kind intersect). Since
σ is infinitesimally small we can replace Γ by Γ2. Then we have the space
Hom(Γ2,C) ≃ R4 which contains a countable collection of walls consisting of
those Z : Γ2 → C for which there exists γ ∈ Γ2\{0} such that Q0(γ) > 0 and
Z(γ) ∈ R. All the hypersurfaces contain R2 = Hom(Γ2,R) ⊂ Hom(Γ2,C).
Factorizing by this subspace R2 we obtain a collection of lines with ratio-
nal slopes in the union of two opposite strict sectors S ∪ (−S) ⊂ R2 =
Hom(Γ2, iR).

We have to prove that the product over a loop surrounding (0, 0) is the
identity element. But it is easy to see that the product over the rays belonging
to each of the sectors is equal to the left (resp. right) hand side of the wall-
crossing formula. �

Let us now introduce a set X1 ⊂ Γ × U which consists of pairs (γ, Z)
such that γ ∈ Γ \ {0} is a non-zero element, Q0(γ) > 0, Z(γ) ∈ R>0 and
Z−1(R>0) ∩ Γ = (Q>0 · γ) ∩ Γ.

Proposition 4 The set of continuous sections ψ : U → Stab(g) such that
ψ(Z) is compatible with Q0 for any Z ∈ U is in one-to-one correspondence
with functions ã : X1 → g such that ã(γ, Z) ∈ gγ satisfying the property that
for any small loop σ the monodromy defined in the previous theorem is equal
to the identity.

Proof. The bijection is given by the formula ã(γ, Z) = aψ(Z)(γ). By the
previous theorem the corresponding monodromy is trivial. Conversely, the
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triviality of the monodromy is equivalent to the wall-crossing formula in the
special case when a 2-dimensional sublattice of Γ is mapped by Z into the
line R ⊂ C. The general case of an arbitrary line can be reduced to this one
by a rotation Z 7→ Ze2πit (it does not change the values a(γ) because we do
not cross the wall of first kind). �

Let us also introduce a set X2 ⊂ Γ×U which consists of such pairs (γ, Z)
that Q0(γ) > 0, Z(γ) > 0 and there are no non-zero Q-independent elements
γ1, γ2 ∈ Γ with the property γ = γ1 + γ2, Q0(γi) > 0, Z(γi) > 0, i = 1, 2.
Since X2 is a locally-closed hypersurface in U × Hom(Γ,C) it has finitely
many connected components. Obviously, we have X1 ⊂ X2.

It follows from the wall-crossing formula that for a continuous section
ψ : U → Stab(g) the restriction of the function a to X2 is locally-constant
and uniquely determines the section ψ. Therefore, the values of the restric-
tion a|π0(X2) provides a countable coordinate system (satisfying a countable
system of equations) on the set of continuous sections {ψ : U → Stab(g)} as
above. It can be compared with another countable coordinate system (with
no constraints) given the value ψ(Z0) for Z0 ∈ U . The latter coordinate
system is not very convenient since one has to choose a generic Z0.

2.5 Invariants Ω(γ) and the dilogarithm

Let Γ be a free abelian group of finite rank n as before, endowed with a
skew-symmetric integer-valued bilinear form 〈•, •〉 : Γ × Γ → Z. Recall the
Lie algebra gΓ = gΓ,〈•,•〉 = ⊕γ∈ΓQ · eγ with the Lie bracket

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2 .

Let us introduce a commutative associative product on gΓ by the formula

eγ1eγ2 = (−1)〈γ1,γ2〉eγ1+γ2 .

We denote by TΓ := TΓ,〈•,•〉 the spectrum of this commutative algebra. It is
easy to see that TΓ is a torsor over the algebraic torus Hom(Γ,Gm). Moreover
TΓ is an algebraic Poisson manifold with the Poisson bracket

{a, b} := [a, b] .

The Poisson structure on TΓ is invariant with respect to the action of Hom(Γ,Gm).
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We can specify the results of the previous sections to the Lie algebra
gΓ. For stability data (Z, a) we can write uniquely (by the Möbius inversion
formula)

a(γ) = −
∑

n>1, 1
n
γ∈Γ\{0}

Ω(γ/n)

n2
eγ ,

where Ω : Γ \ {0} → Q is a function. Then we have

exp

(∑

n>1

a(nγ)

)
= exp

(
−
∑

n>1

Ω(nγ)
∑

k>1

eknγ
k2

)
:= exp

(
−
∑

n>1

Ω(nγ) Li2(enγ)

)
,

where Li2(t) =
∑

k>1
tk

k2 is the dilogarithm function.
The Lie algebra gΓ acts on TΓ by Hamiltonian vector fields. Let us denote

by Tγ the formal Poisson automorphism

Tγ = exp({−Li2(eγ), •}) , Tγ(eµ) = (1− eγ)〈γ,µ〉eµ
considered as an automorphism of algebra of functions.

More precisely for any strict convex cone C ⊂ ΓR containing γ the element
Tγ acts on the formal scheme Spf(

∏
µ∈Γ∩C Qeµ). Moreover Tγ is the Taylor

expansion of a birational automorphism of TΓ.
Finally, in the case when Γ comes from a 3d Calabi-Yau category the

numbers Ω(γ) are (conjecturally) integers for (γ, Z) ∈ X2 in notation of
Section 2.4. They provide generalization of DT-invariants (BPS degeneracies
in physics language).

2.6 Symplectic double torus

If the skew-symmetric bilinear form on Γ is degenerate, then the action of gΓ

on TΓ is not exact. In order to remedy the problem we can embed (Γ, 〈•, •〉)
into a larger symplectic lattice. A possible choice is Γ ⊕ Γ∨, where Γ∨ =
Hom(Γ,Z). The corresponding non-degenerate bilinear form is

〈(γ1, ν1), (γ2, ν2)〉 = 〈γ1, γ2〉+ ν2(γ1)− ν1(γ2) .

Let us choose a basis ei, 1 ≤ i ≤ n = rk Γ of Γ. It gives rise to the
coordinates yi, 1 ≤ i ≤ n on TΓ. The Poisson structure on TΓ can be written
as

{yi, yj} = bijyiyj ,
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where bij = 〈ei, ej〉.
Let us also introduce additional coordinates xj , 1 ≤ j ≤ rk Γ∨ in such a

way that (yi, xj), 1 ≤ i, j ≤ n will be the coordinates on the double torus
D(TΓ) with the Poisson brackets

{xi, xj} = 0, {yi, xj} = δijyixj .

There is a projection

π : D(TΓ)→ TΓ, π((yi)1≤i≤n, (xj)1≤j≤n) = (yi)1≤i≤n .

Notice that π is a Poisson morphism of the symplectic manifold D(TΓ) onto
the Poisson manifold TΓ.

Let C ⊂ ΓR be a closed convex strict cone. Let us choose a closed
convex strict cone C1 ⊂ (Γ ⊕ Γ∨) ⊗ R which contains C ⊕ {0}. With
the cone C1 we associate the Poisson algebra Q[[C1]] consisting of series∑

γ,δ∈C1∩(Γ⊕Γ∨) cγ,δy
γxδ. The pro-nilpotent group GC = exp(

∏
γ∈C∩Γ gγ) acts

by Poisson automorphisms of Q[[C1]].
Let us consider a closed algebraic submanifold N ⊂ D(TΓ) defined by the

equations

yi
∏

j

x
bij
j = −1, 1 ≤ i ≤ n .

Lemma 2 The image of the group GC preserves the corresponding comple-
tion of N .

Proof. It suffices to check that the image of the Lie algebra gC preserves
the equations of N . Notice that this image belongs to the Lie algebra of
Hamiltonian vector fields on D(TΓ) generated by {yγ, •}, where γ ∈ Γ and
yγ = yγ11 . . . yγn

n . Taking logarithms we see that

{log(yγ), log(yi) +
∑

j

bij log(xj)} =
∑

j

γjbji +
∑

j

bijγj = 0 .

This concludes the proof. �

Remark 12 It is clear that the action of the image of GC also commutes
with the map π. Moreover the image of GC in the group of exact symplecto-
morphisms of the completion of TΓ corresponding to C can be characterized
by the property that it preserves the completion of N and commutes with π.
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Let us finally make a remark about a possible non-archimedean geometry
interpretation of our construction. Let us choose a complete non-archimedean
field K with the residue field of characteristic zero. Extending scalars we
can think of the algebraic variety D(TΓ) as of variety over K. We denote by
D(TΓ)an the corresponding non-archimedean K-analytic space in the sense of
Berkovich (see [40] for the explanation of the relevance of Berkovich approach
to the large complex structure limit of Calabi-Yau varieties). Then the group
GC acts on the analytic subset of D(TΓ)an given by inequalities {|eγ| < 1, γ ∈
C \ {0}}. Here we interpret eγ as a Laurent monomial on D(TΓ).

The symplectic double torus together with submanifold N will be used
again only in Section 8.

2.7 Complex integrable systems and stability data

In this section we explain how complex integrable systems (with some ad-
ditional structures) give rise to stability data in the graded Lie algebra gΓ

associated with a symplectic lattice. In particular, Seiberg-Witten differen-
tial can be interpreted as the central charge for a complex integrable system,
while the BPS degeneracies are interpreted via our “numerical” Donaldson-
Thomas invariants as the number of certain gradient trees on the base of a
complex integrable system.

Recall that a complex integrable system is a holomorphic map π : X → B
where (X,ω2,0

X ) is a holomorphic symplectic manifold, dimX = 2 dimB,
and the generic fiber of π is a Lagrangian submanifold, which is a polarized
abelian variety. We assume (in order to simplify the exposition) that the
polarization is principal. The fibration π is non-singular outside of a closed
subvariety Bsing ⊂ B of codimension at least one. It follows that on the open
subset Bsm := B \Bsing we have a local system Γ of symplectic lattices with
the fiber over b ∈ Bsm equal to Γb := H1(Xb,Z), Xb = π−1(b) (the symplectic
structure on Γb is given by the polarization).

Furthermore, the set Bsm is locally (near each point b ∈ Bsm) em-
bedded as a holomorphic Lagrangian subvariety into an affine symplectic
space parallel to H1(Xb,C). Namely, let us choose a symplectic basis γi ∈
Γb, 1 ≤ i ≤ 2n. Then we have a collection of holomorphic closed 1-forms
αi =

∫
γi
ω2,0
X , 1 ≤ i ≤ 2n in a neighborhood of b. There exists (well-defined

locally up to an additive constant) holomorphic functions zi, 1 ≤ i ≤ 2n
such that αi = dzi, 1 ≤ i ≤ 2n. They define an embedding of a neigh-
borhood of b into C2n. The collection of 1-forms αi gives rise to an ele-
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ment δ ∈ H1(Bsm,Γ∨ ⊗ C). We assume that δ = 0. This assumption is
equivalent to an existence of a section Z ∈ Γ(Bsm,Γ ⊗ OBsm) such that
αi = Z(γi), 1 ≤ i ≤ 2n.

Definition 5 We call Z the central charge of the integrable system.

Hence, for every point b ∈ Bsm we have a symplectic lattice Γb endowed
with an additive map Zb : Γb → C. Our goal will be to define a continuous
family of stability data on graded Lie algebras gΓb

with central charges Zb.
First, we show an example of section Z.

Example 2 (Seiberg-Witten curve)
Let B = C be a complex line endowed with a complex coordinate u. We

denote by X0 = T ∗ (C \ {0}) the cotangent bundle to the punctured line. We
endow it with the coordinates (x, y), y 6= 0 and the symplectic form

ω2,0 = dx ∧ dy
y
.

There is a projection π0 : X0 → B given by

π(x, y) =
1

2
(x2 − y − c

y
) ,

where c is a fixed constant. Fibers of π0 are punctured elliptic curves

y +
c

y
= x2 − 2u .

We denote by X the compactification of X0 obtained by the compactifications
of the fibers. We denote by π : X → B the corresponding projection. Then
Zu ∈ H1(π−1(u),C) is represented by a meromorphic 1-form λSW = xdy

y

(Seiberg-Witten form). The form λSW has zero residues, hence it defines
an element of H1(π−1(u),C) for any u ∈ Bsm, where Bsm = B \ {b−, b+}
consists of points where the fiber of π is a non-degenerate elliptic curve.

The dense open set Bsm ⊂ B carries a Kähler form

ω1,1
B = Im

( ∑

1≤i≤n

αi ∧ αn+i

)
.

We denote by gB the corresponding Kähler metric.
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For any t ∈ C∗ we define an integral affine structure on C∞-manifold
Bsm given by a collection of closed 1-forms Re(tαi), 1 ≤ i ≤ 2n. For any
simply-connected open subset U ⊂ Bsm and a covariantly constant section
γ ∈ Γ(Bsm,Γ) we have a closed 1-form

αγ,t = Re

(
t

∫

γ

ω2,0
X

)
= dRe(tZ(γ)) ,

and the corresponding gradient vector field vγ,t = g−1
B (αγ,t). Notice that this

vector field is a constant field with integral direction in the integral affine
structure associated with closed 1-forms Im(tαi), 1 ≤ i ≤ 2n.

Similarly to [40] we can construct infinite oriented trees lying in B such
that its external vertices belong to Bsing, and edges are positively oriented
trajectories of vector fields vγ,t. All internal vertices have valency at least 3,
and every such vertex should be thought of as a splitting point: a trajectory
of the vector field vγ,t is split at a vertex into several trajectories of vector
fields vγ1,t, . . . , vγk,t such that γ = γ1 + · · ·+ γk.

The restriction of the function Z to a tree gives rise to a C-valued function
such that on the trajectory of vector field vγ,t it is equal to the restriction
of Z(γ) to this trajectory. We assume that this function approach to zero
as long as we approach an external vertex of the tree (which belongs to
Bsing). It is easy to see that tZ(γ) is a positive number at any other point
of the tree (hence it defines a length function). We expect that for any point
b ∈ Bsm and γ ∈ Γb there exist finitely many such trees which pass the point
b in the direction of γ (we can think of b as a root of the tree, hence we
can say above that we consider oriented trees such that all external vertices
except of the root belong to Bsing). Here we choose an affine structure with
t ∈ R>0(Z(γ)−1

b ). Probably the number of such trees for fixed b, γ is finite,
since their lengths should be bounded.8

For a fixed t ∈ C∗ the union Wt of all trees as above is in fact a countable
union of real hypersurfaces in Bsm. They are analogs of the walls of second
kind. The set Wt depends on Arg t only. The union ∪θ∈[0,2πi)Wteiθ swap the
whole space Bsm. Let us denote by W (1) the union over all t ∈ C∗/R>0 of the
sets of internal vertices of all trees in W (1) (splitting points of the gradient
trajectories). This is an analog of the wall of first kind.

8In [40] we modified the gradient fields near Bsing in order to guarantee the convergence
of infinite products in the adic topology. It seems that we were too cautious, and the
convergence holds without any modification.
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In [40] we suggested a procedure of assigning rational multiplicities to
edges of trees (see also [27],[28]). This leads to the following picture. Con-
sider the total space tot(Γ) of the local system Γ. It follows from above
assumptions and considerations that we have a locally constant function
Ω : tot(Γ) → Q which jumps at the subset consisting of the lifts of the wall
W (1) to tot(Γ). Then for a fixed b ∈ Bsm the pair (Z,Ω) defines stability
data on the graded Lie algebra gΓb

of the group of formal symplectomor-
phisms of the symplectic torus TΓb

. In this way we obtain a local embedding
Bsm →֒ Stab(gΓb

).
In the above example of Seiberg-Witten curve, the wall W (1) is an oval-

shaped curve which contains two singular points b± ∈ Bsing. A typical Wt

looks such as follows.

b− +b

The wall-crossing formula coincides with the one for T
(2)
a,b (see Introduc-

tion).

Remark 13 1) We expect that the above considerations are valid for a large
class of complex integrable systems, e.g. Hitchin system.

2) In the case when we have a 3d complex compact Calabi-Yau mani-
fold X, the moduli space MX of complex structures on X is locally embed-
ded into the projective space P(H3(X,C)) as a base of a Lagrangian cone
LX ⊂ H3(X,C). It carries a Kähler metric (Weil-Petersson metric). We
can repeat the above considerations given for integrable systems, replacing the
gradient flows by the attractor flow (see e.g. [13]). The above case of inte-
grable systems is obtained in the limit, when the cone becomes “very sharp”.

2.8 Relation with the works of Joyce, and of Bridge-

land and Toledano-Laredo

Let g,Γ be as in Section 2.1. We assume that the ground field is C. Suppose
that C ⊂ ΓR is a strict convex cone. We are interested in such stability data
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(Z, a) that Supp a ⊂ C∪(−C). We define D as an open subset of Hom(Γ,C)
which consists of additive maps such that C ∩ Γ is mapped into the upper-
half plane H+ = {z ∈ C | Im(z) > 0}. We interpret D as an open subset of
Stab(g). Every α ∈ C ∩ Γ gives rise to an invertible function (coordinate)
zα ∈ O(D)× such that zα(Z, a) = Z(α).

Recall the pro-nilpotent Lie algebra gC =
∏

γ∈C∩Γ gγ and the correspond-
ing pro-nilpotent group GC .

In the paper [32] by D. Joyce the following system of differential equations
for a collection of holomorphic functions (fα)α∈C∩Γ, fα ∈ O(D) ⊗ gα was
considered:

∀α ∈ C ∩ Γ dfα = −1

2

∑

β+γ=α

[fβ , fγ] d log
zβ
zγ

.

It follows that if (fα) satisfies the above system of equations then the
differential 1-form

ω =
∑

α

fαd log zα ∈ Ω1(D)⊗̂gC :=
∏

α∈C∩Γ

(Ω1(g)⊗ gα)

gives rise to the flat connection, since

dω +
1

2
[ω, ω] = 0 .

Moreover, setting F =
∑

α fα we observe that

dF + [ω, F ] = 0 ,

i.e. F is a flat section of this connection in the adjoint representation.
One can check by induction that there exists a unique solution to the

above system of differential equations (modulo constants for each function
fα). This means that the set of solutions is isomorphic to gC (non-canonically).

For any n > 0 and pairwise different numbers xi ∈ C\{0, 1}, i = 1, . . . , n
we introduce the following function (multilogarithm) which is holomorphic
when all xi lie outside of the interval [0, 1]:

Ln(x1, . . . , xn) := v.p.

∫

0<t1<t2<···<tn<1

∏

1≤i≤n

dti
ti − xi

,
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where v.p. means “principal value”. Then L0 = 1, L1(x) = log(1 − 1/x)
where we define the branch of the logarithm by taking the cut along the ray
(−∞, 0).

For a given collection (fα) as above, Joyce defined a collection of functions
Eα on D with values in the completed universal enveloping algebra U(gC):

Eα =
∑

n>1

∑

α1+···+αn=α

fα1 . . . fαnIn(zα1 , zα2 , . . . , zαn) ,

where for z1, . . . , zn ∈ C such that 0 < Im z1 < Im z2 < · · · < Im zn we set9

In(z1, z2, . . . , zn) :=

= 2πi(−1)n−1Ln−1

(
z1

z1+···+zn
, z1+z2
z1+···+zn

, . . . , z1+z2+···+zn−1

z1+···+zn

)
.

One can show that in fact Eα ∈ gC , and it is a locally constant along
strata of the stratification defined by the walls zβ/zγ ∈ R where α = β + γ
with β, γ ∈ C ∩ Γ and β is not parallel to γ.

For a solution (fα) of the above system of differential equations we define
a differential 1-form on D ×C∗ such that

ω̂ :=
∑

α

fαe
vzαd log(vzα) ,

where v is the standard coordinate on C∗.
Then one checks that

dω̂ +
1

2
[ω̂, ω̂] = 0 .

Let M(fα) ∈ GC be the monodromy of the corresponding flat connection
computed along a closed loop in the complex v-plane, which starts at +i∞
and goes in the anti-clockwise direction around v = 0. The flatness implies
that the monodromy does not depend on the point of D.

On the other hand let us consider the element N(fα) ∈ GC defined as

−→∏

l⊂H+

exp

( ∑

α∈C∩Γ,zα∈l

Eα
)
,

where the product is taken over all rays l ⊂ H+ with the vertex at the origin.

9This formula was proposed in [10] as the inversion of the Joyce formula which expressed
fα’s in terms of Eα’s.
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Conjecture 2 We have M(fα) = N(fα).

The conjecture implies that the elements aα := Eα satisfy the wall-crossing
formula. The element M(fα) is equal (in our notation) to the element AV ,
where V is a strict sector in H+ containing Z(C). We will discuss below a
sequence of identities which imply the conjecture. But we need to introduce
certain functions first.

Let ϕ : (0, 1)→ C \ {0} be the infinite contour which starts and ends at
+i∞, goes in the anti-clockwise direction and surrounds the point 0 ∈ C.
With the contour ϕ we associate the following function on (H+)n , n > 1:

Kn(z1, . . . , zn) :=

∫

0<t1<···<tn<1

exp

( ∑

1≤i≤n

ϕ(ti)zi

) ∏

1≤i≤n

ϕ′(ti)/ϕ(ti)dti .

Notice that this function can be written as a Chen iterated integral

Kn(z1, . . . , zn) =

∫

ϕ

ω1 ◦ ω2 ◦ · · · ◦ ωn ,

where ωi = evzidv/v, 1 ≤ i ≤ n, v ∈ C \ {0}.
Let us fix n > 1 and a collection of complex numbers zi ∈ H+, 1 ≤ i ≤ n.

We call a sequence 0 = i0 < i1 < · · · < ik−1 < ik admissible if

Arg(z1 + · · ·+ zi1) > Arg(zi1+1 + · · ·+ zi2) > · · · > Arg(zik−1+1 + · · ·+ zik) .

For a fixed admissible sequence we have a partition k = l1 + · · ·+ lm where
l1, l2, . . . , lm are the numbers of consecutive equalities in the above sequence
of inequalities for the arguments. Let Ωk,l1,...,lm(z1, . . . , zn) be the set of all
admissible sequences 0 = i0 < i1 < · · · < ik−1 < ik with the given partition
k = l1 + · · · + lm. Under these assumptions and notation one can see that
the previous Conjecture 2 is equivalent to

Conjecture 3 We have

Kn(z1, . . . , zn) =
∑

Ωk,l1,...,lm (z1,...,zn)

∏

1≤j≤m

1

lj!
Ii1(z1, . . . , zi1)·Ii2−i1(zi1+1, . . . , zi2)·. . .

·Iik−ik−1
(zik−1+1, . . . , zn) .
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Indeed, for zi = zαi
, i = 1, . . . , n the l.h.s. of the formula is the contribution

of the term fα1 . . . fαn in the expansion of M(fα). Similarly, the r.h.s. is the
contribution of the same term in N(fα).

Here we give a proof of the above conjecture in the special case:

Proposition 5 If 0 < Arg z1 < · · · < Arg zn < π then

Kn(z1, . . . , zn) = In(z1, z2, . . . , zn) .

Proof. For n = 1 both sides are equal to 2πi. For n > 2 we proceed by
induction. First one checks directly that

dKn(z1, . . . , zn) = −
n−1∑

i=1

d log

(
zi+1

zi

)
Kn−1(z1, . . . , zi + zi+1, . . . , zn) .

The same formula holds if we replace Kn, Kn−1 by In, In−1 respectively. Thus
we see by induction thatKn−In = constn. We want to prove that constn = 0.
In order to do that we take zj = zj(ε), 1 ≤ j ≤ n, such as follows:

z1(ε) = i+
1

ε
, zn(ε) = i− 1

ε
, zk(ε) = i− k, 2 ≤ k ≤ n− 1 .

Here i =
√
−1. Then

0 < Arg z1(ε) < Arg z2(ε) < · · · < Arg zn(ε) < π

and |∑1≤j≤k zj(ε)| → ∞ as ε → 0 for k = 1, . . . , n − 1, and moreover
|∑1≤j≤n zj(ε)| is a constant function of ǫ. Therefore,

In(z1(ε), . . . , zn(ε))→ 0

as ε→ 0, since all the arguments of the function Ln−1 in the definition of In
approach infinity.

Hence in order to finish the proof it suffices to show that

Kn(z1(ε), . . . , zn(ε))→ 0

as ε→ 0. Here is the sketch of the proof.10 Notice that
∫ v2

+i∞

ev1z1(ε)dv1/v1 =
1

z1(ε)
ev1z1(ε)/v2 + r1(ε) ,

10We thank Andrei Okounkov for the idea of the proof.
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where r1(ε)→ 0 as ε→ 0. Repeating we obtain that

Kn(z1(ε), . . . , zn(ε)) =
1

z1(ε)

1

z1(ε) + z2(ε)
. . .

1

z1(ε) + z2(ε) + · · ·+ zn−1(ε)
×

×
∫

ϕ

evn(z1(ε)+···+zn(ε))dvn/vn + rn(ε) ,

where the integral is taken over the contour ϕ described before, and rn(ε)→ 0
as ε → 0. It follows from our choice of numbers zj(ε), 1 ≤ j ≤ n that
Kn(z1(ε), . . . , zn(ε))→ 0 as ε→ 0. �

One can hope that the technique developed in [32] helps in proving the
general case.

A relationship between Joyce formulas and iterated integrals is discussed
in [10] in a slightly different form. In that paper the elements N(fα) are in-
terpreted as Stokes multipliers for a different system of differential equations
on C (with coordinate t) with values in the Lie algebra which is an exten-
sion of gC by the abelian Lie algebra Hom(Γ,C) (an analog of the Cartan
subalgebra). It has irregular singularity at the origin given by Z

t2
, where Z

is the central charge of the stability structure. In fact the connection from
[10] reduces to our connection after the change of variables v = 1/t and the
conjugation by exp(−vZ).

2.9 Stability data on gl(n)

Let g = gl(n,Q) be the Lie algebra of the general linear group. We consider
it as a Γ-graded Lie algebra g = ⊕γ∈Γgγ , where

Γ = {(k1, . . . , kn)| ki ∈ Z,
∑

1≤i≤n

ki = 0}

is the root lattice. We endow g with the Cartan involution η. Algebra g has
the standard basis Eij ∈ gγij

consisting of matrices with the single non-zero
entry at the place (i, j) equal to 1. Then η(Eij) = −Eji. In what follows we
are going to consider symmetric (with respect to η) stability data on g.

We notice that

Hom(Γ,C) ≃ Cn/C · (1, . . . , 1) .

We define a subspace Hom◦(Γ,C) ⊂ Hom(Γ,C) consisting (up to a shift by
the multiples of the vector (1, . . . , 1)) of vectors (z1, . . . , zn) such that zi 6= zj
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if i 6= j. Similarly we define a subspace Hom◦◦(Γ,C) ⊂ Hom(Γ,C) consisting
(up to the same shift) of such (z1, . . . , zn) that there is no zi, zj , zk belonging
to the same real line as long as i 6= j 6= k. Obviously there is an inclusion
Hom◦◦(Γ,C) ⊂ Hom◦(Γ,C).

For Z ∈ Hom(Γ,C) we have Z(γij) = zi − zj . If Z ∈ Hom◦◦(Γ,C) then
symmetric stability data with such Z is the same as a skew-symmetric ma-
trix (aij) with rational entries determined from the equality a(γij) = aijEij .
Every continuous path in Hom◦(Γ,C) admits a unique lifting to Stab(g) as
long as we fix the lifting of the initial point. The matrix (aij) changes when
we cross walls in Hom◦(Γ,C) \ Hom◦◦(Γ,C). A typical wall-crossing corre-
sponds to the case when in the above notation the point zj crosses a straight
segment joining zi and zk, i 6= j 6= k. In this case the only change in the
matrix (aij) is of the form:

aik 7→ aik + aijajk .

This follows from the multiplicative wall-crossing formula which is of the
form:

exp(aijEij) exp(aikEik) exp(ajkEjk) =
= exp(ajkEjk) exp((aik + aijajk)Eik) exp(aijEij) .

Same wall-crossing formulas appeared in [11] in the study of the change of
the number of solitons in N = 2 two-dimensional supersymmetric QFT. In
[11] the numbers aij were integers, and the wall-crossing preserved integral-
ity. In our considerations, for any Z ∈ Hom◦◦(Γ,C) the fundamental group
π1(Hom◦(Γ,C), Z) acts on the space of skew-symmetric matrices by polyno-
mial transformations with integer coefficients. It can be identified with the
well-known actions of the pure braid group on the space of upper-triangular
matrices in the theory of Gabrielov bases of isolated singularities and in the
theory of triangulated categories endowed with exceptional collections. Fur-
thermore, the matrices exp(aijEij) = 1 + aijEij can be interpreted as Stokes
matrices of a certain connection in a neighborhood of 0 ∈ C, which has irreg-
ular singularities (tt∗-connection from [11], see also [24]). This observation
should be compared with the results about the irregular connection from the
previous section.
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3 Ind-constructible categories and stability struc-

tures

3.1 Ind-constructible categories

Here we introduce an ind-constructible version of the notion of a (triangu-
lated) A∞-category. Let k be a field, k be its algebraic closure. By a variety
over k (not necessarily irreducible) we mean a reduced separated scheme of
finite type over k. Recall the following definition.

Definition 6 Let S be a variety over k. A subset X ⊂ S(k) is called con-
structible over k if it belongs to the Boolean algebra generated by k-points of
open (equivalently closed) subschemes of S.

Equivalently, a constructible set is the union of a finite collection of k-
points of disjoint locally closed subvarieties (Si ⊂ S)i∈I .

For any field extension k ⊂ k′ ⊂ k we define the set of k′-points X(k′) of
the constructible set X as (X ∩ S(k′)) ⊂ S(k). In particular, X(k) = X.

We define the category CON k of constructible sets over k as a cate-
gory with objects (X,S), where X and S as above. The set of morphisms
HomCONk

((X1, S1), (X2, S2)) is defined to be the set of maps f : X1 → X2

such that there exists a decomposition of X1 into the finite disjoint union
of k-points of varieties (Si ⊂ S1)i∈I such that the restriction of f to each
Si(k) is a morphism of schemes Si → S2. We see that there is a natural
faithful functor from CON k to the category of sets equipped with the action
of Aut(k/k).

Definition 7 An ind-constructible set over k is given by a chain of embed-
dings of constructible sets X := (X1 → X2 → X3 → . . . ) over k. A mor-
phism of ind-constructible sets is defined as a map g : ∪iXi(k) → ∪iYi(k)
such that for any i there exists n(i) such that g|Xi(k) : Xi(k)→ Yn(i)(k) comes
from a constructible map.

Ind-constructible sets form a full subcategory ICk of the category of ind-
objects in CON k.

Remark 14 Equivalently, we can consider a countable collection Zi = Xi \
Xi−1 of non-intersecting constructible sets. Then a morphism ⊔i∈IZi →
⊔j∈JZ ′j is given by a collection of constructible maps fi : Zi → ⊔i∈Ji

Z ′j,
where each Ji is a finite set.
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The category of constructible (or ind-constructible) sets has fibered prod-
ucts. There is a notion of constructible (or ind-constructible) vector bundle
(i.e. the one with the fibers which are affine spaces of various finite dimen-
sions).

Definition 8 An ind-constructible A∞-category over k is defined by the fol-
lowing data:

1) An ind-constructible set M = Ob(C) = ⊔i∈IXi over k, called the set
of objects.

2) A collection of ind-constructible vector bundles

HOMn →M×M, n ∈ Z

called the bundles of morphisms of degree n. The restriction HOMn → Xi×
Xj is a finite-dimensional constructible vector bundle for any n ∈ Z, i, j ∈ I,
and the restriction HOMn → Xi×Xj is a zero bundle for n ≤ C(i, j), where
C(i, j) is some constant.

3) For any n > 1, l1, . . . , ln ∈ Z, ind-constructible morphisms of ind-
constructible bundles

mn : p∗1,2HOMl1 ⊗ · · · ⊗ p∗n,n+1HOMln → p∗1,n+1HOMl1+···+ln+2−n ,

where pi,i+1 denote natural projections of Mn+1 to M2. These morphisms
are called higher composition maps.

The above data are required to satisfy the following axioms A1)-A3):
A1) Higher associativity property for mn, n > 1 in the sense of A∞-

categories. We leave for the reader to write down the corresponding well-
known identities (see [37],[42]).

This axiom implies that we have a small k-linear non-unital A∞-category
C(k) with the set of objects M(k) and morphisms HOM•(k).

A2) (weak unit) There is a constructible section s of the ind-constructible
bundle HOM0

|Diag → M such that the image of s belongs to the kernel of

m1 and gives rise to the identity morphisms in Z-graded k-linear category
H•(C(k)).

Alternatively, instead of A2) one can use the axiomatics of A∞-categories
with strict units (see [42], [46]).

An ind-constructible A∞-category C gives rise to a collection of ind-
constructible bundles over Ob(C)× Ob(C) given by

EXT i := H i(HOM•), i ∈ Z
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with the fiber over a pair of objects (E,F ) equal to

Exti(E,F ) := H i(HOM•
E,F ) .

The cohomology groups are taken with respect to the differential m1.
A3) (local regularity) There exists a countable collection of schemes (Si)i∈I

of finite type over k, a collection of algebraic k-vector bundles HOMn
i , n ∈ Z

over Si × Si for all i, and ind-constructible identifications

⊔iSi(k) ≃M,HOMn
i ≃ HOMn

|Si×Si
, n ∈ Z

such that all higher compositions mn, n > 2, considered for objects from Si
for any given i ∈ I, become morphisms of algebraic vector bundles.

We will often call ind-constructible A∞-categories simply by ind-constructible
categories. The basic example of an ind-constructible category is the category
Perf(A) of perfect A-modules where A an A∞-algebra over k with finite-
dimensional cohomology (see the discussion after the Example 1 in Section
1.2 of Introduction).

We define a functor between two ind-constructible categories mimicking
the usual definition of an A∞-functor.

A functor Φ : C1 → C2 is called an equivalence if Φ is a full embedding,
i.e. it induces an isomorphism

Ext•(E,F ) ≃ Ext•(Φ(E),Φ(F )) ∀E,F ∈ Ob(C1)(k)

and moreover, there exists an ind-constructible over k map

s : Ob(C2)(k)→ Ob(C1)(k)

such that for any object E ∈ Ob(C2)(k) we have E ≃ Φ(s(E)).
Using the notions of a functor and of an equivalence we can define the

property of an ind-constructible weakly unital A∞-category C to be triangu-
lated. For example, the property to have exact triangles can be formulated
as follows. Consider a finite A∞-category C3 consisting of 3 objects E1, E2, E3

with non-trivial morphism spaces

Hom0(Ei, Ei) = k · idEi
, Hom0(E1, E2) ≃ Hom0(E2, E3) ≃ Hom1(E3, E1) ≃ k

equivalent to the full subcategory of the category of representations of the
quiver A2 consisting of modules of dimensions (0, 1), (1, 1), (1, 0). Let C2 ⊂ C3
be the full subcategory consisting of first two objects.
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It is easy to see directly from the definitions that for any ind-constructible
category C there are natural ind-constructible categories Fun(Ci, C), i = 2, 3
whose objects over k are the usual A∞-categories of functors from Ci(k) to
C(k) as defined e.g. in [41],[42] and [37]. There exists a natural restriction
functor

r32 : Fun(C3, C)→ Fun(C2, C) .
Similarly to the setting of usual A∞-categories, the ind-constructible ver-
sion of the axiom of exact triangles says that r32 is an equivalence. In the
same manner one can define other properties of triangulated A∞-categories
(i.e. the existence of shift functors, finite sums, see [42], [65]) in the ind-
constructible setting.

In Sections 5,6 we will use a simplified notation Cone(f) for a cone of
morphism f in C(k) “pretending” that cones are functorial. The precise
prescription is to take an object in Fun(C2, C) corresponding to f , find an
isomorphic object in Fun(C3, C), and then take the image in C(k) of the object
E3. All this can be properly formulated using the language of constructible
stacks, see 3.2 and 4.2.

Let us call an ind-constructible A∞-category minimal on the diagonal
if the restriction of m1 to the diagonal ∆ ⊂ M ×M is trivial. One can
show that any ind-constructible A∞-category is equivalent to a one which is
minimal on the diagonal.

Remark 15 Typically in practice one has a decomposition Ob(C) = ⊔i∈IXi

where Xi are schemes, not just constructible sets. Moreover, for any E ∈
Xi(k) there is a natural map TEXi → Ext1(E,E). The reason for this is
the fact that the deformation theory of the object E should be controlled by
the DGLA Ext•(E,E). We did not include the above property into the list
of axioms since it does not play any role in our constructions.

3.2 Stack of objects

In this section we assume that the ground field k is perfect, i.e. the k is a
Galois field over k. Our goal in this section is to explain how to associate with
an ind-constructible A∞-category C over k an ordinary k-linear A∞-category
C(k), in such a way that ind-constructible equivalences will induce the usual
equivalences. For any field extension k′ ⊃ k (e.g. for k′ = k) one can define
A∞-category Cnaive(k′) to be the small k′-linear category with the set of
objects given by (Ob(C))(k′) and obvious morphisms and compositions. This
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is not a satisfactory notion because in the definition of the equivalence we
demand only the surjectivity on isomorphism classes of objects over k. The
naive category Cnaive(k) will be a full subcategory of the “correct” category
C(k). One should read carefully brackets, as in our notation

Ob(C(k)) 6= (Ob(C))(k) =: Ob(Cnaive(k)) ,

contrary to the case of k where we have

Ob(C(k)) = (Ob(C))(k) .

We will see also the “set of isomorphism classes of objects” in C should be
better understood as an ind-constructible stack11.

Let k′ ⊂ k be a finite Galois extension of k and consider an element
E ′ ∈ (Ob(C))(k′) ⊂ Ob(C(k)) such that σ(E) is isomorphic to E for all
σ ∈ Gal(k′/k). We would like to define the descent data for such E ′, which
should be data necessary to define an object in (not yet defined) k-linear
category C(k) which becomes isomorphic to E ′ after the extension of scalars
from k to k′.

First, for a finite non-empty collection of objects (Ei)i∈I of any A∞-
category C′ linear over a field k′ (not necessarily a perfect one) we define
an identification data for objects of this collection to be an A∞-functor Φ
from the A∞-category CI,k′ describing I copies of the same object:

Ob(CI) = I,Hom•(i, j) = Hom0(i, j) ≃ k′

to C′. In plain terms, to give such a functor is to give a closed morphism
of degree 0 for any pair of objects Ei, Ej (representing the identity idEi

in
H•(C(k)) for i = j), a homotopy for any triple of objects, homotopy between
homotopies for any quadruple of objects, etc. Thus, we in a sense identify
all the objects of the collection (Ei)i∈I and hence can treat it is a new object
(canonically isomorphic to all (Ei)i∈I), without choosing any specific element
i ∈ I.

Returning to the case of E ′ ∈ (Ob(C))(k′), we define the descent data as
the identification of the collection of objects (σ(E ′))σ∈Gal(k′/k) of the category
Cnaive(k′) equivariant with respect to the action of Gal(k′/k) acting both on
the collection and on the coefficients in the identification.

11Even in the case when k = k it is important to keep track on automorphisms groups
of objects (and not only on the set of isomorphism classes), e.g. for the correct definition
of the motivic Hall algebra in 6.1.
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We define the set Ob(C(k)) of objects of C(k) to be the inductive limit over
finite Galois extensions k′/k of descent data as above. Also one can define
morphisms and higher compositions. We leave the following Proposition
without a proof.

Proposition 6 There is a natural structure of a k-linear A∞-category on
C(k) containing Cnaive(k) as a full subcategory. Any equivalence Φ : C1 → C2
in ind-constructible sense induces an equivalence C1(k) → C2(k). If C is
triangulated in ind-constructible sense then C(k) is also triangulated.

If E is an object of C(k) then any other object E ′ of C(k) which is iso-
morphic to E after the extension of scalars to C(k) is in fact isomorphic to
E in C(k) (in other words, there are no non-trivial twisted forms). The rea-
son is that (as follows directly from definitions) the set of such “k-forms” of
E is classified by H1(Gal(k/k),GE), where GE is a simplicial group associ-
ated with the A∞-algebra End•C(k)(E,E). There is a spectral sequence which
converges to this set and has the second term E2 = (Epq

2 ) given by

H1(Gal(k/k), (Ext0
C(k)

(E,E))×) ,

H2(Gal(k/k),Ext−1

C(k)
(E,E)) ,

H3(Gal(k/k),Ext−2

C(k)
(E,E)), . . . .

We observe that all Galois cohomology groups with coefficients in Ext<0
C(k)

(E,E)

are trivial (since Exti
C(k)

(E,E), i < 0 are just sums of copies of the addi-

tive group Ga(k)). Also the set H1(Gal(k/k), (Ext0
C(k)

(E,E))×) is the one-

element set, because for any finite-dimensional algebra A over k we have
H1(Gal(k/k), A×) = 0 (a version of Hilbert 90 theorem, see also section 2.1
in [35]). One can deduce from the above spectral sequence an important
corollary: the set of isomorphism classes of objects of C(k) is in a natural
bijection with the set of isomorphism classes of the usual descent data in
category H•(C(k)) endowed with the strict action of Gal(k/k).

Finally, we will explain how to associate an ind-constructible stack to an
ind-constructible category C over k. First of all, we can always assume that
C satisfies the following axiom

A4) There exists a decompositionM = ⊔i∈IXi into the countable disjoint
union of constructible sets over k such that any two isomorphic objects of
H•(C(k)) belong to the same part Xi(k) for some i ∈ I.
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Indeed, if we choose any decomposition M = ⊔i∈IX ′i into disjoint union
of constructible sets over k and identify I with the set of natural number
{1, 2, . . .}, then we can shrink X ′i(k) to the subset consisting of objects which
are not isomorphic to objects from ∪j<iX ′j(k).

By axioms A3),A4) we may assume that Ob(C)(k) is decomposed into
the union of k-points of schemes (Si)i∈I (as in Axiom A3)) such that any
isomorphism class of C(k) belongs only to one of the sets Si(k). Let us call it a
locally regular subdivision of Ob(C). Moreover, we can assume that all Si are
smooth and equidimensional, and such that for any i ∈ I there exists δ(i) ∈
Z>0 such that for any E ∈ Si(k) the subset of objects in Si(k) isomorphic to
to E has dimension δ(i). This can be achieved by subdividing each Si into
smaller pieces, and by removing some unnecessary pieces consisting of objects
which belong to other pieces. Then taking a generic slice of codimension
δ(i) (and thus shrinking C to an equivalent subcategory), and taking further
subdivisions, one may assume that we have a locally regular subdivision of
Ob(C) such that any isomorphism class of objects in Si(k) is finite. Moreover,
we may assume that the cardinality ci of all isomorphism classes in Si(k)
depend only on i, and also the dimension di of the algebra Ext0(E,E) for
E ∈ Si(k) also depends only on i.

For any given i ∈ I let us consider the constructible set Zi over k

parametrizing isomorphism classes of objects in Si(k). There is a natural
constructible (over k) bundle of finite-dimensional unital associative alge-
bras A, with the fiber Ax over any full collection x = (E1, . . . , Eci) (up to
permutation) of different isomorphic objects equal to

⊕1≤j1,j2≤ci Ext0(Ej1 , Ej2) .

The above algebra is Morita equivalent to Ext0(Ej , Ej) for every j ≤ ci, and
in fact is isomorphic to the matrix algebra

Ax ≃ Mat(ci × ci,Ext0(Ej , Ej)) ∀j ≤ ci .

Informally speaking, the “stack” of objects from Si is the stack of projective
modules M over algebra Ax for some x ∈ Zi(k) which are isomorphic after
Morita equivalence to a free module of rank one over Ext0(Ej , Ej) where Ej
is some representative of the equivalence class x, i.e. M is isomorphic to the
standard module (Ext0(Ej , Ej))

⊕ci over the matrix algebra for every j ≤ ci.
We see that M has dimension

Ni := cidi
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over k. This leads to the following construction. Define a constructible set
Yi over k to be the set of pairs (x, f) where x ∈ Zi(k) is a point and f
is a homomorphism of Ax to the algebra of matrices Mat(Ni × Ni,k) such

that the resulting structure of Ax-module on k
Ni

belongs to the isomorphism
class of projective Ax-modules discussed above. The group GL(Ni,k) acts

naturally on Yi by changing the basis in the standard coordinate space k
Ni

.
The quotient set is naturally identified with Zi(k), and the stabilizer of every
point is isomorphic to Ext0(Ej, Ej)

× in the above notation.
The essential element of the presented construction is that everything

is equivariant with respect to the action of Gal(k/k). Hence, we come
to the conclusion that one associates (making many choices) with an ind-
constructible category C over k a countable collection of varieties (Yi)i∈I (we
can assume that Yi are not just constructible sets but varieties after mak-
ing further subdivisions) endowed with algebraic actions of affine algebraic
groups GL(Ni) such that the groupoid of isomorphism classes of C(k) is nat-
urally equivalent to the groupoid of the disjoint union of sets Yi(k) endowed
with GL(Ni,k)-actions. If we replace C by an equivalent ind-constructible
category, or make different choices in the construction, we obtain an equiv-
alent in an obvious sense “ind-constructible stack”. We will discuss ind-
constructible stacks later, in Section 4.2.

Moreover, using the fact that the first Galois cohomology with coefficients
in GL(Ni) vanish, one can see that the same is true for C(k) (and replace
Yi(k), GL(Ni,k)-actions by Yi(k) and GL(Ni,k)-action ∀i ∈ I). In general,
for any field k′, k ⊂ k′ ⊂ k one can define the descent data for k′ and a
k′-linear A∞-category C(k′) (which is triangulated if C is triangulated in the
ind-constructible sense). The groupoid of isomorphism classes of objects of
H•(C(k′)) is equivalent to the groupoid of the disjoint union of sets Yi(k

′)
endowed withGL(Ni,k

′)-actions. More generally, one can define the category
C(k′) for any field extension k′ ⊃ k, not necessarily an algebraic one. In the
case k′ = k we get a non-fatal crash of notations, because the A∞-category
C(k) in last sense is equivalent to the previously defined C(k).

In what follows, we will assume for convenience that Ob(C) for an ind-
constructible category C is described by schemes Yi with GL(Ni)-actions. In
particular, for any extension k′ ⊃ k we will have a bijection

Iso(C(k′)) ≃ ⊔i∈IYi(k′)/GL(Ni,k
′)

between the set of isomorphism classes in C(k′) and the set of orbits.

52



Remark 16 In fact, objects of an A∞-category form not a stack but a higher
stack, i.e. one should speak about isomorphisms between isomorphisms etc.
Passing to the level of ordinary stacks we make a truncation. Presumably,
for a proper treatment of ind-constructible categories and problems like non-
functoriality of cones, one should introduce higher constructible stacks. Look-
ing on the guiding example of identification data for finite non-empty collec-
tions, one can guess an appropriate notion of a higher constructible stack.
Namely, it should be a simplicial constructible set X• which satisfies a con-
structible version of the Kan property (i.e. there exists a constructible lifting
from horns to simplices) and such that

1) for any k > 2 the constructible map (∂0, . . . , ∂k) : Xk → (Xk−1)
k+1 is

a constructible vector bundle over its image (i.e. there exists a constructible
identification of non-empty fibers of this map with vector spaces).

2) ∃ k0 such that ∀k > k0 the above map is an inclusion.
The reason for the first property is that in the case of identification on each

step (except first two) we have to solve linear equations. The second property
comes from the property HOMn

|Xi×Xi
= 0 for n ≪ 0 in our axiomatics of

ind-constructible categories.

3.3 Ind-constructible Calabi-Yau categories and po-

tentials

Let k be a field of characteristic zero. Recall that a Calabi-Yau category
of dimension d is a weakly unital k-linear triangulated A∞-category C (see
[41], [42], [65]), such that for any two objects E,F the Z-graded vector
space Hom•(E,F ) = ⊕n∈Z Homn(E,F ) is finite-dimensional (hence the space
Ext•(E,F ) is also finite-dimensional) and moreover:

1) We are given a non-degenerate pairing

(•, •) : Hom•(E,F )⊗Hom•(F,E)→ k[−d] ,

which is symmetric with respect to interchange of objects E and F ;
2) For any N > 2 and a sequence of objects E1, E2, . . . , EN we are given

a polylinear Z/NZ-invariant map

WN : ⊗1≤i≤N (Hom•(Ei, Ei+1)[1])→ k[3− d] ,

where [1] means the shift in the category of Z-graded vector spaces, and we
set EN+1 = E1;
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3) We have:

WN (a1, . . . , aN) = (mN−1(a1, . . . , aN−1), aN) ,

where mn : ⊗1≤i≤n Hom•(Ei, Ei+1)→ Hom•(E1, En+1)[2−n] are higher com-
position maps.

The collection (WN )N>2 is called the potential of C. If d = 3 then for any
object E ∈ Ob(C) we define a formal series W tot

E at 0 ∈ Hom•(E,E)[1] by
the formula:

W tot
E (α) =

∑

n>2

Wn(α, . . . , α)

n
.

We call W tot
E the total (or full) potential of the object E. We call the potential

of E the restriction of W tot
E to the subspace Hom1(E,E). We will denote it

by WE .
The notion of a Calabi-Yau category admits a natural generalization to

the ind-constructible case (the pairing is required to be a morphism of con-
structible vector bundles). It follows from the Axiom A3) that there exists a
decomposition of Ob(C) ≃ ⊔Si into the disjoint union of schemes such that
all Taylor components WN of the potential are symmetrizations of regular
sections of cyclic powers of algebraic vector bundles on schemes Si. There-
fore we can treat the family of potentials WC = (WE)E∈Ob(C) as a function,
which is regular with respect to the variable E and formal in the direction
α ∈ Hom1(E,E) (or α ∈ Ext1(E,E) if our category is minimal on the diag-
onal). Also the potential WE considered as a function of E ∈ Sj becomes a
section of the pro-algebraic vector bundle

∏
n>2 Sym

n(HOM1
|Diag(Sj)⊂Sj×Sj

)⋆,
where Diag denotes here the diagonal embedding.

Proposition 7 In the case of 3d Calabi-Yau category C consisting of one
object E the potential WE admits (after a formal change of coordinates) a
splitting:

WE = Wmin
E ⊕QE ⊕NE ,

where Wmin
E is the potential of the minimal model Cmin (i.e. it is a for-

mal series on Ext1(E,E)), the quadratic form QE is defined on the vector
space Hom1(E,E)/Ker(m1 : Hom1(E,E) → Hom2(E,E)) by the formula

QE(α, α) = m2(α,α)
2

, and NE is the zero function on the image of the map
m1 : Hom0(E,E) → Hom1(E,E). In the above splitting formula we use the
notation (f ⊕ g)(x, y) = f(x) + g(y) for the direct sum of formal functions f
and g.
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The above Proposition follows from the minimal model theorem for Calabi-
Yau algebras (i.e. Calabi-Yau categories with only one object). In its for-
mulation below we are going to use the language of formal non-commutative
geometry from [42]. We assume that the ground field has characteristic zero.

Theorem 5 a) Let (X, x0, ω, dX) be a Z/2Z-graded non-commutative for-
mal pointed manifold (X, x0) endowed with an odd symplectic form ω and
homological vector field dX which preserves ω and vanishes at x0. Then it is
isomorphic to the product

(X ′, x′0, ω
′, dX′)× (X ′′, x′′0, ω

′′, dX′′) ,

where (X ′, x′0, ω
′, dX′) is minimal in the sense that (LiedX′ )|Tx′0X′

= 0 (i.e.

dX′ vanishes quadratically at x′0), and the second factor satisfies the follow-
ing property: there exists a finite-dimensional super vector space V endowed
with an even non-degenerate quadratic form QV such that (X ′′, x′′0, ω

′′, dX′′) is
isomorphic to the non-commutative formal pointed manifold associated with
V ⊕ ΠV ∗ (here Π is the change of parity functor) endowed with a constant
symplectic form ωV coming from the natural pairing between V and ΠV ∗, and
homological vector field dV is the Hamiltonian vector field associated with the
pull-back of QV under the natural projection V ⊕ΠV ∗ → V .

b) In the Z-graded case when X corresponds to a 3d Calabi-Yau algebra
(i.e. ω has degree −1) a similar statement holds. In this case V is Z-graded
vector space, QV has degree 0, and the tangent space Tx′′0X

′′ isomorphic to
V ⊕ V ∗[−1].

Proof. One can prove part a) similarly to the usual minimal model the-
orem for A∞-algebras or L∞-algebras (it is induction by the order of the
Taylor expansion, see e.g. [41]). Part b) is a Gm-equivariant version of part
a). �

The Proposition follows from part b) of the Theorem, since we have a
decomposition Hom1(E,E) ≃ Ext1(E,E)⊕ V 0 ⊕ (V 1)∗ where V i, i ∈ Z are
the graded components of V . The restriction of W tot

E to Hom1(E,E) is the
direct sum of Wmin

E , the restriction of QV to V 0 (we identify QV with QE)
and the zero function on (V 1)∗.

Corollary 2 The minimal model potential Wmin
E does not depend on a choice

of minimal model for End•(E), if considered up to a formal non-linear auto-
morphism of the bundleHOM1 restricted to the diagonalDiag(Sj) ⊂ Sj×Sj.
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Proof. Change of the minimal model is a Z-graded change of coordinates.
It preserves the topological ideal generated by all coordinates of non-zero
degrees. �

We remark that there is a notion of Calabi-Yau category valid over a field
k of arbitrary characteristic. In the case of a category with one object E let
us denote by A the A∞-algebra Hom•(E,E). We assume that Ext•(E,E) =
H•(A) is finite-dimensional. Then a Calabi-Yau structure of dimension d on
A is given by a functional Tr of degree −d on the cyclic homology HC•(A)
such that the induced functional on H•(A)/[H•(A), H•(A)] gives rise to a
non-degenerate bilinear form (a, b) 7→ Tr(ab), where a, b ∈ H•(A).

In the case of positive characteristic the notion of the potential does
not exist in the conventional sense. This can be seen in the example A =
F3〈ξ〉/(ξ4), deg ξ = +1. The potential should have the form W (ξ) = ξ3/3 +
. . . which does not make sense over the field F3.

In general it seems that although the potential does not exist, its differ-
ential is well-defined as a closed 1-form.

Remark 17 In the case of characteristic zero the cyclic homology HC•(A)
can be identified with the cohomology of the complex ⊕n>1Cycl

n(A[1]) of
cyclically invariant tensors (see [42]). Therefore the potential W becomes
a functional of degree 3 − d on the latter complex, vanishing on the image
of the differential. Hence it defines a class [W ] in (HC•(A))∗. The latter
space is a k[[u]]-module, where u is a variable, deg u = +2 (see loc. cit.).
The class [W ] is related to the functional Tr discussed above by the formula
[W ] = uTr. In the case of a Calabi-Yau algebra of dimension d = 2k + 1
it is natural to introduce a cyclic functional Wk with the corresponding class
[Wk] = ukTr. It can be thought of as a higher-dimensional Chern-Simons
action. In particular, it defines a formal power series W 0

k of degree zero such
that it vanishes with the first k derivatives on the formal scheme of solutions
to the Maurer-Cartan equation.

3.4 Topology on the space of stability structures

Let C be an ind-constructible weakly unital A∞-category over a field k of
arbitrary characteristic. Let cl : Ob(C) → Γ ≃ Zn be a map of ind-
constructible sets (where Γ is considered as a countable set of points) such
that the induced map Ob(C)(k) → Γ factorizes through a group homomor-
phism clk : K0(C(k)) → Γ. It is easy to see that for any field extension
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k′ ⊃ k we obtain a homomorphism cl
k
′ : K0(C(k

′
))→ Γ.

In the case when C is a Calabi-Yau category we require that Γ is endowed
with an integer-valued bilinear form 〈•, •〉 and the homomorphism clk is
compatible with 〈•, •〉 and the Euler form on K0(C(k)).

For ind-constructible triangulated A∞-categories the notion of stability
structure admits the following version.

Definition 9 A constructible stability structure on (C, cl) is given by the
following data (cf. Introduction, Section 1.2):

• an ind-constructible subset

Css ⊂ Ob(C)

consisting of objects called semistable, and satisfying the condition that
with each object it contains all isomorphic objects,

• an additive map Z : Γ → C called central charge, such that Z(E) :=
Z(cl(E)) 6= 0 if E ∈ Css,

• a choice of the branch of logarithm LogZ(E) ∈ C for any E ∈ Css
which is constructible as a function of E.

These data are required to satisfy the corresponding axioms from Section
1.2 for the category C(k).

In particular

• the set of E ∈ Css(k) ⊂ Ob(C)(k) with the fixed cl(E) ∈ Γ \ {0} and
fixed LogZ(E) is a constructible set.

Before we proceed with the topology let us make a comparison with the
“Lie-algebraic” story of Section 2. First, we observe that the set Css can
be thought of as an analog of the collection of elements (a(γ))γ∈Γ\{0} from
Section 2.1. Then we give the following definition of another data and axioms
which is equivalent to the one given above and can be thought of as an analog
of the collection of the group elements AV .

Definition 10 A constructible stability structure on (C, cl) is given by the
following data:

• an additive map Z : Γ→ C,
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• for any bounded connected set I ⊂ R an ind-constructible subset P(I) ⊂
Ob(C)(k) which contains which every object all isomorphic objects.

These data are required to satisfy the following axioms12:

• the zero object of the category C(k) belongs to all P(I),

• ∪n∈Z>0P([−n, n]) = Ob(C)(k),

• if I1 < I2 in the sense that every element of I1 is strictly less than
any element of I2 then for any E1 ∈ P(I1) and E2 ∈ P(I2) one has
Ext≤0(E2, E1) = 0,

• P(I + 1) = P(I)[1] where [1] is the shift functor in C(k),

• (Extension Property) If I = I1 ⊔ I2 and I1 < I2 in the above sense then
the ind-constructible set P(I) is isomorphic to the ind-constructible sub-
set of such objects E ∈ Ob(C)(k) which are extensions E2 → E → E1

with Em ∈ P(Im), m = 1, 2,

• if I is an interval of the length strictly less than one, E ∈ P(I), E 6= 0,
then Z(cl(E)) belongs to the strict sector

VI = {z = reπiϕ ∈ C∗|r > 0, ϕ ∈ I} ,

• there is a non-degenerate quadratic form Q on ΓR such that Q|KerZ < 0,
and for any interval I of the length strictly less than 1 the set

{cl(E) ∈ Γ|E ∈ P(I)} ⊂ Γ

belongs to the convex cone C(VI , Z,Q) defined in Section 2.2,

• let I be an interval of the length strictly less than 1, and γ ∈ Γ. Then
the set {E ∈ P(I)| cl(E) = γ} is constructible.

The equivalence of Definitions 9,10 can be proved similarly to the proof
of Theorem 2.

With this equivalent description of a constructible stability condition we
observe that the collection of sets P(I) considered for all intervals I with

12One should read expressions Ob(C),P(I) etc. in this list of axioms as sets of k-points.
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the length less than 1 are analogous to the collection of elements AV where
V = VI (see Section 2.2) and the Extension Property is analogous to the
Factorization Property.

One has the following result.

Proposition 8 For any constructible stability structure on C and any field
extension k ⊂ k′ the category C(k′) carries a locally finite stability structure
in the sense of [9] with the central charge given by Z ◦ clk′ and the collection
of additive subcategories P(I)(k′), where I runs through the set of bounded
connected subsets of R as above.

Proof. The proof is straightforward. Local finiteness in the sense of [9]
follows from our (stronger) assumption on the quadratic form Q. �

Let us denote by Stab(C, cl) the set of constructible stability structures on
C with a fixed class map cl. Our goal is to introduce a topology on Stab(C, cl).

Let ∆ ⊂ C be a triangle with one vertex at the origin. We choose a branch
of the function z 7→ Log z for z ∈ ∆. We denote the corresponding argument
function by Arg(z). We denote by C∆,Log an A∞-subcategory of C generated
by the zero object 0, semistable objects E with Z(E) ∈ ∆,Arg(E) ∈ Arg(∆)
as well as extensions J of such objects satisfying the condition Z(J) ∈ ∆.
We allow the case ∆ = V where V is a sector, in which case we will use
the notation CV,Log. It is easy to see that C∆,Log is an ind-constructible cat-
egory. Notice that in the language of ind-constructible sets P(I) we have
Ob(CVI ,Log) = P(I) for some choice of the branch Log. The condition of
genericity of the sector VI corresponding to a closed interval I = [a, b] of
the length less than 1 corresponds to the following genericity condition of
the set P(I): both P({a}) and P({b}) are zero categories (equivalently
P([a, b]) = P((a, b))).

Let us fix a non-degenerate quadratic form Q on ΓR such that Q|KerZ < 0
and Q(cl(E)) > 0 for any E ∈ Css. We introduce the topology on Stab(C, cl)
in the following way. Let us consider a family σx = (Zx, Cssx , . . . ), x ∈ X of
stability structures in a neighborhood of x0 ∈ X. Then for every point x,
a generic closed interval I = [a, b] of the length less than 1 we have the full
category P(I)x ⊂ Ob(C). For a given γ ∈ Γ \ {0} we denote by P(I)x,γ the
constructible subset of objects E ∈ P(I)x such that cl(E) = γ.

We say that a family σx = (Zx, Cssx , . . . ), x ∈ X of stability structures
parametrized by a topological space X is continuous at a given stability struc-
ture σx0 = (Z0, Css0 , . . . ) if:
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a) The map x→ Zx is continuous at x = x0.
b) There exists a neighborhood U of x0 such that for any E ∈ Cssx , x ∈ U

we have Q(cl(E)) > 0.
c) For any generic closed interval I of the length strictly less than 1 the

constructible set P(I)x,γ is locally constant near x0 (cf. Definition 3c)).
In this way we obtain a Hausdorff topology on Stab(C, cl). We can define

a parallel transport along a path σt in the space Stab(C, cl) similarly to the
case of stability structures in graded Lie algebras discussed in Section 2. Each
time when we cross the wall of first kind we use the above property c) in order
to “recalculate” the set of semistable objects. In order to do this we use the
following property: E ∈ Ob(C∆,Log) is semistable iff there is no extension
E2 → E → E1 where Ei, i = 1, 2 are non-zero objects of C∆,Log such that
Arg(E2) > Arg(E1). These considerations also ensure that the Theorem 1
from Introduction holds (i.e. the natural projection of the space of stability
conditions to the space of central charges is a local homeomorphism).

4 Motivic functions and motivic Milnor fiber

4.1 Recollection on motivic functions

Recall (see [14]) that for any constructible set X over k one can define an
abelian group Mot(X) of motivic functions as the group generated by sym-
bols [π : S → X] := [S → X] where π is a morphism of constructible sets,
subject to the relations

[(S1 ⊔ S2)→ X] = [S1 → X] + [S2 → X] .

For any constructible morphism f : X → Y we have two homomorphisms of
groups:

1) f! : Mot(X)→Mot(Y ), such that [π : S → X] 7→ [f ◦ π : S → X];
2) f ∗ : Mot(Y )→Mot(X), such that [S ′ → Y ] 7→ [S ′ ×Y X → X].
Moreover, Mot(X) is a commutative ring via the fiber product operation.

We denote by L ∈ Mot(Spec(k)) the element [A1
k] := [A1

k → Spec(k)]. It is
customary to add its formal inverse L−1 to the ring Mot(Spec(k)) (or more
generally to the ring Mot(X) which is a Mot(Spec(k))-algebra).

There are several “realizations” of the theory of motivic functions which
we are going to recall below.
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(i) There is a homomorphism of rings

χ : Mot(X)→ Constr(X,Z) ,

where Constr(X,Z) is the ring of integer-valued constructible functions on
X endowed with the pointwise multiplication. More precisely, the element
[π : Y → X] is mapped into χ(π), where χ(π)(x) = χ(π−1(x)), which is the
Euler characteristic of the fiber π−1(x).

(ii) Let now X be a scheme of finite type over a field k, and l 6= char k

be a prime number. There is a homomorphism of rings

Mot(X)→ K0(D
b
constr(X,Ql)) ,

where Db
constr(X,Ql) is the bounded derived category of étale l-adic sheaves

on X with constructible cohomology, such that

[π : S → X] 7→ π!(Ql) ,

which is the direct image of the constant sheaf Ql. Notice that Db
constr(X,Ql)

is a tensor category, hence Grothendieck group K0 is naturally a ring. The
homomorphisms f! and f ∗ discussed above correspond to the functors f!

(direct image with compact support) and f ∗ (pullback), which we will denote
by the same symbols. We will also use the notation

∫
X
φ := f! (φ) for the

canonical map f : X → Spec(k).
(iii) In the special case X = Spec(k) the above homomorphism becomes

a map

[S] 7→
∑

i

(−1)i[H i
c(S ×Spec(k) Spec(k),Ql)] ∈ K0(Gal(k/k)−modQl

) ,

where Gal(k/k)−modQl
is the tensor category of finite-dimensional contin-

uous l-adic representations of the Galois group Gal(k/k), and we take the
étale cohomology of S with compact support.

(iv) If k = Fq is a finite field then for any n > 1 we have a homomorphism

Mot(X)→ ZX(Fqn )

given by
[π : Y → X] 7→ (x 7→ #{y ∈ X(Fqn) | π(y) = x}) .
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Operations f !, f∗ correspond to pullbacks and pushforwards of functions on
finite sets.

(v) If k ⊂ C then the category of l-adic constructible sheaves on a scheme
of finite type X can be replaced in the above considerations by the Saito’s
category of mixed Hodge modules (see [61]).

(vi) In the case X = Spec(k) one has two additional homomorphisms:
a) Serre polynomial

Mot(Spec(k))→ Z[q1/2]

such that
[Y ] 7→

∑

i

(−1)i
∑

w∈Z>0

dimH i,w
c (Y )qw/2 ,

where H i,w
c (Y ) is the weight w component in the i-th Weil cohomology group

with compact support.
b) If char k = 0 then we have the Hodge polynomial

Mot(Spec(k))→ Z[z1, z2]

such that

[Y ] 7→
∑

i>0

(−1)i
∑

p, q>0

dim GrpF (GrWp+qH
i
DR,c(Y ))zp1z

q
2 ,

where GrW• and Gr•F denote the graded components with respect to the weight
and Hodge filtrations, and H i

DR,c denotes the de Rham cohomology with
compact support.

Clearly the Hodge polynomial determines the Serre polynomial via the
homomorphism Z[z1, z2]→ Z[q1/2] such that zi 7→ q1/2, i = 1, 2.

4.2 Motivic functions in the equivariant setting

Here we give a short exposition of the generalization of the theory of motivic
functions in the equivariant setting (essentially due to Joyce [35], here we use
slightly different terms).

Let X be a constructible set over a field k and G be an affine algebraic
group acting on X, in the sense that G(k) acts on X(k) and there exists a G-
variety S over k with a constructible equivariant identification X(k) ≃ S(k).

We define the group MotG(X) of G-equivariant motivic functions as
abelian group generated by G-equivariant constructible maps [Y → X] mod-
ulo the relations
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• [(Y1 ⊔ Y2)→ X] = [Y1 → X] + [Y2 → X],

• [Y2 → X] = [(Y1×Ad
k)→ X] if Y2 → Y1 is aG-equivariant constructible

vector bundle of rank d.

This group form a commutative ring via the fiber product, and a morphism
of constructible sets with group actions induces a pullback homomorphism
of corresponding rings. There is no natural operation of a pushforward for
equivariant motivic functions, and for that one has to enlarge ring of func-
tions.

Consider the following 2-category of constructible stacks. First, its ob-
jects are pairs (X,G) as above13, and the objects of the category of 1-
morphisms Hom((X1, G1), (X2, G2)) are pairs (Z, f) where Z is a G1 × G2-
constructible set such that {e} ×G2 acts freely on Z in such a way that we
have the induced G1-equivariant isomorphism Z/G2 ≃ X1, and f : Z → X2

is a G1 × G2-equivariant map (G1 acts trivially on X2). An element of
Hom((X1, G1), (X2, G2)) defines a map of sets X1(k)/G1(k)→ X2(k)/G2(k).
Furthermore, elements of Hom((X1, G1), (X2, G2)) form naturally objects of
a groupoid, so we obtain a 2-category SCON k of constructible stacks over k.
The 2-category of constructible stacks carries a direct sum operation induced
by the disjoint union of stacks

(X1, G1) ⊔ (X2, G2) = ((X1 ×G2 ⊔X2 ×G1), G1 ×G2) ,

as well as the product induced by the Cartesian product

(X1, G1)× (X2, G2) = (X1 ×X2, G1 ×G2) .

The abelian group of stack motivic functionMotst((X,G)) is generated by
the group of isomorphism classes of 1-morphisms of stacks [(Y,H)→ (X,G)]
with the fixed target (X,G), subject to the relations

• [((Y1, G1) ⊔ (Y2, G2)) → (X,G)] = [(Y1, G1) → (X,G)] + [(Y2, G2) →
(X,G)]

• [(Y2, G1) → (X,G)] = [(Y1 × Ad
k, G1) → (X,G)] if Y2 → Y1 is a G1-

equivariant constructible vector bundle of rank d.

13Strictly speaking,we should denote such stacks as triples (X, G, α) where α is the
action of G on X .
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The ring MotG(X) maps to Motst((X,G)). Notice that every isomorphism
class [(Y,H)→ (X,G)] corresponds to an ordinary morphism of constructible
sets acted by algebraic groups. Indeed, in the notation of the definition of
1-morphism of stacks with (X1, G1) := (Y,H) and (X2, G2) := (X,G), we
can replace the source (Y,H) by an equivalent stack (Z,G1 × G2) and get
an ordinary morphism (Z,G1 × G2) → (X,G) of constructible sets acted
by algebraic groups. One can define the pullback, the pushforward and the
product of elements of Motst((X,G)).

Finally, for a constructible stack S = (X,G) we define its class in the
ring K0(V ark)[[L]−1, ([GL(n)]−1)n>1] as

[S] =
[(X ×GL(n))/G]

[GL(n)]
,

where we have chosen an embedding G → GL(n) for some n > 1, and
(X ×GL(n))/G is the ordinary quotient by the diagonal free action (thus in
the RHS we have the quotient of motives of ordinary varieties). The result
does not depend on the choice of embedding (see [3], Lemma 2.3). Then
we define the integral

∫
S : Motst(S) → K0(V ark)[[L]−1, ([GL(n)]−1)n>1] as∫

S
[S ′ → S] = [S ′].
If k is finite, one can associate with every constructible stack S = (X,G)

a finite set S(k), the set of orbits of GL(n,k) acting on ((X×GL(n))/G)(k).
There is a homomorphism of the algebra of stack motivic functions to the
algebra of Q-valued functions on S(k). The identity function

1(X,G) := [(X,G)→ (X,G)]

represented by the identity map, when interpreted as a measure (for push-
forwards) maps to the “stack counting measure” on S(k) which is equal to
#(GL(n,k))−1 times the direct image of the ordinary counting measure14

on ((X × GL(n))/G)(k). Its density with respect to the ordinary counting
measure on S(k) is given by the inverse to the order of the stabilizer.

Our construction in Section 3.2 can be rephrased as a construction of an
ind-constructible stack of objects. Hence we can speak about stack motivic
functions on an ind-constructible category.

14For every finite set S the counting measure on S has weight 1 for each element s ∈ S.
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4.3 Motivic Milnor fiber

Let M be a complex manifold, x0 ∈ M . Recall, that for a germ f of an
analytic function at x0 such that f(x0) = 0 one can define its Milnor fiber
MFx0(f), which is a locally trivial C∞-bundle over S1 of manifolds with the
boundary (defined only up to a diffeomorphism):

{z ∈M | dist(z, x0) ≤ ε1, |f(z)| = ε2} → S1 = R/2πZ ,

where z 7→ Arg f(z). Here dist is any smooth metric on M near x0, and
there exists a constant C = C(f, dist) and a positive integer N = N(f) such
that for 0 < ε1 ≤ C and 0 < ε2 < εN1 the C∞ type of the bundle is the same
for all ε1, ε2, dist.

In particular, taking the cohomology of the fibers we obtain a well-defined
local system on S1.

There are several algebro-geometric versions of this construction (theories
of nearby cycles). They produce analogs of local systems on S1, for example
l-adic representations of the group Gal(k((t))sep/k((t))) where l 6= char k.

There is a convenient model of the Milnor fiber in non-archimedean ge-
ometry. In order to describe it we note that the field K = k((t)) is a non-
archimedean field endowed with the (standard) valuation, and with the norm
given by |a| = cval(a) for a given constant c ∈ (0, 1). Let

f ∈ k[[x1, . . . , xn]], f(0) = 0

be a formal series considered as an element of K[[x1, . . . , xn]]. Clearly it is
convergent in the non-archimedean sense in the domain U ⊂ (An

k)
an defined

by inequalities |xi| < 1, 1 ≤ i ≤ n. The non-archimedean analog of the
Milnor fiber is given (at the level of points) by the fibration

{x = (x1, . . . , xn) ∈ U |max
i
|xi| ≤ ε1, 0 < |f(x)| ≤ ε2} →

→ {w ∈ (A1
k)
an| 0 < |w| ≤ ε2} ,

where ε1, ε2 are positive numbers as above (cf. [54]).
Ideally, we would like to have the following picture. Let V → X be a

vector bundle over a scheme of finite type X/k, and

f ∈
∏

n>1

Γ(X,Symn(V ∗))
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be a function on the formal completion of zero section of tot(V ) vanishing
on X. We would like to associate with such data a motivic Milnor fiber

MF (f) ∈Mot(X ×Gm) .

Here the factor Gm replaces the circle S1 in the analytic picture. Moreover,
the motivic function MF (f) should be “unramified” in Gm-direction (i.e. it
should correspond to a Gm-invariant stratification of X ×Gm). In the case
k = C , assuming that f is convergent near zero section, the value MFx(f)
at a point (x, ǫ) ∈ X(C)×C∗ should be thought of as a representative of the
alternating sum ∑

i

(−1)i[H i(f−1(ε) ∩B0,x)]

where ε 6= 0 is a sufficiently small complex number and B0,x is a small open
ball around 0 in the fiber Vx. Notice that here we use the usual cohomology
and not the one with compact support.

Also, we can consider the case when X is a constructible set and V → X
is a constructible vector bundle. We say that f ∈ ∏n>1 Γ(X,Symn(V ∗)) is
constructible if (X, V, f) is constructibly isomorphic to an algebraic family
of formal functions over a scheme of finite type as above.

This goal was achieved by Denef and Loeser (see [14]) in the case char k =
0 by using motivic integration and resolution of singularities. In this case the
group Mot(X ×Gm) is replaced by Motµ(X), where µ = lim←−n µn and µ acts
trivially on X. Here µn is the group of n-th roots of 1 in k. We will always
assume that µ-action is “good” in the sense that µ acts via a finite quotient
µn and every its orbit is contained in an affine open subscheme. Notice that
there is a homomorphism of groups

Motµ(X)→Mot(X×Gm), [π : Y → X] 7→ [π1 : (Y ×Gm)/µn → X×Gm] ,

where µ acts on Y via its quotient µn and π1(y, t) = π(y)tn.
As we work with constructible sets, it is sufficient to define the motivic

Milnor fiber not for a family, but for an individual formal germ of a function.
Let M be a smooth formal scheme over k with closed point x0 and f be a
function on M vanishing at x0 (e.g. M could be the formal completion at 0
of a fiber of vector bundle V → X in the above notation). We assume that
f is not identically equal to zero near x0, otherwise the Milnor fiber would
be empty. Let us choose a simple normal crossing resolution of singularities
π : M ′ → M of the hypersurface in M given by the equation f = 0 with
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exceptional divisors Dj , j ∈ J . The explicit formula for the motivic Milnor
fiber from [14] looks such as follows15.

MFx0(f) =
∑

I⊂J,I 6=∅

(1− L)#I−1[D̃I
0 ∩ π−1(x0)] ∈Motµ(Spec(k)) ,

where DI = ∩j∈IDj, D
0
I is the complement in DI to the union of all other

exceptional divisors, and D̃I
0 → D0

I is a certain Galois cover with the Galois
group µmI

, where mI is the g.c.d. of the multiplicities of all divisors Di, i ∈ I
(see [14] for the details). Informally speaking, the fiber of the cover D̃I

0 → D0
I

is the set of connected components of a non-zero level set of function f ◦ π
near a point of D0

I .
The space Motµ(X) carries an associative product introduced by Looi-

jenga (see [45]) which is different from the one defined above. It is essential
for the motivic Thom-Sebastiani theorem which will be discussed later. Let
us sketch a construction of this product.

First, let us introduce the commutative ring Mot(X × A1
k)conv which

coincides as an abelian group with Mot(X×A1
k) but carries the “convolution

product”

[f1 : S1 → X ×A1
k] ◦ [f2 : S2 → X ×A1

k] = [f1 ⊕ f2 : S1 ×X S2 → X ×A1
k],

where (f1⊕f2)(s1, s2) = (prX(f1(s1)), prA1
k

(f1(s1))+prA1
k

(f2(s2))). The ring

Mot(X ×A1
k)conv contains the ideal

I := pr∗X(Mot(X)) .

By definition we have an epimorphism of abelian groups Mot(X)→ I. Let

i : X → X ×A1
k, x 7→ (x, 0), j : X × (A1

k \ {0})→ X ×A1
k

be natural embeddings. They give rise to an isomorphism of abelian groups

i∗ ⊕ j∗ : Mot(X ×A1
k) ≃Mot(X)⊕Mot(X × (A1

k \ {0})) .
Since i∗ ◦ pr∗X = idMot(X) we see that the restriction of pr∗X to I gives an
isomorphism of abelian groups

I ≃Mot(X) ,

15In [14] it was assumed that f is a regular function on a smooth scheme, but the formula
and all the arguments work in the formal setting as well.
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and j∗ induces the isomorphism of groups

Mot(X ×A1
k)/I ≃Mot(X × (A1

k \ {0})) .

Using the latter isomorphism we transfer the convolution product and endow
Mot(X × (A1

k \ {0})) with an associative product which we will call exotic.
Recall that we have a homomorphism of groups

Motµ(X)→Mot(X ×Gm) = Mot(X × (A1
k \ {0})) .

One can check that the image of Motµ(X) is closed under the exotic product.
Intuitively, the image consists of isotrivial families of varieties over X×(A1

k \
{0}) equipped with a flat connection which has finite (i.e. belonging to
some µn) monodromy. The complicated formula from [45] coincides with the
induced product on Motµ(X). In what follows we will use the notation

Mµ(X) := (Motµ(X), exotic product) .

Let V → X, V ′ → Y be two constructible vector bundles endowed with
constructible families f, g of formal power series. We denote by f ⊕ g the
sum of pullbacks of f and g to the constructible vector bundle

pr∗XV ⊕ pr∗Y V ′ → X × Y .

Then we have the following motivic version of Thom-Sebastiani theorem.

Theorem 6 ([15]) One has

(1−MF (f ⊕ g)) = pr∗X(1−MF (f)) · pr∗Y (1−MF (g)) ∈Mµ(X × Y ) .

One can make similar constructions in the equivariant setting. Let X/k
be a constructible set endowed with the good action of an affine algebraic
group G. We endow X also with the trivial µ-action. Then, similarly to the
above, we can equip MotG×µ(X) with the exotic product (by considering G-
equivariant families over X in the previous considerations). We will denote
the resulting ring byMG,µ(X). Using the canonical resolution of singularities
(see e.g. [5]) one can define the equivariant motivic Milnor fiber in the case
of equivariant families of functions, and state the corresponding version of
Thom-Sebastiani theorem.

In the case of arbitrary k there is an l-adic version of the above results.
More precisely, the theory of Milnor fiber is replaced by the theory of nearby
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cycles (see [64]), with the convolution defined by Laumon [43]. The Thom-
Sebastiani theorem was proved in this case by Pierre Deligne and probably
by Lei Fu (both unpublished).

There is an analog of the Hodge polynomial in the story (see [14], 3.1.3).
Let us assume that k = C for simplicity. Then we have a homomorphism of
rings

Mµ(Spec(k))→
{ ∑

α,β∈Q,α+β∈Z

cα,βz
α
1 z

β
2 | cα,β ∈ Z

}
.

Namely, for a smooth projective µn-scheme Y we set

[Y ] 7→
∑

p,q>0,p,q∈Z

(−1)p+q dimHp,q,0(Y )zp1z
q
2+

+
∑

p,q>0,p,q∈Z

∑

1≤i≤n−1

(−1)p+q dimHp,q,i(Y )z
p+i/n
1 z

q+1−i/n
2 ,

where Hp,q,i(Y ) is the subspace of the cohomology Hp,q(Y ), where an element
ξ ∈ µn acts by multiplication by ξi. The appearance of rational exponents
was first time observed in the Hodge spectrum of a complex isolated singu-
larity. Taking z1 = z2 = q1/2 we obtain the corresponding Serre polynomial.

4.4 An integral identity

In this section we are going to discuss the identity which will be crucial in
the proof of the main theorem of Section 6.

Let k be a field of characteristic zero, and V1, V2, V3 be finite-dimensional
k-vector spaces.

Conjecture 4 Let W be a formal series on the product V1 × V2 × V3 of
three vector spaces, depending in a constructible way on finitely many extra
parameters, such that W (0, 0, 0) = 0 and W has degree zero with respect to the
diagonal action of the multiplicative group Gm with the weights (1,−1, 0). We

denote by Ŵ the Gm-equivariant extension of W to the formal neighborhood
V̂1 of V1 × {0} × {0} ⊂ V1 × V2 × V3. Then we have the following formula
(where we denote the direct image by the integral):

∫

v1∈V1

(1−MF(v1,0,0)(Ŵ )) = LdimV1(1−MF(0,0,0)(W|(0,0,V3))) ,
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where in the RHS we consider the motivic Milnor fiber at (0, 0, 0) of the
restriction of W to the subspace (0, 0, V3).

Using the obvious equality
∫
V1

1 = LdimV1 we can rewrite the identity as
∫

v1∈V1

MF(v1 ,0,0)(Ŵ ) = LdimV1 ·MF(0,0,0)(W|(0,0,V3)) .

Let us discuss the l-adic version of the Conjecture. For simplicity we
assume that the vector spaces do not depend on extra parameters. Then we
have a morphism of formal schemes π : V̂1 → Spf(k[[w]]) such that w 7→ Ŵ

as well as an embedding iV1 : V1 → Ŵ−1(0). For any morphism π : X →
Spf(k[[w]]) of formal schemes to we denote by Rψπ the functor of nearby
cycles. It acts from the bounded derived category of l-adic constructible
sheaves on X to the bounded derived category of l-adic constructible sheaves
on X0 = π−1(0) endowed with the action of the inertia group (hence they can
be informally thought of as l-adic constructible sheaves onX0×Spec(k)k((w))).

Proposition 9 The complex RΓc(i
∗
V1

Rψπ(Ql)) is isomorphic (as a complex

of Gal(k((w))/k((w)))-modules) to the complex RΓc(V1,Ql) ⊗ j∗Rψ
bπ(Ql),

where j : Spec(k) → V3, j(0) = 0 is the natural embedding and π̂ is the
morphism of the formal completion of 0 ∈ {0} × {0} × V3 to Spf(k[[w]])
given by the restriction W| {0}×{0}×V3

.

Proof. We will give a sketch of the proof based on the non-archimedean
model for the Milnor fiber described in Section 4.3.

Let us consider the k((t))-analytic space (in the sense of Berkovich) as-
sociated with the scheme (V1 × V2 × V3)×Spec(k) Spec(k((t))). Let us choose
sufficiently small positive numbers ε1, ε2, ε3, ε4 (we will specify them later)
and define an analytic subspace Y = Yε1,ε2,ε3,ε4 by the following inequalities:

|v1| ≤ 1 + ε1, |v2|, |v3| ≤ ε2, ε4 ≤ |W (v1, v2, v3)| ≤ ε3 .

Notice that the seriesW (v1, v2, v3) is convergent on Y because of homogeneity
property. We introduce another analytic space Y ′ = Y ′ε1,ε2,ε3,ε4 ⊂ Yε1,ε2,ε3,ε4
by changing the inequality |v1| ≤ 1 + ε1 to the equality |v1| = 1 + ε1 (all
other inequalities remain unchanged). There is a natural projection prY→A
(resp. its restriction prY ′→A) of Y (resp. of Y ′) to the annulus A = {w| ε4 ≤
|w| ≤ ε3}. Let us now consider the complex

Cone((prY→A)∗(Ql)→ (prY ′→A)∗(Ql))[−1] .
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This is a lisse sheaf on the annulus, i.e. a continuous l-adic representation of
the fundamental group of the k((t))-analytic space A. There is a tautological
embedding k((w)) → Oan(A). It induces the homomorphism of profinite
groups π1(A)→ Gal(k((w))/k((w))). Then one can show that the complex

Cone((prY→A)∗(Ql)→ (prY ′→A)∗(Ql))[−1] ≃

≃ (prY→A)∗(Cone(Ql → (iY ′ →֒Y )∗Ql))

on A is quasi-isomorphic to the pull-back of the complex RΓc(i
∗
V1

Rψπ(Ql))

of Gal(k((w))/k((w)))-modules.
We decompose the space Y into a disjoint union Y0 ⊔ Y1 where for Y0

we have |v1||v2| = 0 while for Y1 we have |v1||v2| 6= 0. Similarly, we have a
decomposition Y ′ = Y ′0 ⊔ Y ′1 . We claim that the complex

(prY0→A)∗(Cone(Ql → (iY ′
0 →֒Y0

)∗Ql))

is quasi-isomorphic to the pull-back of the complex RΓc(V1,Ql)⊗j∗Rψbπ(Ql)
of Gal(k((w))/k((w)))-modules. Notice that W|Y0

depends on v3 only. Fur-
thermore, Y0 and Y ′0 can be decomposed as the products

Y0 = Y3 × Z0, Y
′
0 = Y3 × Z ′0 ,

where

Z0 := {(v1, v2) ∈ V an
1 × V an

2 | v1 = 0 or v2 = 0, |v1| ≤ 1 + ε1, |v2| ≤ ε2} ,
Z ′0 := {(v1, v2) ∈ V an

1 × V an
2 | v2 = 0, |v1| = 1 + ε1} ,

Y3 := {v3 ∈ V an
3 | |v3| ≤ ε2, ε4 ≤ |W (0, 0, v3)| ≤ ε3} .

Here we denote by V an
i , i = 1, 2, 3 the k((t))-analytic space associated with

the scheme Vi ×Spec(k) Spec(k((t)), i = 1, 2, 3. Notice that Z0 is the bouquet
of two (non-archimedean) balls. It follows that the inclusion of the ball

Z ′′0 = {(v1, 0) | |v1| ≤ 1 + ε1}

into Z0 induces isomorphisms of the Berkovich étale cohomology groups of
the l-adic sheaves on the analytic spaces. Therefore the cohomology groups of
the pair (Z0, Z

′
0) coincide with the cohomology groups of the pair (Z ′′0 , Z

′
0).

The latter are equal to RΓc(V
an
1 ,Ql) (which corresponds to the image of

LdimV1 in K0(Gal(k((t))/k((t)))−mod)).
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We have an obvious morphism of complexes of sheaves on Y :

f : Cone(Ql → (iY ′ →֒Y )∗Ql)→ Cone((iY0 →֒Y )∗Ql → (iY ′
0 →֒Y

)∗Ql) .

In order to prove the Proposition we have to prove that the (prY→A)∗f is
a quasi-isomorphism, i.e. (prY→A)∗(Cone(f)) is zero. The compactness of
spaces Y, Y ′, Y0, Y

′
0 implies that

(prY→A)∗(Cone(f)) ≃ (prY1→A)!(Cone(Ql → (iY ′
1→Y1

)∗Ql)) .

The (partially defined) actions of the group Gm on Y1 and Y ′1 are free,
and the value of W does not change under the action. More precisely, one
can define easily analytic “spaces of orbits” Ỹ1 ⊃ Ỹ ′1 of Gm acting on Y1 and
Y ′1 respectively. The projections

Y1 → Ỹ1, Y
′
1 → Ỹ ′1

are proper maps, and the map W factors through them. Hence it is enough
to check that

(prY1→eY1
)∗(Cone(Ql → (iY ′

1 →֒Y1
)∗Ql)) ≃ 0 .

This follows from the fact that every orbit in Y1 is a closed annulus, its
intersection with Y ′1 is a circle, and the inclusion of a circle into an annulus
induces an isomorphism of étale cohomology groups.

This concludes the sketch of the proof. �

Remark 18 1) In the proof we did not specify the values of εi, i = 1, 2, 3, 4.
We can take ε4 = O(ε3) (e.g. take ε4 = 1

2
ε3), ε2 = o(1) and ε3 = O(εN2 ), ε1 =

O(εM3 ) for some integers N,M > 0.
2) In the proof we used the comparison of the cohomology of the sheaf

of nearby cycles with the étale cohomology of subvarieties of k((t))-analytic
spaces (see [54]).

We strongly believe that the analog of the Proposition holds at the level
of motivic rings in the case char k = 0.
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4.5 Equivalence relation on motivic functions

We start with a motivation for this section. There are many examples of pairs
of constructible sets (or even varieties) X1, X2 over a field k such that their
classes [X1] and [X2] in Mot(Spec(k)) are different (or at least not obviously
coincide), but X1 and X2 coincide in each realization described in Section
4.1 (i)-(vi) (e.g. when X1, X2 are isogeneous abelian varieties). In particular
we will be interested in the case when Xl, l = 1, 2 are affine quadrics given
by the equations

∑
1≤i≤n ai,lx

2
i = 1, such that they have equal determinants:∏

1≤i≤n ai,1 =
∏

1≤i≤n ai,2 ∈ k×.
Here we propose a modification of the notion of motivic function which

is a version of the Grothendieck’s approach to the theory of pure motives
with numerical equivalence. Let us explain it in the case of X = Spec(k),
where k is a field of characteristic zero (which we will assume throughout
this section).

We start with the symmetric monoidal Q-linear category Meff(k). Its
objects are smooth projective varieties over k and

HomMeff (k)(Y1, Y2) = Q⊗ Im(ZdimY2(Y1 × Y2)→ H2dimY2
DR (Y1 × Y2)) ,

where Zn(X) denotes as usual the space of algebraic cycles in X of codi-
mension n, and we take the image of the natural map into the algebraic de
Rham cohomology. Then HomMeff (k)(Y1, Y2) is a finite-dimensional Q-vector
space. Instead of de Rham cohomology we can use Betti cohomology (for an
embedding k →֒ C) or l-adic cohomology. Comparison theorems imply that
the image of the group of cycles in the cohomology does not depend on a
cohomology theory.

Composition of morphisms is given by the usual composition of correspon-
dences, and the tensor product is given by the Cartesian product of varieties.
We extend the categoryMeff(k) by adding formally finite sums (then it be-
comes an additive category), and finally taking the Karoubian envelope. The
K0-ring of the resulting category contains the element L = [P1

k]− [Spec(k)].
Adding formally the inverse L−1 we obtain the ring which we denote by
Motcoh(Spec(k)). It is an easy corollary of Bittner theorem (see [6]) that the
natural map Mot(Spec(k)) → Motcoh(Spec(k)) which assigns to a smooth
projective variety its class in Motcoh(Spec(k)) is a homomorphism of rings.

The above considerations can be generalized to the case of motives over
constructible sets.
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Definition 11 Let X be a constructible set over a field k, char k = 0. A
constructible family of smooth projective varieties over X is represented by a
pair consisting of a smooth projective morphism h : Y → X0 of schemes of

finite type over k and a constructible isomorphism j : X0
constr≃ X. Two such

representations

h : Y → X0, j : X0
constr≃ X, h′ : Y ′ → X ′0, j

′ : X ′0
constr≃ X

are identified if we are given constructible isomorphisms f : Y
constr≃ Y ′,

g : X0
constr≃ X ′0 such that h′ ◦ f = g ◦ h, j′ ◦ g = j, and for any point

x ∈ X(k) the induced constructible isomorphism between smooth projective
varieties (j ◦ h)−1(x) and (j′ ◦ h′)−1(x) is an isomorphism of schemes.

For a constructible family of smooth projective varieties over X and a point
x ∈ X there is a well-defined smooth projective variety Yx over the residue
field k(x) called the fiber over x. Moreover, one can define the notion of
constructible family of algebraic cycles of the fixed dimension. We say that
such a family is homologically equivalent to zero if for any x ∈ X the corre-
sponding cycles in Yx map to zero inH•DR(Yx). Also, having two constructible
families of smooth projective varieties overX one easily defines their product,
which is again a constructible family of smooth projective varieties over X.
All that allows us to generalize our constructions from the case X = Spec(k)
to the general case. In this way we obtain the ring Motcoh(X) as well as the
natural homomorphism of rings Mot(X)→ Motcoh(X).

Definition 12 We say that two elements of Mot(X) are (cohomologically)
equivalent if their images in Motcoh(X) coincide.

The set of equivalence classes (in fact the ring) will be denoted byMot(X).
It is isomorphic to the image of Mot(X) in Motcoh(X). In particular, the
above-mentioned quadrics define the same element in Mot(Spec(k)).

Let now X be a constructible set over k, endowed with an action of an
affine algebraic group G. We define an equivalence relation on MotG(X) in
the following way. First we choose an embedding G →֒ GL(N). We say that
f, g ∈ MotG(X) are equivalent if their pull-backs to Mot((X ×GL(N))/G)
have the same image in Mot(X × GL(N))/G). Using the fact that all
GL(N)-torsors over a constructible set are trivial it is easy to show that
this equivalence relation does not depend on the embedding G →֒ GL(N).

74



The ring of equivalence classes is denoted by Mot
G
(X).16 Similarly one de-

fines the ring Mot
G×µ

(X), where µ = lim←−n µn. The exotic product descends

to Mot
G×µ

(X). Hence we obtain the ringMG,µ
(X) of equivalence classes as

well as homomorphism of ringsMG,µ(X)→MG,µ
(X).

4.6 Numerical realization of motivic functions

This section is not used in further consideration, its goal is only to show

that the abstractly defined ring MG,µ
(X) can be realized as certain ring of

functions with numerical values.
Let Z be a scheme of finite type over a finite field k ≃ Fq endowed with

an action of the group µn of roots of 1 such that n < p = charFq. We choose
a prime l 6= p. Let us define Y as the quotient (Z × (A1

k \ {0}))/µn with
respect to the diagonal action of µn. Then we have a morphism

π : Y → A1
k \ {0}, (z, t) 7→ tn ∀(z, t) ∈ (Z ×A1

k \ {0})(Fq) .

Let j : A1
k \ {0} → A1

k be the natural embedding. We define the number

NZ = TrFr(F(j∗π!(Ql,Y ))|s=1) ∈ Ql ,

which is the trace of the Frobenius Fr of the fiber at s = 1 of the Fourier
transform of the l-adic sheaf j∗π!(Ql,Y ), where Ql,Y denotes the constant
sheaf Ql on Y . In fact the number NZ can be considered as an element of
the cyclotomic field Q(ηp), where ηp is a primitive p-th root of 1:

1 + ηp + · · ·+ ηp−1
p = 0 .

We have a canonical non-trivial character χ : Fq → Q(ηp)
∗ given by the

composition of the trace TrFq→Fp : Fq → Fp with the additive character

χp : Fp → Q(ηp)
∗, mmod p 7→ ηmp .

Then
NZ =

∑

s∈(A1
k
\{0})(Fq )

#(π−1(s)(Fq))χ(s) .

Notice that the last formula makes sense for constructible Z as well.
Let now X be a constructible set over a field k, char k = 0, endowed with

an action of an affine algebraic group G.

16In this way we have circumvented the problem of defining the category of G-equivariant
motivic sheaves.
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Definition 13 We call a model for (X,G) the following choices:

• a finitely generated subring R ⊂ k,

• a scheme X → Spec(R) of finite type,

• an affine group scheme G → Spec(R) together with an embedding G →֒
GL(N)R,

• an action of G on X ,

• a constructible identification over k of X ×Spec(R) Spec(k) with X, as
well as an isomorphism of groups G ×Spec(R) Spec(k) ≃ G over k, com-
patible with the actions.

Such a model always exists, and models form a filterted system. With a
given model for (X,G) we associate a commutative unital ring

K(X ) = lim−→
{open U⊂(X×GL(n))/G}

∏

{closed x∈U}

Q(ηchar k(x)) ,

where k(x) is the residue field of x (which is a finite field).
Suppose that we are given a model for (X,G) and let f ∈MG,µ(X). As

always we assume that the µ-action on X is good and factors through the
action of some µn.

Definition 14 A model for f compatible with the model (R,X ,G) for (X,G)
consists of the following data:

• a finite set J , numbers Nj, dj, nj ∈ Z, where j ∈ J , such that all
numbers Nj are positive and invertible in O(X ),

• G × µNj
-equivariant morphisms of constructible sets Yj → X given for

each j ∈ J , where Yj → X are G × µNj
-schemes of finite type, and we

endow X with the trivial action of the group µNj
,

These data are required to satisfy the condition that

f =
∑

j∈J

nj [Yj ×Spec(R) Spec(k)→ X] · Ldj .

76



Models for f always exist. Moreover, for any finite collection (fi)I∈I of ele-
ments of MG,µ(X) there exists a model for (X,G) with compatible models
for (fi)I∈I .

Having a model for f we can associate with it an element fnum ∈ K(X )
in the following way. Let x ∈ (X × GL(N)R)/G be a closed point. We can
apply the considerations of the beginning of this section to the fiber Zj,x over
the point x, of the map (Yj ×GL(N)R)/G → (X ×GL(N)R)/G, where Yj is
the scheme from the definition of the model for f . Then for each j we obtain
an element NZj,x

∈ Q(ηp), p = char k(x). Finally, we set

fnum(x) :=
∑

j∈J

nj q
dj
x NZj,x

,

where qx := #k(x). Hence we realize f as a function with values in numbers.

5 Orientation data on odd Calabi-Yau cate-

gories

Considerations of this section are reminiscent of those in Quantum Field
Theory when one tries to define determinants for the Gaussian integral in a
free theory.

5.1 Remarks on the motivic Milnor fiber of a quadratic

form

Although the theory of motivic Milnor fiber was defined over a field of char-
acteristic zero, an essential part of considerations below has meaning over an
arbitrary field k, char k 6= 2 if we replace the notion of motivic Milnor fiber
by its l-adic version.

Let now V be a k-vector space endowed with a non-degenerate quadratic
form Q. We define an element

I(Q) = (1−MF0(Q))L−
1
2

dimV ∈Mµ(Spec(k))[L±1/2] ,

where L1/2 is a formal symbol which satisfies the relation (L1/2)2 = L, and
Q is interpreted as a function on V . Then the motivic Thom-Sebastiani
theorem implies that

I(Q1 ⊕Q2) = I(Q1)I(Q2) .
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Also we have I(Q) = 1, if Q is a split form: Q =
∑

1≤i≤n xiyi for V = k2n.
Therefore, we have a homomorphism of groups

I : Witt(k)→ (Mµ(Spec(k))[L±1/2])× ,

where Witt(k) is the Witt group of the field k. We can think of it as a
multiplicative character. Let us denote by J2(k) := J2(Spec(k)) the quotient
of the group Z×k×/(k×)2 by the subgroup generated by the element (2,−1).
There is an obvious homomorphism Witt(k) → J2(k) given for a quadratic
form Q by

[Q] 7→ (rkQ, det(Q) mod(k×)2) .

Notice that all “motivic realizations” of I(Q) in the sense of Section 4.1
depend only on the image of [Q] in J2(k). This is similar to the classical
formula (for k = R and a positive definite form Q)

∫

V

exp(−Q(x))dx = (2π)−
1
2

dimV (det(Q))−1/2

in the sense that the answer depends on dimV and det(Q) only. In particular,
the homomorphism of rings

Mµ(Spec(k))→ K0(D
b
constr(Gm,Ql))

(see Section 4.1, (ii), (iii) and Section 4.2) induces (by combining with the
above character) a homomorphism of abelian groups

Witt(k)→ (K0(D
b
constr(Gm,Ql))[L

±1/2])× .

It is easy to see that it factors through the homomorphism Witt(k)→ J2(k).
For example the element of K0-group corresponding to the pair (n, a), n ∈
2Z + 1, a ∈ k× is represented by L−1/2[F ] where F is a local system on Gm

associated with the double cover of Gm given by y 7→ y2a, y ∈ Gm(k).

Question 1 The above considerations give rise to the following question.
Let us consider the family of quadratic forms Qa1,a2(x, y) = a1x

2
1 + a2x

2
2

where a1, a2 ∈ k×. Is it true that [Qa1,a2 ] = [Qa′1,a
′
2
] in K0(V ark) as long as

a1a2 = a′1a
′
2?

We expect that the answer to the Question is negative, and this is the
main reason for introducing the equivalence relation for the motivic functions
in Section 4.5.
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The above considerations can be generalized to arbitrary constructible
(or ind-constructible) sets. Namely, let X be a constructible set over k. We
define the group J2(X) as the quotient of the group

Constr(X,Z)×
(
Constr(X,Gm)/Constr(X,Gm)2

)

by the subgroup consisting of the elements (2f, (−1)f), f ∈ Constr(X,Z),
where we denote by Constr(X, Y ) the set of constructible maps X → Y .
To a constructible vector bundle V → X endowed with a non-degenerate
quadratic form Q = (Qx)x∈X we associate the element

I(V,Q) := (1−MF0(Q))L−
1
2

dimV ∈ (Mµ(X)[L±1/2])× .

Here we treat each Qx as a formal power series on the fiber Vx and dimV ∈
Constr(X,Z). One can show that this correspondence gives rise to a homo-
morphism of groups

I : J2(X)→ (Mµ
(X)[L±1/2])× .

This fact has a simple “numerical” counterpart: for the case k ≃ Fq, two
affine quadrics given by equations Q1(x) = 0, Q2(x) = 0 have the same
number of points if Q1, Q2 are two non-degenerate quadratic forms of equal
rank and determinant.

Let us consider a symmetric monoidal category sP ic2(X) consisting of
constructible super line bundles L→ X endowed with an isomorphism L⊗2 ≃
1X , where 1X is a trivial even line bundle on X. It is easy to see that the
group J2(X) is the group of isomorphism classes of objects of sP ic2(X). If
V → X is a constructible super vector bundle, V = V even ⊕ ΠV odd then
there is a well-defined super line bundle (called super determinant bundle)
sdet(V )→ X given by

sdet(V ) := ΠdimV even−dimV odd (∧topV even ⊗ (∧topV odd)∗
)
,

where Π is the parity change functor.
Recall canonical isomorphisms:

1. sdet(V ∗) ≃ sdet(Π(V )) ≃ (sdet(V ))∗,

2. sdet(⊕i∈IVi) ≃ ⊗i∈I sdet(Vi),

3. if V carries an odd differential d then sdet(V ) ≃ sdet(H•(V, d)),
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4. for an exact triangle of complexes (V •1 , d1)→ (V •2 , d2)→ (V •3 , d3) there
is a canonical isomorphism

sdet(V •2 ) ≃ sdet(V •1 )⊗ sdet(V •3 ) .

In case if V carries a non-degenerate quadratic form Q = (Qx)x∈X we
have a canonical isomorphism sdet(V ) ≃ (sdet(V ))∗. Therefore in this case
we have a well-defined object of sP ic2(X). Its class in the group J2(X) is
represented by the pair

(dimV, {det(Qx)}x∈X mod(Constr(X,Gm))2) .

The above considerations can be generalized to the case when X is acted
by an algebraic group G. Then one replaces the category sP ic2(X) by the
category sP ic2(X,G) of G-equivariant constructible super line bundles L
endowed with a G-equivariant isomorphism L⊗2 ≃ 1X . The group of iso-
morphism classes of sP ic2(X,G) we denote by J2(X,G). In what follows we
will often omit the word “equivariant” in the considerations involving the
category sP ic2(X,G).

Remark 19 Let us make an additional assumption that
√
−1 ∈ k. In this

case the quadratic form x2 + y2 = (x +
√
−1y)(x −

√
−1y) is split. Then

MF0(x
2 + y2) = 1−L and we can consider the element L1/2 := 1−MF0(x

2)
which enjoys the property (L1/2)2 = L. Furthermore, the group J2(X) can be
canonically identified with the product

Constr(X,Z/2Z)× Constr(X,Gm)/(Constr(X,Gm))2 .

Therefore the isomorphism classes of objects of sP ic2(X) can be identified
with pairs (constructible µ2-function, constructible µ2-torsor).

5.2 Orientation data

Let C be an ind-constructible k-linear 3-dimensional Calabi-Yau category.17

Then we have a natural ind-constructible super line bundle D over Ob(C)
with the fiber over E given by DE = sdet(Ext•(E,E)). It follows that on

17There is a notion of Z/2Z-graded odd or even Calabi-Yau category, see [42]. Some
considerations of this section can be generalized to Z/2Z-graded case.
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the ind-constructible stack of exact triangles E1 → E2 → E3 we have an
isomorphism of the pull-backed line bundles which fiberwise reads as

DE2 ⊗D−1
E1
⊗D−1

E3
≃ (sdet(Ext•(E1, E3)))

⊗2 .

Let us explain this isomorphism. The multiplicativity of superdeterminants
on exact triangles gives rise to a canonical isomorphism

sdet(Ext•(E2, E2)) ≃ sdet(Ext•(E1, E1))⊗ sdet(Ext•(E1, E3))⊗

⊗ sdet(Ext•(E3, E1))⊗ sdet(Ext•(E3, E3)) .

By the Calabi-Yau property we have

sdet(Ext•(E3, E1)) ≃ sdet(Π(Ext•(E3, E1)))
∗ ≃ sdet(Ext•(E1, E3))

which implies the desired formula. When Ob(C) = ⊔i∈IYi is a decomposition
into the union of GL(Ni)-invariant constructible sets as at the end of 3.2,
then the restriction D|Yi

is a GL(Ni)-equivariant super line bundle and the
above isomorphisms are also equivariant.

Definition 15 Orientation data on C consists of a choice of an ind-constructible
super line bundle

√
D on Ob(C) such that its restriction to each Yi, i ∈ I is

GL(Ni)-equivariant, endowed on each Xi with GL(Ni)-equivariant isomor-
phisms (

√
D)⊗2 ≃ D and such that for the natural pull-backs to the ind-

constructible stack of exact triangles E1 → E2 → E3 we are given equivariant
isomorphisms:

√
DE2 ⊗ (

√
DE1)

−1 ⊗ (
√
DE3)

−1 ≃ sdet(Ext•(E1, E3))

such that the induced equivariant isomorphism

DE2 ⊗D−1
E1
⊗D−1

E3
≃ (sdet(Ext•(E1, E3)))

⊗2

coincides with the one which we have a priori.

We define the group J2(C) :=
∏

i∈I J2(Yi, GL(Ni)). We have a canonical
equivariant super line bundle D≤1 whose fiber at E ∈ Ob(C) is

D≤1,E := sdet(τ≤1(Ext•(E,E))) ,
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where τ≤i, i ∈ Z denotes the standard truncation functor. It is easy to see
that we have an equivariant isomorphism D⊗2

≤1 ≃ D. Then on the space of
exact triangles E1 → E2 → E3 we have an equivariant isomorphism of super
line bundles fiberwise given by

(D≤1,E2 ⊗D−1
≤1,E1

⊗D−1
≤1,E3

)⊗2 ≃ (sdet(Ext•(E1, E3)))
⊗2.

Let now Fun(C3, C) be the ind-constructible category of A∞-functors from
the the category C3 considered in 3.1. Its objects can be thought of as exact
triangles

E1 → E2 → E3 = Cone(E1 → E2)

in C. There are three functors Funct(C3, C)→ C which associate to an exact
triangle E1 → E2 → E3 the objects E1, E2, E3 respectively. These functors
induce three homomorphisms

φi : J2(C)→ J2(Funct(C3, C)), i = 1, 2, 3 .

The super line bundle L with the fiber

LE1→E2→E3 = (D≤1,E2 ⊗D−1
≤1,E1

⊗D−1
≤1,E3

)⊗ (sdet(Ext•(E1, E3)))
−1

defines an element l ∈ J2(Funct(A2, C)), since L⊗2 ≃ 1Funct(C3,C). Then a
choice of orientation data on C is equivalent to a choice of h ∈ J2(C) such
that −φ1(h)+φ2(h)−φ3(h) = l. Indeed a choice of orientation data gives rise

to a super line bundle
√
D such that

√
D⊗2 ≃ D⊗2

≤1. Therefore the quotient

h =
√
D⊗D−1

≤1 defines an element in J2(C), and the condition for the tensor

squares of the super line bundles
√
DEi

, i = 1, 2, 3 on the space of exact
triangles is equivalent to the equation −φ1(h) + φ2(h)− φ3(h) = l.

Remark 20 All the above considerations admit a straightforward general-
ization to the case of Calabi-Yau category of arbitrary odd dimension d. In
the case d = 1 (mod 4) we have canonical orientation data given by

√
DE := sdet(τ≤ d−1

2
(Ext•(E,E))) .

This is due to the observation that in the explicit description of the analog
of the obstruction element l defined above in terms of a super vector bundle
endowed with a symmetric bilinear form, the super vector bundle turns out to
be purely odd, hence the bilinear form is split. It follows that the obstruction
element is trivial. In the case d = 3 considered in this paper the obstruction
does not have to vanish.
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5.3 Orientation data from a splitting of bifunctors

Let C be a triangulated ind-constructive category over a field k. We will
assume that all functors, bifunctors etc. respect this structure. In this section
we are going to discuss a special framework in which orientation data is easy
to construct.

Let F : C × Cop → Perf(Spec(k)) be a biadditive bifunctor and d be an
integer. We define the dual bifunctor of degree d as a bifunctor F∨ = F∨,d

given by
F∨(E2, E1) := F (E1, E2)

∗[−d] .
Clearly F 7→ F∨ is an involution.

Definition 16 A self-duality structure on F of degree d is an isomorphism
F → F∨ of bifunctors such that for any two objects E1, E2 the induced non-
degenerate pairing

F (E1, E2)⊗ F (E1, E2)→ k[−d]

is symmetric on the level of cohomology H•(F (E1, E2)). If F is endowed with
a self-duality structure of degree d then we call it self-dual.

For a Calabi-Yau category of dimension d the bifunctor (E1, E2) 7→
Hom•(E1, E2) is self-dual.

For any self-dual bifunctor F of odd degree d we can repeat considerations
of Section 5.2. Namely, we define an ind-constructible super line bundle DF
with the fiber DFE := sdet(F (E,E)). Then for any exact triangle E1 → E2 →
E3 we have a canonical isomorphism

√
DFE2
⊗ (
√
DFE1

)−1 ⊗ (
√
DFE3

)−1 ≃ sdet(F (E1, E3))
⊗2.

Then one can ask the same question: is there an ind-constructible super
line bundle

√
DF which is compatible with the above isomorphism in the sense

of Definition 15?
The answer is positive for any bifunctor of the form F ≃ H ⊕ H∨, with

the obvious self-duality structure. In this case we set

√
DFE := sdet(H(E,E)) .
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More generally we can use an A1-homotopy in this special case. More pre-
cisely, suppose we are given a bifunctor18 G : C × Cop → Perf(A1

k). It
can be thought of as a family Gt : C × Cop → Perf(Spec(k)) of bifunctors,
parametrized by t ∈ A1(k), namely Gt = i∗t ◦ G, where it : Spec(k) → A1

is the embedding corresponding to t. Since the category Perf(A1
k) has an

obvious duality functor (taking dual to a complex of vector bundles) then
the definition of self-duality structure extends naturally to families. Sup-
pose that we have a family of self-dual bifunctors Gt, t ∈ A1(k) such that
G0 ≃ Hom•(•, •) and G1 ≃ H ⊕ H∨ for some bifunctor H , and the iso-
morphisms preserve the self-duality structures. Then we have a canonical
orientation data on C, since any super line bundle over A1

k is trivial and all
fibers are canonically isomorphic.

6 Motivic Donaldson-Thomas invariants

6.1 Motivic Hall algebra and stability data

In this section the field k can have arbitrary characteristic.
Let C be an ind-constructible triangulated A∞-category over a field k. We

are going to describe a motivic generalization of the derived Hall algebras
from [70].

As usual, we have a constructible countable decomposition Ob(C) =
⊔i∈IYi with group GL(Ni) acting on Yi. Let us consider a Mot(Spec(k))-
module ⊕iMotst(Yi, GL(Ni)) (see section 4.2) and extend it by adding neg-
ative powers Ln, n < 0 of the motive of the affine line L. We denote the
resulting Mot(Spec(k))-module by H(C). We understand elements of H(C)
as measures (and not as functions), because in the definition of the product
we will use the pushforward maps.

We would like to makeH(C) into an associative algebra, called the motivic
Hall algebra. We need some preparations for that. First we observe that
if [πi : Zi → Ob(C)], i = 1, 2 are two elements19 of H(C) then one has a

18In fact we would like to say that G is “ind-constructible” in some sense. A sufficient,
but not necessary condition would be the existence of an ind-constructible functor G′ from
C×Cop to Perf(P1

k
) such that G is isomorphic to the composition of G′ and the restriction

functor Perf(P1
k
)→ Perf(A1

k
).

19Here we consider for simplicity the case when the groups acting on Z1, Z2 are trivial,
the generalization to the case of non-trivial groups is straightforward.
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constructible set tot((π1 × π2)
∗(EXT 1)) which is the total space of the pull-

back of the ind-constructible bundle EXT 1 over Ob(C) × Ob(C). Then the
map Cone (see Section 3.1) after the shift [1] maps the total space to Ob(C).

For any N ∈ Z we introduce the “truncated” Euler characteristic

(E,F )≤N :=
∑

i≤N

(−1)i dim Exti(E,F ) .

In the future we will use the notation (E,F )i for dim Exti(E,F ), hence
(E,F )≤N =

∑
i≤N(−1)i(E,F )i.

With the pair [πi : Yi → Xi], i = 1, 2 as above we can associate a collection
of constructible sets

Wn =
{
(y1, y2, α) | yi ∈ Yi, α ∈ Ext1(π2(y2), π1(y1)) , (π2(y2), π1(y1))≤0 = n

}
,

where n ∈ Z is arbitrary. Clearly

[tot((π1 × π2)
∗(EXT 1))→ Ob(C)] =

∑

n∈Z

[Wn → Ob(C)] .

We define the product

[Y1 → Ob(C)] · [Y2 → Ob(C)] =
∑

n∈Z

[Wn → Ob(C)]L−n ,

where the map Wn → Ob(C) is given by the formula

(y1, y2, α) 7→ Cone(α : π2(y2)[−1]→ π1(y1)) .

Proposition 10 The above formula makes H(C) into an associative algebra.

Proof. We are going to prove the result for the “delta functions”

νE = [pt→ Ob(C)], pt 7→ E ,

where E is an object of C(k). The case of equivariant families is similar. In
other words, we would like to prove that

(νE1 · νE2) · νE3 = νE1 · (νE2 · νE3) .

Replacing the category by its minimal model we may replace in all consid-
erations Hom• by Ext•. Let us also remark that an element α ∈ Ext1(E,F )

85



defines an extension Eα which we can interpret as a deformation of the ob-
ject E ⊕ F (the trivial extension). Therefore for any object G the group
Ext•(G,Eα) is equal to the cohomology of the complex (Ext•(G,E⊕F ), dα),
where dα is the operator of multiplication (up to a sign) by α.

Notice that

νE1·νE2 = L−(E2,E1)≤0 [Ext1(E2, E1)→ Ob(C)] := L−(E2,E1)≤0

∫

α∈Ext1(E2,E1)

νEα ,

where Eα is the object corresponding to the extension α, i.e.

Eα = Cone(α : E2[−1]→ E1) .

It follows that

(νE1 · νE2) · νE3 = L−(E2,E1)≤0

∫

α∈Ext1(E2,E1), β∈Ext1(E3,Eα)

L−(E3,Eα)≤0νEβ
.

We observe that

(E3, Eα)≤0 = (E3, E2 ⊕ E1)≤0 − lα = (E3, E2)≤0 + (E3, E1)≤0 − lα ,

where the “error term” lα > 0 can be computed in terms of the linear map
dα. Therefore one can write

(νE1·νE2)·νE3 = L−(E2,E1)≤0−(E3,E1)≤0−(E3,E2)≤0

∫

α∈Ext1(E2,E1),β∈Ext1(E3,Eα)

LlανEβ
.

One can write a similar expression for νE1 · (νE2 · νE3). In this case the
“error term” will be denoted by rα instead of lα.

Notice that the differential

dα : Ext0(E3, E2)⊕ Ext0(E3, E1)→ Ext1(E3, E1)⊕ Ext1(E3, E2)

satisfies the property that the only non-trivial component is the map αR :
Ext0(E3, E2) → Ext1(E3, E1). Here we denote by αR the linear operator of
multiplication by α ∈ Ext1(E2, E1) from the right. We will use the same
convention for the linear operator αR : Ext1(E3, E2)→ Ext2(E3, E1). Hence
we see that

dim Ext1(E3, Eα) = dim Ker
(
αR : Ext1(E3, E2)→ Ext2(E3, E1)

)
+

86



+ dim Coker
(
αR : Ext0(E3, E2)→ Ext1(E3, E1)

)
.

Let us now consider the constructible set

X1,2,3 = {(α, γ, δ) ∈ Ext1(E2, E1)⊕ Ext1(E3, E2)⊕ Ext1(E3, E1)|α ◦ γ = 0} .

Notice that a triple (α, γ, δ) ∈ X1,2,3 defines the deformation of the object
E1 ⊕E2 ⊕ E3 preserving the filtration

E1 ⊂ E1 ⊕ E2 ⊂ E1 ⊕ E2 ⊕E3 .

More precisely, the triple gives rise to a twisted complex, which is defined
by the corresponding to (α, γ, δ) solution to the Maurer-Cartan equation
(strictly upper-triangular matrix acting on E1 ⊕E2 ⊕E3). The latter obser-
vation means that there is an ind-constructible map X1,2,3 → Ob(C) which
assigns to a point (α, γ, δ) the corresponding twisted complex.

Let us now fix α ∈ Ext1(E2, E1) and consider the ind-constructible subset
Xα

1,2,3 ⊂ X1,2,3 which consists of the triples with fixed α. There is a natu-
ral projection (α, γ, δ) 7→ (γ, δ), which gives rise to the constructible map
Xα

1,2,3 → Ext1(E3, Eα). This is a constructible affine bundle with the fibers

isomorphic to Im(αR : Ext0(E3, E2) → Ext1(E3, E1)). Also, one can see
directly that the dimension of the latter space is

lα = (E3, E2 ⊕E1)≤0 − (E3, Eα)≤0 .

Hence we have the following identity in H(C):
∫

α∈Ext1(E2,E1), β∈Ext1(E3,Eα)

LlανEβ
= [X1,2,3 → Ob(C)] .

Therefore,

(νE1 · νE2) · νE3 = L−(E2,E1)≤0−(E3,E1)≤0−(E3,E2)≤0 · [X1,2,3 → Ob(C)] .

Similar considerations show that

νE1 · (νE2 · νE3) = L−(E2,E1)≤0−(E3,E1)≤0−(E3,E2)≤0 · [X1,2,3 → Ob(C)] .

This proves the associativity of the product in H(C). �

For a constructible stability structure on C with an ind-constructible class
map cl : K0(C) → Γ, a central charge Z : Γ → C, a strict sector V ⊂ R2
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and a branch Log of the logarithm function on V we have the category
CV := CV,Log defined in Section 3.4. Hence we have the completion

Ĥ(CV ) :=
∏

γ∈(Γ∩C(V,Z,Q))∪{0}

H(CV ∩ cl−1(γ)) .

Then we have an invertible element AHall
V ∈ Ĥ(CV ) such that

AHall
V := 1 + · · · =

∑

i∈I

1(Ob(CV )∩Yi,GL(Ni)) ,

where 1S is the identity function (see 4.2) but interpreted as a counting
measure20. In short, element AHall

V is given by the counting measure restricted
to CV . The summand 1 comes from zero object.

Proposition 11 Elements AHall
V satisfy the Factorization Property:

AHall
V = AHall

V1
· AHall

V2

for a strict sector V = V1 ⊔ V2 (decomposition in the clockwise order).

Proof. The proof follows from the following observations:
1) For any Ei ∈ Ob(CVi

(k)), i = 1, 2 one has (E2, E1)≤0 = dim Ext0(E2, E1)
because Exti(E2, E1) = 0 for i < 0.

2) The set {[E] ∈ Iso(CV (k))} is in one-to-one correspondence with
the set of isomorphisms classes of the triples (E1, E2, α) such that Ei ∈
Ob(CVi

(k)), i = 1, 2 and α ∈ Ext1(E2, E1) (the map between the sets assigns
to the triple the extension Eα).

3) The automorphism group of the triple (E1, E2, α) is the stabilizer of α
for the natural action of the group Aut(E2) × Aut(E1) on the vector space
Ext1(E2, E1).

4) There is an exact sequence of groups

1→ Ext0(E2, E1)→ Aut(Eα)→ Aut(E1, E2, α)→ 1

In order to apply these observations one uses the fact that an object
E ∈ CV (k) contains a unique subobject E1 ∈ Ob(CV1(k)) such that the
quotient object E2 belongs to CV2(k), and then the factor L−(E2,E1)≤0 cancels
the ratio between the stabilizer of α and the automorphism group of the
extension Eα. �

20The same is true if one uses the language of higher stacks because for any E ∈
Ob(C(V ))(k) one has Ext<0(E, E) = 0.
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Corollary 3 Let us endow H(C) with an automorphism η given by the shift
functor [1]. Then the collection (AHall

V ) gives rise to a symmetric stability data
on H(C) considered as a graded Lie algebra (see Definition 2 and Remark 8
in Section 2.2). Moreover we obtain a local homeomorphism Stab(C, cl) →
Stab(H(C)).

The above considerations can be illustrated in the case of finite fields.
Namely, let us assume that C is a triangulated category over a finite field
Fq. We define the Hall algebra H(C) as an associative unital algebra over
Q, which is a Q-vector space spanned by isomorphism classes [E] of objects
E ∈ Ob(C). The multiplication is given by the formula

[E] · [F ] = q−(F,E)≤0

∑

α∈Ext1(F,E)

[Eα] ,

where Eα is the extension corresponding to α ∈ Ext1(F,E).
We define a stability condition on C in the same way as in the Introduction

(or Section 3.4) without imposing any constructibility condition (since we
do not assume that our category is ind-constructible). Inside of the set
Stab(C) of stability conditions on C we consider a subset Stab0(C) consisting
of such stability conditions that the set {E ∈ Cssγ |Arg(E) = ϕ} is finite
for any γ ∈ Γ, ϕ ∈ [0, 2π). This property is analogous to the one in the
ind-constructible setting which says that Cssγ is a constructible set. Then
for any strict sector V and a choice of the branch Log we have an element
AHall
V ∈ Ĥ(CV ) given by

AHall
V = 1 + · · · =

∑

[E]∈Iso(CV )

[E]

# Aut(E)
.

Similarly to the motivic case the collection of elements (AHall
V ) satisfies the

Factorization property. Hence it defines a stability data on the space H(C)
considered as a graded Lie algebra.

The relationship of our version of Hall algebra to the Toën derived Hall
algebra from [70] is described in the following proposition.

Proposition 12 There is a homomorphism of rings H(C)→ HTo(C), where
HTo(C) is the derived Hall algebra over Fq defined by Toën in [70] (see also
[76]), such that

[π : Y → Ob(C)] 7→
∑

y∈Y (Fq)

[π(y)]# Aut(y)(Fq) q
(y,y)<0 .
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Moreover, for any strict sector V the above homomorphism admits a natural
extension to the completed Hall algebras such that the element AHall

V ∈ Ĥ(CV )

is mapped to the element of the completed Hall algebra ĤTo(CV ) given by∑
[x]∈Iso(CV )[x].

Proof. Straightforward. �

In fact, in the Toën version of the Hall algebra the factorization property

AHall
V = AHall

V1
AHall
V2

is essentially trivial. The reason is that the structure constants in ĤTo(CV ) for
the elements of the basis corresponding to objects in a heart of a t-structure
are the usual one, i.e. they count the number of 2-step filtrations of a given
object with given isomorphism classes of the associate graded factors. The
factorization property means that any object in CV has a unique subobject
in CV1 with quotient in CV2 .

Remark 21 One can try to go even further in an attempt to “categorify”
the motivic Hall algebra. Here one has to assume that objects of C form not
just an ind-constructible stack, but a higher stack of locally finite type in the
sense of Toën and Vezzosi (see [72]). The corresponding category will be the
monoidal category of motivic sheaves on Ob(C). The motivic Hall algebra
is the K0-ring of this category. In the case of the non-commutative variety
endowed with polarization one can define (for any strict sector V ) the subcat-
egory FV of “motivic sheaves with central charges in V ”. Nevertheless, the
Factorization Property could fail since the object AHall

V can be non-isomorphic
to the object AHall

V1
⊗ AHall

V2
(but their images in K0 coincide).

Finally, we explain how to rephrase the factorization property in terms
of t-structures, without the use of stability conditions. Here we understand
a t-structure α on a small triangulated category C as a pair of strictly full
subcategories (i.e. a pair of sets of equivalence classes of objects)

C−,α, C+,α ⊆ C

such that for any E− ∈ C−,α, E+ ∈ C+,α we have Ext≤0(E−, E+) = 0, and
any object E ∈ C can be represented (uniquely) as an extension

τ−,α(E)→ E → τ+,α(E), τ±,α(E) ∈ C±,α .
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Any stability condition on C defines two t-structures αl, αr such that C−,αl

(resp. C−,αr) consists of extensions of semistable objects E with Arg(E) > 0
(resp. with Arg(E) > 0). These two t-structures do not change under the
action of the group

{(
a11 0
a21 a22

) ∣∣ a11, a22 > 0

}
⊂ G̃L+(2,R)

of transformations preserving the upper half-plane. In particularly, we see
that while a connected component in the Stab(C) is a real 2n-dimensional
manifold for n := rank(Γ), the set of corresponding t-structures is at most
(n− 1)-dimensional.

Introduce an order on the set of t-structures by

α1 ≤ α2 ⇐⇒ C−,α1 ⊆ C−,α2 ⇐⇒ C+,α1 ⊇ C+,α2 .

The shift functor acts on t-structures, and α[1] ≤ α for any t-structure α.
Let now C be an ind-constructible category endowed with an ind-constructible

homomorphism cl : K0(C(k)) → Γ and α1, α2 are two ind-constructible t-
structures. We say

α1 ≤constr α2

iff

• α1 ≤ α2 ≤ α1[−1] ,

• ∀γ ∈ Γ C+,α1 ∩ C−,α2 ∩ cl−1(γ) is constructible,

• the cone generated by {γ ∈ Γ | C+,α1 ∩ C−,α2 ∩ cl−1(γ) 6= 0} is strict.

If α1 ≤constr α2 then we define an element Aα1,α2 of an appropriately com-
pleted Hall algebra as the sum of the “counting measure” over the objects
in C+,α1 ∩ C−,α2 . Obviously, elements AV (for an open, or a closed, or a
semi-open strict sector V ) are of the form Aα1,α2 for appropriate t-structures
α1, α2. The factorization property generalizes to

Aα1,α3 = Aα1,α2 · Aα2,α3

if α1 ≤constr α2, α2 ≤constr α3, α1 ≤constr α3.
Notice that in the case of stability conditions the element AV is preserved

under the action of a subgroup of G̃L+(2,R) conjugated to the group of
positive diagonal matrices. This action on Stab(C)/Aut(C) has a good chance
to be ergodic, as indicates a similar example with the moduli spaces of curves
with abelian differentials (see a review [78]).
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6.2 Motivic weights and stability data on motivic quan-

tum tori

Let C be a 3-dimensional ind-constructible Calabi-Yau category over a field
of characteristic zero (see Section 3.3). In this section we are going to de-
fine motivic Donaldson-Thomas invariants associated with a constructible
stability condition and an orientation data on C.

Step 1.
Let us define the ring

Dµ =Mµ(Spec(k))[L−1,L1/2, ([GL(n)]−1)n>1] ,

where the ringMµ(Spec(k)) was defined in 4.3, and L = [A1
k] is the motive

of the affine line. The element L1/2 is a formal symbol satisfying the equation
(L1/2)2 = L. Instead of inverting motives

[GL(n)] = (Ln − 1)(Ln − L) . . . (Ln − Ln−1)

of all general linear groups we can invert motives of all projective spaces

[Pn] =
Ln+1 − 1

L− 1
.

We also will consider the ring Dµ of equivalence classes of functions from
Dµ by the equivalence relation defined in Section 4.5. The ring Dµ will play
the role of the universal coefficient ring where motivic Donaldson-Thomas
invariants take value.

Step 2.
We define an algebra Mµ(Ob(C)) associated with C which will contain

certain canonical element called the motivic weight. First, we define

Mµ(Ob(C)) :=
∏

i

MGL(Ni),µ(Yi)[L
−1,L1/2] ,

where (Yi, GL(Ni))i∈I is a decomposition of the stack of objects of C as at
the end of 3.2. Algebra Mµ(Ob(C)) is obtained from it by passing to the
equivalence classes in the sense of Section 4.5.

For any GL(Ni)-invariant constructible set Z ⊂ Yi for some i ∈ I, we
have aMµ(Spec(k))[L−1,L1/2]-linear map

∫

Z

:Mµ(Ob(C))→ Dµ
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which is the µ-equivariant version of integral over stack (Z,GL(Ni)) (see
4.2) of the restriction to Z. Explicitly, if f|Yi

is represented by a µ×GL(Ni)-
equivariant map X → Yi then

∫

Z

f = [X ×Yi
Z]/[GL(Ni)] ∈ Dµ

where [X×Yi
Z] is interpreted a constructible set with µ-action. By additivity

we extend the integral to the case when Z is a finite union ofGL(Ni)-invariant
constructible set Zi ⊂ Yi for different i ∈ I.

Step 3.
Now we are going to define the motivic weight. Recall that for any E ∈

Ob(C)(k) we have defined the potential Wmin
E which is a formal power series

in α ∈ Ext1(E,E) which starts with cubic terms. We denote by

MF (E) := MF0(W
min
E )

the motivic Milnor fiber of Wmin
E at 0 ∈ Ext1(E,E). Then the assign-

ment E 7→ MF (E) can be interpreted as the value of some function MF ∈
Mµ(Ob(C)).

Let us choose an orientation data
√
D for C. Recall that in Section 5.2

we defined the element h ∈ J2(C) represented by the equivariant super line
bundle

√
D ⊗ D−1

≤1 with trivialized tensor square. For a representative of h

given by a pair (V,Q) we have I(h) = (1−MF0(Q))L−
1
2

rkQ. Let us choose
such a representative.

Definition 17 The motivic weight w ∈ Mµ(Ob(C)) is the function defined
on objects by the formula

w(E) = L
1
2

P

i≤1(−1)i dimExti(E,E)(1−MF (E))(1−MF0(QE))L−
1
2

rkQE .

The image w ∈Mµ(Ob(C)) does not depend on the choice of a represen-
tative of h and is equal to

w(E) = L
1
2

P

i≤1(−1)i dimExti(E,E)(1−MF (E))I(h(E)) ,

where h(E) is the value of the obstruction h at the point E.
Step 4.
Let us now fix the following data:
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• a triple (Γ, 〈•, •〉, Q) consisting of a free abelian group Γ of finite rank
endowed with a skew-symmetric bilinear form 〈•, •〉 : Γ⊗ Γ → Z, and
a quadratic form Q on ΓR = Γ⊗R;

• an ind-constructible, Gal(k/k)-equivariant homomorphism

clk : K0(C(k))→ Γ

compatible with the Euler form and the skew-symmetric bilinear form;

• a constructible stability structure σ ∈ Stab(C, cl) compatible with the
quadratic form Q in the sense that Q|KerZ < 0 and Q(clk(E)) > 0 for

E ∈ Css(k).

In the next section we are going to define a homomorphism from the
motivic Hall algebra to the associative unital algebra called motivic quantum
torus. The latter is defined in the following way.

For any commutative unital ring C which contains an invertible symbol
L1/2 we introduce a C-linear associative algebra

RΓ,C := ⊕γ∈ΓC · êγ
where the generators êγ, γ ∈ Γ satisfy the relations

êγ1 êγ2 = L
1
2
〈γ1,γ2〉êγ1+γ2 , ê0 = 1 .

We will call it the quantum torus associated with Γ and C.
For any strict sector V ⊂ R2 we define

RV,C :=
∏

γ∈Γ∩C0(V,Z,Q)

C · êγ

and call it the quantum torus associated with V . Here we introduce a nota-
tion which will be used later:

C0(V, Z,Q) := C(V, Z,Q) ∪ {0}

where the cone C(V, Z,Q) was defined in 2.2. Algebra RV,C is the natural
completion of the subalgebra RV,C ∩RΓ,C ⊂ RΓ,C .

Let us choose as C the ring Dµ. We denote RΓ := RΓ,Dµ the correspond-
ing quantum torus and call it the motivic quantum torus associated with Γ.
Similarly, we have motivic quantum tori RV associated with strict sectors V .

94



Step 5.
We define an element AmotV ∈ RV := RV,Dµ in the following way. First,

we fix a branch of the function Log z, where z ∈ V (the result will not
depend on the choice of the branch). Recall the category CV,Log ⊂ C (see
Section 3.4). It follows from our assumptions that for any γ ∈ Γ the set
CV,γ = {E ∈ Ob(CV,Log)| cl(E) = γ} is constructible.

Finally, we define the desired element

AmotV =
∑

γ

(∫

CV,γ

w

)
· êγ .

The element AmotV in fact depends only on w.
Informally, one can write

AmotV =
∑

E∈Iso(CV,Log)

w(E)

[Aut(E)]
êcl(E) = 1 + · · · ∈ RV ,

where Iso(CV,Log) denotes the set of isomorphism classes of objects of the
category CV,Log.

Theorem 7 Assuming the integral identity, the collection of elements (AmotV )
satisfies the Factorization Property: if a strict sector V is decomposed into a
disjoint union V = V1 ⊔ V2 (in the clockwise order) then

AmotV = AmotV1
AmotV2

.

Moreover we have a local homeomorphism Stab(C)→ Stab
(
RΓ,Dµ

)
.

This theorem follows immediately from the statement of Proposition 11
(see 6.1) about the elements AHall

V , and the Theorem 8 from the next section.

6.3 From motivic Hall algebra to motivic quantum

torus

Assume that C is an ind-constructible 3d Calabi-Yau category endowed with
polarization and orientation data

√
D. The Hall algebra of C is graded by

the corresponding lattice Γ: H(C) = ⊕γ∈ΓH(C)γ. Main result of this section
is the following theorem.
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Theorem 8 The map Φ : H(C)→ RΓ given by the formula

Φ(ν) = (ν, w)êγ, ν ∈ H(C)γ

is a homomorphism of Γ-graded Q-algebras. Here w is the motivic weight
and (•, •) is the pairing between motivic measures and functions.

In other words, the homomorphism H(C)→RΓ can be written as

[π : Y → Ob(C)] 7→

7→
∫

Y

(1−MF (π(y))) (1−MF0(Qπ(y))) L−
1
2

rkQπ(y) L
1
2
(π(y),π(y))≤1 êcl(π(y)) ,

where
∫
Y

is understood as the direct image functor (see Section 4.2).
The natural extension of the above homomorphism to the completion of

Ĥ(CV ) maps the element AHall
V to the element AmotV defined in Section 6.2.

Proof. For simplicity we will present the proof of the Theorem for

νE := [δE : pt→ Ob(C)] ,

where δE(pt) = E ∈ Ob(C(k)) is the “delta-function”. The general proof for
equivariant constructible families is similar. We will also assume that our
category is minimal on the diagonal.

The proof will consists of several steps.
Step 1.
We have:

νE1 · νE2 = L−(E2,E1)≤0 [π21 : Ext1(E2, E1)→ Ob(C)] ,
the map π21 is the restriction of the cone map21

tot(Ker(m1 : HOM0 →HOM1))→ Ob(C)

to the fiber over the point (E2[−1], E1). Under this map the element α ∈
Ext1(E2, E1) is mapped to the object

Eα = Cone(α : E2[−1]→ E1) .

21Recall that we pretend that such a map exists. In fact, it is defined only as a 1-
morphism of stacks.
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Let us denote by γi the class cl(Ei) ∈ Γ, i = 1, 2. Then we have:

Φ(νEi
) = L

1
2
(Ei,Ei)≤1(1−MF0(W

min
Ei

)) I(h(Ei)) êγi
, i = 1, 2 ,

where h(Ei) is the value at Ei of the element h ∈ J2(C) (i.e. the image of
the restriction map to J2(C)) given by the super line bundle

√
D⊗D−1

≤1 with
trivialized tensor square.

We have:

Φ(νE1)Φ(νE2) = L
1
2
((E1,E1)≤1+(E2,E2)≤1)×

×L
1
2
((E1,E2)≤1−(E2,E1)≤1)(1−MF0(W

min
E1
⊕Wmin

E2
))I(h(E1))I(h(E2)) êγ1+γ2 .

In order to obtain this formula we used the Calabi-Yau property, which
implies that

〈γ1, γ2〉 =
∑

j∈Z(−1)j(E1, E2)j = (E1, E2)≤1 + (E1, E2)>2 =

= (E1, E2)≤1 − (E2, E1)≤1 ,

where we employ the notation (E1, E2)>m =
∑

j>m(−1)j(E1, E2)j . Also we
used the motivic Thom-Sebastiani theorem for the Milnor fibers and the
product formula for the basis elements in the motivic quantum torus RΓ.

On the other hand, we can apply Φ to the product νE1 · νE2 and obtain:

Φ(νE1 · νE2) =

= L−(E2,E1)≤0
∫
α∈Ext1(E2,E1)

L
1
2
(Eα,Eα)≤1(1−MF0(W

min
Eα

))I(h(Eα))êγ1+γ2 .

Using the identity (E2, E1)≤0 = (E2, E1)≤1 + (E2, E1)1 (and also recall
that (E2, E1)1 = dim Ext1(E2, E1)) and observing that

(E1 ⊕ E2, E1 ⊕ E2)≤1 = (E1, E1)≤1 + (E2, E2)≤1 + (E1, E2)≤1 + (E2, E1)≤1

we arrive to the following equality which is equivalent to

Φ(νE1 · νE2) = Φ(νE1)Φ(νE2)

and hence implies the Theorem:

L(E2,E1)1(1−MF0(W
min
E1
⊕Wmin

E2
))I(h(E1))I(h(E2)) =

=

∫

α∈Ext1(E2,E1)

L
1
2
((Eα,Eα)≤1−(E1⊕E2,E1⊕E2)≤1)(1−MF0(W

min
Eα

))I(h(Eα)) .

97



Step 2.
Now we would like to express the difference

(Eα, Eα)≤1 − (E1 ⊕ E2, E1 ⊕E2)≤1

as the rank of a certain linear operator. Recall that the object Eα can be
thought of as a deformation of the object E0 := E1⊕E2. Therefore, there is
a spectral sequence which starts at Ext•(E1⊕E2, E1⊕E2) and converges to
Ext•(Eα, Eα). Using the A∞-structure one can make it very explicit. Namely,
let us denote by dα : Ext•(E1 ⊕ E2, E1 ⊕E2)→ Ext•(E1 ⊕E2, E1 ⊕ E2) the
differential of degree +1 given by the formula

dα = m2(α, •) +m2(•, α) +m3(α, •, α) .

Then the graded vector space Ext•(Eα, Eα) is isomorphic to the cohomology
of dα (cf. e.g. [42], Remark 10.1.5).

It is clear that for any cohomological complex (C•, d) of finite-dimensional
vector spaces we have the equality

∑

i≤1

(−1)i dimH i(C)−
∑

i≤1

(−1)i dimCi = rk d(1),

where d(1) : C1 → C2 is the component of d. Applying this observation to
our complex we obtain that

(Eα, Eα)≤1 − (E1 ⊕ E2, E1 ⊕ E2)≤1 = rk d(1)
α .

Step 3.
Let us introduce a k-vector space

ME1,E2 = Ext1(E1 ⊕ E2, E1 ⊕E2) =

= Ext1(E1, E1)⊕ Ext1(E2, E1)⊕ Ext1(E1, E2)⊕ Ext1(E2, E2) .

It can be interpreted as the tangent space to the moduli space of formal
deformations of the object E1 ⊕ E2. We choose coordinates (x, α, β, y) on
this space in such a way that x denotes the coordinates on Ext1(E1, E1),
α denotes the coordinates on Ext1(E2, E1), β denotes the coordinates on
Ext1(E1, E2) and y denotes the coordinates on Ext1(E2, E2). Then the point
(0, α, 0, 0) corresponds (by abuse of notation) to the isomorphism class α ∈
Ext1(E2, E1) of an exact triangle E1 → Eα → E2. Later we are going to use
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the integral identity from Section 4.4 applying it to the formal neighborhood
of the subspace consisting of the points (0, α, 0, 0). In order to do that we
will relate the potential of the object Eα with a certain formal function on
ME1,E2.

We may assume that the full subcategory C(E1, E2) consisting of the pair
of objects E1, E2 is minimal. As in the case of one object the potential
of C induces a formal power series WE1,E2 = W (x, α, β, y) on ME1,E2. It
is defined as the abelianization of a series

∑
n>3Wn/n in cyclic paths in

the quiver QE1,E2 with the vertices E1 and E2 and (Ei, Ej)1 edges between
vertices Ei and Ej for i, j ∈ {1, 2}. Since any cyclic path has the same
number of edges in the direction E1 → E2 as in the direction E2 → E1 we
conclude that the potential WE1,E2 is Gm-invariants with respect to the Gm-
action on the graded vector space ME1,E2 with the weights wt x = wt y = 0
and wtα = −wt β = 1. The potential WE1,E2 is obtained from the potential
WE1⊕E2 by a formal change of variables.

It follows from Gm-invariance of WE1,E2 that it belongs to k[α][[x, β, γ]].
Therefore it defines a function on the formal neighborhood of the affine sub-
space {(0, α, 0, 0)} ⊂ ME1,E2. In particular, for any α ∈ Ext1(E2, E1) we
obtain a formal power series WE1,E2,α onME1,E2 which is the Taylor expan-
sion of WE1,E2 at the point (0, α, 0, 0). Similarly to the Proposition 7 from
Section 3.3 the series WE1,E2,α becomes (after a formal change of coordinates)
a direct sum Wmin

Eα
⊕ QEα ⊕ NEα, where QEα is a non-degenerate quadratic

form, NEα is the zero function on a vector subspace, and Wmin
Eα

does not
contain terms of degree less than 3 in its Taylor expansion. By the motivic
Thom-Sebastiani theorem we have

(1−MF0(WE1,E2,α)) = (1−MF (Eα))(1−MF0(QEα)) .

Let us consider the quadratic form ((WE1,E2)
′′)|(0,α,0,0) on ME1,E2, where

(WE1,E2)
′′ denotes the second derivative of the potential with respect to the

affine coordinates. It follows from the above discussion that this quadratic
form is equal to the direct sum of QEα and the zero quadratic form.

It is easy to check that
(
((WE1,E2)

′′)|(0,α,0,0)
)
(v) is equal to (d

(1)
α v, v) for

any v ∈ ME1,E2. Hence QEα can be identified with the quadratic form on

Im(d
(1)
α ) given by (u, (d

(1)
α )−1u).

Step 4.
Recall (see Section 5.2) that for any exact triangle E1 → Eα → E2 we

have a super line bundle L with a canonically trivialized square:
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LE1→Eα→E2 = (D≤1,Eα ⊗D−1
≤1,E1

⊗D−1
≤1,E2

)⊗ (sdet(Ext•(E1, E2)))
−1.

For a split triangle Eα ≃ E1 ⊕E2 (i.e. α = 0) this line bundle is canonically
trivialized since

• by definition, for Eα ≃ E1 ⊕ E2 we have

D≤1,Eα ≃ D≤1,E1 ⊗D≤1,E2⊗

⊗ sdet(Ext≤1(E1, E2))⊗ sdet(Ext≤1(E2, E1)) ,

• by the Calabi-Yau property we have

sdet(Ext≤1(E2, E1)) ≃ sdet(Ext>2(E1, E2)) .

Therefore, for any exact triangle E1 → Eα → E2 we have an isomorphism

LE1→Eα→E2 ≃ D≤1,Eα ⊗D−1
≤1,E1⊕E2

.

On the other hand, considerations similar to those in Step 2 give rise to a
canonical isomorphism

D≤1,Eα ⊗D−1
≤1,E1⊕E2

≃ sdet(Im(d(1)
α )) .

One can see that the trivialization (sdet(Im(d
(1)
α )))⊗2 ≃ 1 comes exactly from

the non-degenerate quadratic form QEα. Therefore, for an arbitrary exact
triangle E1 → Eα → E2 we have an isomorphism of super lines compatible
with the trivializations of squares:

LE1→Eα→E2 ≃ sdet(Im(d(1)
α )) .

This implies that

I(QEα) = I(l(E1 → Eα → E2)) ,

where l ∈ J2(Funct(C3, C)) was defined in Section 5.2.
Step 5.
Let us apply the integral identity from Section 4.4 to the potentialWE1,E2 .

We put

V1 := Ext1(E2, E1), V2 := Ext1(E1, E2), V3 := Ext1(E1, E1)⊕ Ext1(E2, E2) .
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We have: ∫

α∈Ext1(E2,E1)

(1−MF(0,α,0,0)(WE1,E2)) =

= L(E2,E1)1(1−MF0((WE1,E2)|Ext1(E1,E1)⊕Ext1(E2,E2))) .

On the other hand the LHS of the integral identity is equal to
∫

α∈Ext1(E2,E1)

(1−MF0(QEα))(1−MF (Wmin
Eα

) =

=

∫

α∈Ext1(E2,E1)

L
1
2

rkQEαI(QEα)(1−MF (Wmin
Eα

)) .

Recall that rkQEα = rk(d
(1)
α ) = (Eα, Eα)≤1 − (E1 ⊕ E2, E1 ⊕ E2)≤1 by

Steps 2 and 3. Then the integral identity becomes the following equality:
∫

α∈Ext1(E2,E1)

L
1
2
((Eα,Eα)≤1−(E1⊕E2,E1⊕E2)≤1)I(QEα)(1−MF (Wmin

Eα
)) =

= L(E2,E1)1(1−MF0(W
min
E1
⊕Wmin

E2
)) .

Comparing this formula with the one we wanted to prove on Step 1 we
see that they coincide if

I(QEα) =
I(h(Eα))

I(h(E1))I(h(E2))
.

Now using Step 4 we observe that this cocycle condition is equivalent to the
main property of the orientation data on exact triangles. This concludes the
proof of the Theorem. �

Definition 18 Let C be an ind-constructible 3-dimensional Calabi-Yau cat-
egory endowed with polarization, σ ∈ Stab(C, cl). We call the collection of
elements (AmotV ∈ RV ) of the completed motivic quantum tori (RV ) (for all
strict sectors V ⊂ R2) the motivic Donaldson-Thomas invariant of C.

Let us consider the following unital Q-subalgebra of Q(q1/2):

Dq := Z[q1/2, q−1/2,
(
(qn − 1)−1

)
n>1

] .

There is a homomorphism of rings Dµ → Dq given by the twisted Serre
polynomial. Namely, it maps L1/2 7→ q1/2, and onMµ it is the composition
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of the Serre polynomial with the involution q1/2 7→ −q1/2. Therefore, we
have a homomorphism of algebras RΓ → RΓ,q, where RΓ,q is a Dq-algebra
generated by êγ, γ ∈ Γ, subject to the relations

êγ êµ = q
1
2
〈γ,µ〉êγ+µ , ê0 = 1 .

Similarly to the motivic case, we have the algebra RV,q associated with any
strict sector V .

The motivic DT-invariants give rise to stability data on the graded Lie
algebra associated with RΓ,q. We will denote by AV,q ∈ RV,q the element
corresponding to AmotV .

6.4 Examples

1) Assume that a 3-dimensional Calabi-Yau category C is generated by one
spherical object E defined over k. Therefore R := Ext•(E,E) ≃ H•(S3,k).
In this case we take Γ = K0(C(k)) ≃ Z · clk(E), and the skew-symmetric
form on Γ is trivial. In order to choose an orientation data, let us fix a basis
r0 = 1, r3 in the algebra R (the subscript indicates the degree). Consider R
as a bimodule over itself and denote this bimodule by M . The corresponding
to 1, r3 bimodule basis will be denoted by 1M , r3,M . Then we have a family
Mt, 0 ≤ t ≤ 1 of R-bimodule structures on M such that

1M ·t r3 = r3 ·t 1M = (1− t)r3,M .

Hence M0 = M and M1 ≃ N ⊕ N∨ in notation of Section 5.3. The latter
gives a decomposition of the bifunctor Hom•. The above family of bimodules
define a homotopy which can be used for definition of an orientation data as
in Section 5.2.

For any z ∈ C, Im z > 0 we have a stability condition σz such that
E ∈ Css, Z(E) := Z(clk(E)) = z, Arg(E) = Arg(z) ∈ (0, π). For a strict
sector V such that Arg(V ) ⊂ (0, π) we have the category CV which is either
trivial (if z /∈ V ) or consists of objects 0, E, E ⊕ E, . . . (if z ∈ V ). Then
AmotV = 1 in the first case and

AmotV =
∑

n>0

Ln2/2

[GL(n)]
ênγ1 ,

in the second case. Here γ1 := clk(E) is the generator of Γ.
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Let us comment on the answer. In this case Ext1(nE, nE) = 0, where we
set nE = E⊕n, n > 1. Therefore WnE = 0 which implies that MF (WnE) = 0.
The numerator is

Ln2/2 = L
1
2

dimExt0(nE,nE) = L
1
2

P

i≤1(−1)i dimExti(nE,nE) ,

since Ext 6=0(nE, nE) = 0.
Let us consider the “quantum dilogarithm” series

E(q1/2, x) =
∑

n>0

qn
2/2

(qn − 1) . . . (qn − qn−1)
xn ∈ Q(q1/2)[[x]] .

Since [GL(n)] = (Ln − 1) . . . (Ln − Ln−1), we conclude that

AmotV = E(L1/2, êγ1) .

In order to simplify the notation we will denote E(q1/2, x) simply by E(x).
In Section 7.1 we will discuss the quasi-classical limit, and will associate
numerical Donaldson-Thomas invariants Ω(γ) ∈ Q for any γ ∈ Γ for given
stability structure σ ∈ Stab(C, cl). In our basic example we have (for any σ)

Ω(±γ1) = 1, Ω(nγ1) = 0 for n 6= ±1 .

2) Assume that C is generated by two spherical objects E1, E2 defined over
k such that dim Exti(E2, E1) = 0 if i 6= 1 and dim Ext1(E2, E1) = 1. Notice
that the unique (up to isomorphism) non-trivial extension E12 appears in the
exact triangle E1 → E12 → E2 and it is a spherical object.

For any z1, z2 ∈ C, Im zi > 0, i = 1, 2 there is a unique stability condition
σz1,z2 such that Z(Ei) := Z(clk(Ei)) = zi, i = 1, 2, and the category CV (k) in
the case z1, z2 ∈ V,Arg(V ) ⊂ (0, π) consists of subsequent extensions of the
copies of E1 and E2.

If Arg(z1) > Arg(z2) then the only σz1,z2-semistable objects are (up to
shifts) E1, 2E1, . . . , E2, 2E2, . . . , where we use the notation nE for E⊕n, as
before. If Arg(z2) > Arg(z1) then we have three groups of σz1,z2-semistable
objects: nE1, nE2, nE12, n > 1.
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The wall-crossing formula implies the following well-known identity (see
[22]) in the algebra Dq〈〈x1, x2〉〉/(x1x2 − qx2x1):

E(x1)E(x2) = E(x2)E(x12)E(x1) ,

where x12 = q−1/2x1x2 = q1/2x2x1 and xi corresponds to êcl
k
(Ei), i = 1, 2, 12.

Namely, both sides of the above identity are equal to AVbig ,q for any sector
Vbig in the upper half-plane containing z1, z2. The LHS and the RHS of the
identity come from the decompositions

AVbig ,q = AV1,qAV2,q, AVbig ,q = AV2,qAV12,qAV1,q ,

where Vi, i = 1, 2, 12 are some narrow sectors containing zi.

Remark 22 The function E(x) satisfies also the identity

E(x2)E(x1) = E(x1 + x2)

for x1, x2 obeying the relations x1x2 = qx2x1 as above. This follows from the
formula

E(x) = expq

(
q1/2

q − 1
x

)

where expq(x) is the usual q-exponent

expq(x) :=
∑

n>0

xn

[n]q!
, [n]q! :=

n∏

j=1

[j]q, [j]q := 1 + q + · · ·+ qj−1 .

The exponential property of E(x) seems to play no role in our considerations.
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If we denote by γi ∈ Γ ≃ Z2 the classes cl(Ei), i = 1, 2, then the only
non-trivial numerical Donaldson-Thomas invariants are

Ω(±γ1) = Ω(±γ2) = 1

in the case Arg(z1) > Arg(z2), and

Ω(±γ1) = Ω(±γ2) = Ω(±(γ1 + γ2)) = 1

in the case Arg(z1) < Arg(z2).

6.5 D0-D6 BPS bound states: an example related to

the MacMahon function

Let X be a compact 3d Calabi-Yau manifold over k, such that H1(X,OX) =
0. We denote by C(0,6) the ind-constructible triangulated category generated
by the structure sheaf OX and torsion sheaves Ox, x ∈ X.22 This category
has a t-structure with the heart consisting of coherent sheaves onX which are
trivial vector bundles outside of a finite set. Then OX is the only spherical
object in C(0,6). We choose Γ = Zγ1 ⊕ Zγ2, which is the image of K0(C(0,6))
under the Chern class in the quotient of the Chow group by the numerical
equivalence, where γ1 = clk(Ox)) for any point x ∈ X, and γ2 = clk(OX).
We are going to consider a stability condition σ = (Z, (C(0,6))ss, . . . ) on C(0,6)

with the above t-structure and such that

z1 := Z(γ1) = −1, z2 = Z(γ2) = i =
√
−1 .

Then σ-semistable objects in C(0,6) will be either pure torsion sheaves sup-
ported at finitely many points or torsion-free sheaves.

This corresponds to the following picture for Ω(γ).

22This category is related to the counting of D0-D6 BPS bound states, compare with
[13], formula (6.1).
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Let us comment on the last figure.
a) The vertical line corresponds to the subcategory generated by the

spherical object OX , for which we know Ω(γ). Namely, Ω(γ2) = 1 and
Ω(nγ2) = 0, n > 2.

b) Horizontal line z2 − nz1, n > 0 corresponds to sheaves of ideals of
0-dimensional subschemes. Then:

∑

n>0

Ω(γ2 − nγ1)t
n = M(−t)χ(X),

where χ(X) is the Euler characteristic of X and

M(x) :=
∏

n>1

(1− xn)−n ∈ Z[[x]]

is the MacMahon function (see [47], [4] about this identity).
c) The torsion sheaves Ox, x ∈ X are Schur objects in C(0,6). Their moduli

space is canonically identified with X. By Behrend’s formula (see [2]) their
contribution to the virtual fundamental number of objects is

Ω(γ1) = (−1)dimXχ(X) = −χ(X) .

d) The numbers marked by “?” correspond to (possibly non-Schur) ob-
jects. Notice that there are no semistable objects with the class nγ2 −mγ1

with 0 < m < n. They correspond to the sector filled by 0’s.
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Let us now choose a path σz1(τ),z2(τ) in the space of the above stability
structures such that

z1(τ) = − exp(iτ), z2(τ) = i ,

where τ ∈ [0, π/2 + ε], i =
√
−1 and ε > 0 is sufficiently small. The heart of

the t-structure for τ > 0 consists of complexes of sheaves E such that there
exists an exact triangle E1 → E → E2[−1], where E1 is a torsion-free sheaf
and E2 is a torsion sheaf (indeed, the new t-structure is obtained from the
initial one by the standard tilting procedure). This heart coincides with the

category C(0,6)
V for any τ ∈ (0, π/2 + ε] where

V = {z ∈ C∗| 0 ≤ Arg(z) ≤ π/2 + ε} .

Object OX ∈ C(0,6)
V can not be represented as a non-trivial extension in C(0,6)

V ,
hence it is semistable for any τ ∈ [0, π/2 + ε].

Let us now consider the case τ ∈ (π/2, π/2+ ε]. Then object OX has the

minimal argument among all non-trivial objects in C(0,6)
V . Therefore, all other

indecomposable semistable objects E are strictly on the left of OX , and we
have

Ext0(E,OX) = 0 .

Taking the long exact sequence of Ext-groups to the object OX one easily
shows that in the decomposition E1 → E → E2[−1] we have E1 = 0. Hence

in this new heart C(0,6)
V the left orthogonal to OX consists of objects F [−1],

where F is a torsion sheaf. We conclude that for the stability condition with
τ ∈ (π/2, π/2 + ε] the only semistable objects have classes which belong
to Z6=0γ2 ⊔ Z6=0γ1. Therefore, all DT-invariants Ωτ (γ) for σz1(τ),z2(τ) with
τ > π/2 are completely determined by the numbers an = Ωτ (−nγ1), n > 1
(and known invariants Ωτ (mγ2) = δm,1, m > 1). Then the wall-crossing
formula determines all the invariants Ω(γ) = Ω0(γ) for the initial stability
condition σz1(0),z2(0) in terms of the numbers an, n > 1.

The wall-crossing formula implies that the following identity:

∏

n>1

T an
−nγ1Tγ2 =

−→∏

m>1,n>0

T
Ω(−nγ1+mγ2)
−nγ1+mγ2

∏

n>1

T an
−nγ1 .

Using the known result for special values Ω(γ2 − nγ1), n > 1 (in terms of
the MacMahon function), one can deduce that all the numbers an = Ω(nγ1))
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for n > 1 are equal to −χ(X). We don’t know how to prove this identity
directly. We see that invariants Ωτ (γ) for τ > π/2 have a much simpler form
than Ω(γ) = Ω0(γ). Moreover, it is now possible (in principle) to work out a
formula for Ω(−nγ1 +mγ2) for any given m > 2.

Remark 23 One can try to generalize the above considerations to the case
of D0-D2-D6 bound states. Mathematically this means that we consider the
triangulated category generated by the sheaf OX and sheaves with at most 1-
dimensional support (cf. [47]). A problem arises here, since for the natural
t-structure there is no central charge which gives a stability condition on the
category. Presumably, in this case one can use the limit stability conditions
(see [1], [73]).

Remark 24 Let X be a 3d complex Calabi-Yau manifold, C ≃ P1 ⊂ X a
rational curve with normal bundle isomorphic to O(−1)⊕O(−1) and C be an
ind-constructible A∞-version of the category PerfC(X) of perfect complexes
supported on C. Then Γ := K0(C) ≃ Z2 carries a trivial skew-symmetric
(Euler) form. The lattice Γ is generated by cl(Opt) and cl(OC). It follows
that there are no wall-crossings in this case, and hence our invariants Ω(γ) do
not change under continuous deformations of a stability condition. In order
to use this idea for computations one can choose two stability conditions by
specifying the corresponding t-structures and central charges:

a) choose the t-structure with the heart consisting of coherent sheaves on
X supported on C and the central charge Z such that

Z(cl(Opt)) ∈ R<0, ImZ(cl(OC)) > 0 ;

b) choose the t-structure given by the category of finite-dimensional rep-
resentations of the quiver with two vertices and two double arrows in each
direction and the potential

W = a1b1a2b2 − a1b2a2b1 .

Then calculations from [66] give the following formulas for the invariants
Ω(γ):

Ω(n cl(Opt)) = −2, n 6= 0 ;
Ω(n cl(Opt)± cl(OC)) = 1, n ∈ Z .

In all other cases Ω(γ) = 0.
For recent generalization of [66] see [49],[50],[51].
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7 Quasi-classical limit and integrality conjec-

ture

7.1 Quasi-classical limit, numerical DT-invariants

The elements AV,q ∈ RV,q corresponding to AmotV are series in êγ , γ ∈ Γ with
coefficients which are rational functions in q1/2. They can have poles as
qn = 1 for some n > 1. Hence it is not clear how to take the quasi-classical
limit as q1/2 → −1 (this corresponds to the taking of Euler characteristic of
the corresponding motives).

Let us assume that the skew-symmetric form on Γ is non-degenerate (oth-
erwise we can replace Γ by the symplectic lattice Γ⊕ Γ∨). The element AV,q
defines an automorphism of an appropriate completion of RΓ,q. More pre-
cisely, it acts by the conjugation x 7→ AV,qxA

−1
V,q on the subring

∏

γ∈C0(V )∩Γ

Dqêγ

where C0(V ) = C0(V, Z,Q) is the union of 0 with the convex hull C(V, Z,Q)
of the set Z−1(V ) ∩ {Q > 0} (see Section 2).

Let us recall the example of the category generated by two spherical ob-
jects from Section 6.4. We will use notation for sectors V1, V2, Vbig introduced
there. One has, for quantum variables x1x2 = qx2x1 and AV1,q = E(x1):

x1 7→ E(x1)x1E(x1)
−1 = x1 ;

x2 7→ E(x1)x2E(x1)
−1 = x2(1 + q1/2x1) .

This follows from the formula f(x1)x2 = x2f(qx1), where f(x) is an
arbitrary series as well from the formula

E(x) =
∏

n>0

(1 + q(2n+1)/2x)−1 ,

which is valid for 0 < q < 1. The latter formula implies the needed identity
in Q(q1/2)[[x]]:

E(qx) = (1 + q1/2x)E(x) .

A similar formula holds for the conjugation by AV2,q. We remark that in
this example the conjugation by AV,q for V1, V2 or Vbig preserves the subring
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∏
γ∈C0(V )∩Γ Z[q±1/2]êγ . In particular, one can make a specialization at

q1/2 = −1 .

Remark 25 Recall that at the end of Section 6.3 we defined a homomor-
phism

RΓ →RΓ,q

as the composition of Serre polynomial with the involution q1/2 7→ −q−1/2.
In particular, the specialization q1/2 = −1 is well-defined on the subring
of series in generators êγ with coefficients in Mµ(Spec(k))[L−1/2] (see also
Section 7.3), and it corresponds to the usual Euler characteristic. We use
the twisting q1/2 7→ −q−1/2 in order to avoid a lot of minus signs in formulas.

The “integer” quantum torus
⊕

γ∈C0(V )∩Γ

Z[q±1/2]êγ ⊂ RΓ,q

has the quasi-classical limit23 which is the Poisson algebra with basis eγ , γ ∈
C0(V ) ∩ Γ with the product and Poisson bracket given by

eγeµ = (−1)〈γ,µ〉eγ+µ, {eγ, eµ} = (−1)〈γ,µ〉〈γ, µ〉eγ+µ .

The Poisson bracket is the limit of a normalized bracket:

[êγ , êµ] =
(
q1/2〈γ,µ〉 − q−1/2〈γ,µ〉

)
êγ+µ ,

lim
q1/2→−1

(q − 1)−1 ·
(
q1/2〈γ,µ〉 − q−1/2〈γ,µ〉

)
= (−1)〈γ,µ〉〈γ, µ〉 .

One can write informally

eγ = lim
q1/2→−1

êγ
q − 1

.

Conjecture 5 For any 3d Calabi-Yau category with polarization and any
strict sector V the automorphism x 7→ AV,qxA

−1
V,q preserves the subring

∏

γ∈C0(V )∩Γ

D+
q êγ ,

where D+
q := Z[q±1/2].

23There is another quasi-classical limit q1/2 → +1 which we do not consider here.
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Later we will present arguments in favor of this conjecture as well as a
stronger version. Assuming the Conjecture we can define “numerical” DT-
invariants of a 3d Calabi-Yau category with polarization in the following
way. Consider the quasi-classical limit (i.e. specialization at q1/2 = −1) of
the automorphism x 7→ AV,qxA

−1
V,q. We will present (see Section 7.4. and

Conjecture 10) an explicit conjectural formula for this “quasi-classical limit”
which does not depend on the orientation data. The quasi-classical limit gives
rise to a formal symplectomorphism of the torus TΓ and therefore induces the
stability data on the graded Lie algebra gΓ (see Section 2.5). Alternatively,
we can define such data as

a(γ) := lim
q1/2→−1

(q − 1)a(γ)q

in the obvious notation. For a generic central charge Z the symplectomor-
phism can be written as

AV =

−→∏

Z(γ)∈V

T Ω(γ)
γ ,

where
Tγ(eµ) = (1− eγ)〈γ,µ〉eµ

and Ω(γ) ∈ Q (see Section 2.5). In the above example of the Calabi-Yau
category generated by one spherical object E we have Ω(n cl(E)) = 1 if
n 6= 1 and Ω(n cl(E)) = 0 otherwise.

Conjecture 6 For a generic central charge Z all numbers Ω(γ), γ ∈ Γ \ {0}
are integers.

The collection (Ω(γ))γ∈Γ seems to be the correct mathematical definition
of the counting of BPS states in String Theory.

Finally, we make a comment about the relationship with the work of Kai
Behrend (see [2]). Recall that he defined a Z-valued invariant of a critical
point x of a function f on X which is equal to

(−1)dimX(1− χ(MFx(f))) ,

where χ denotes the Euler characteristic. By Thom-Sebastiani theorem this
number does not change if we add to f a function with a quadratic singularity
at x (stable equivalence).
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Let M be a scheme with perfect obstruction theory (see [4]). Thus M is
locally represented as a scheme of critical points of a function f on a manifold
X. Then the above invariant gives rise to a Z-valued constructible function
B on M . The global invariant is

∫

M

B dχ :=
∑

n∈Z

nχ(B−1(n)) ,

where χ denotes the Euler characteristic. Behrend proved that for a proper
M the invariant

∫
M
B dχ coincides with the degree of the virtual fundamental

class [M ]virt ∈ H0(M) given by
∫
[M ]virt 1.

Now let us assume that M ⊂ Css consists of Schur objects E (see Section
1.3), such that cl(E) = γ ∈ Γ is a fixed primitive class. Let us look at the
contribution of M to the motivic DT-invariant a(γ)mot. By definition it is
equal to

∫

M

L
1
2
(1−dim Ext1(E,E))

L− 1
(1−MF (E))(1−MF0(QE))L−

1
2

rkQE êγ .

Mapping it to the quantum torus and taking the quasi-classical limit q1/2 →
−1, and taking into account the relation −a(γ) = Ω(γ) for primitive γ ∈ Γ
(see Section 2.5), we obtain that Behrend’s formula implies that the contri-
bution of M to the value Ω(γ) is equal to

∫
[M ]virt 1.

7.2 Deformation invariance and intermediate Jacobian

We also expect the following (not very precise) conjecture to be true as well.

Conjecture 7 The collection (Ω(γ))γ∈Γ is invariant with respect to the “po-
larization preserving” deformations of C, in the case when C is homologically
smooth in the sense of [42].

The motivation for the last Conjecture is the deformation invariance of
the virtual fundamental class in the “classical” Donaldson-Thomas theory.
Recall that homologically smooth Ext-finite categories can be thought as
non-commutative analogs of smooth proper schemes. Hence, we can expect
that the moduli stacks of semistable objects in such categories are also proper
in some sense. Therefore, we can also expect that the degree of the virtual
fundamental class is invariant under deformations.

112



Also, we expect the following generalization of our theory in the case
when k = C and the 3d Calabi-Yau category is homologically smooth (see
[42]).

1) First, we recall that even without imposing the Calabi-Yau condition
one expects that a triangulated compact homologically smooth A∞-category
C (possibly Z/2Z-graded) admits (conjecturally) a non-commutative pure
Hodge structure (see [39], [36], [42] about motivations, definitions as well
as some conjectures and applications of this notion). In particular, periodic
cyclic homology groups HPeven(C) (resp. HPodd(C)) carry descending Hodge
filtrations

HPeven(C) · · · ⊃ F i
even ⊃ F i−1

even ⊃ . . . , i ∈ Z

HPodd(C) · · · ⊃ F i
odd ⊃ F i−1

odd ⊃ . . . , i ∈ Z + 1
2
.

In 3d Calabi-Yau case we assume that the smallest non-trivial term of the fil-
tration F •odd is F−3/2, dimF−3/2 = 1. Moreover, in general, it is expected that
there are lattices Keven

top (C) and Kodd
top (C) which belong to the corresponding

periodic cyclic homology groups (they represent the non-commutative version
of the image of the topological K-theory in the de Rham cohomology).

2) If C is homologically smooth Calabi-Yau category then it is easy to see
that (assuming the degeneration of the Hodge-to-de Rham conjecture, see
[42]) the moduli spaceM of formal deformations of C is smooth of dimension
dimM = 1

2
dimHPodd(C) (this is a corollary of the formality of the little

disc operad as well as the fact that the action of the Connes differential is
represented by the rotation of the circle, which is homotopically trivial under
the assumption). It is expected that the global moduli space also exists.
Notice that the Calabi-Yau structure on C induces a symplectic structure on
the vector space HPodd(C) and in the 3d case the moduli spaceM is locally
embedded into HPodd(C) as a Lagrangian cone.

3) We expect that for an arbitrary triangulated compact homologically
smooth A∞-category C one has a non-commutative version of the Deligne
cohomology HD(C) which fits into a short exact sequence

0→ HPodd(C)/(F 1/2
odd +Ktop

odd(C))→ HD(C)→ F 0
even ∩Ktop

even(C)→ 0 .
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Morally, HD(C) should be thought as zero cohomology group of the homotopy
colimit of the following diagram of cohomology theories:

HC−• (C)y
Ktop
• (C) −−−→ HP•(C)

where HC−• (C) is the negative cyclic homology.
Any object of C should have its characteristic class in HD(C). More

precisely, there should be a homomorphism of groups chD : K0(C)→ HD(C)
(in the case of Calabi-Yau manifold it is related to holomorphic Chern-Simons
functional). The reason for this is that every object E ∈ Ob(C) has natural
characteristic classes in Ktop

0 (C) and in HC−0 (C) whose images in HP0(C)
coincide with each other. The total space Mtot of the fibration Mtot →
M with the fiber HD(C) over the point [C] ∈ M should be a holomorphic
symplectic manifold (cf. [20]). Moreover, any fiber of this fibration (i.e. the
group HD(C) for given [C]) is a countable union of complex Lagrangian tori.
By analogy with the commutative case we expect that the locus L ⊂ Mtot

consisting of values of chD is a countable union of Lagrangian subvarieties.
Every such subvariety can be either a finite ramified covering of M or a
fibration over a proper subvariety of M with the fibers which are abelian
varieties.

4) For generic [C] ∈ M one can use the triple (K0(C), HD(C), chD) in-
stead of the triple (K0(C),Γ, cl). Analogs of our motivic Donaldson-Thomas
invariants AmotV ∈ RV will be formal countable sums of points in HD(C)
with “weights” which are elements of the motivic ring Dµ. The pushforward
map from HD(C) to Γ = F 0

even ∩Ktop
0 (C) gives the numerical DT-invariants.

The continuity of motivic DT-invariants means that after taking the quasi-
classical limit the weights become integer-valued functions on the set of those
irreducible components of L which are finite ramified coverings onM.

These considerations lead to the following

Question 2 Is there a natural extension of the numerical DT-invariants to
those components of L which project to a proper subvariety of M?

Remark 26 Let us notice the similarity of the above considerations with
those in the theory of Gromov-Witten invariants. Suppose X is a 3d complex
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compact Calabi-Yau manifold with H1(X,Z) = 0. Then we have an exact
sequence

0→ H3
DR(X)/(F 2H3

DR(X) +H3(X,Z))→ H4
D(X)→ H4(X,Z)→ 0 ,

where H4
D(X) = H4(X,Z → OX → Ω1

X) is the Deligne cohomology. Then
any curve C ⊂ X defines the class [C] ∈ H4

D(X). For a generic com-
plex structure on X the class is constant in any smooth connected family of
curves. Moreover, a stable map to X defines a class in H4

D(X). Then we have
exactly the same picture with holomorphic symplectic fibration Mtot → M
with the Lagrangian fibers, as we discussed above. Similarly to the case of
DT-invariants the GW-invariants appear as infinite linear combinations of
points in H4

D(X), but this time with rational coefficients. We expect that the
well-known relationship “GW=DT” (see [47]) should be a statement about the
equality of the above-discussed counting functions (assuming positive answer
to the above question).

7.3 Absence of poles in the series AHall
V

Here we are going to discuss a stronger version of the Conjecture 5.

Conjecture 8 Let D+ := Mµ(Spec(k))[L−1/2] be the ring of equivalence
classes of motivic functions. Then the automorphism of the motivic quantum
torus given by x 7→ AmotV x(AmotV )−1 preserves the subring

∏
γ∈C(V )∩ΓD

+êγ for

all strict sectors V ⊂ R2.

It is enough to check the conjecture for all x = êγ, γ ∈ Γ. Moreover,
because of Factorization Property it is enough to consider the case when
V = l is a ray. In the latter case we can split the infinite product into
those corresponding to different arithmetic progression, hence reducing the
conjecture to the case when Z(Γ) ∩ l = Z>0 · γ0 for some non-zero γ0 ∈ Γ.
Then we have

Amotl = Amotl (êγ0) = 1 +
∑

n>1

cnê
n
γ0
∈ Dµ[[êγ0 ]] .

Using the commutation relations in the motivic quantum torus we have:

Amotl (êγ0) êγ(A
mot
l (êγ0))

−1 = êγ A
mot
l (L〈γ0,γ〉êγ0)A

mot
l (êγ0)

−1 .
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Since for any series f(t) = 1 + . . . we have

f(Lnt)

f(t)
=

f(Lnt)

f(Ln−1t)
. . .

f(Lt)

f(t)
,

in order to prove the conjecture it suffices to check that

Amotl (Lêγ0)A
mot
l (êγ0)

−1 ∈ D+[[êγ0 ]] .

Since in that case we are dealing with objects whose central charges belong
to the ray l, we can restrict ourselves to the subcategory Cl. The latter
can be thought of as a heart of the t-structure of an ind-constructible 3d
Calabi-Yau category with vanishing Euler form. More precisely, Cl(k) is
an abelian artinian category with HomCl(k)(E,F ) := Ext0

C(k)
(E,F ). Then

K0(Cl(k)) ≃ ⊕E 6=0Z · [E], where the sum runs over the set of non-zero simple
objects of Cl(k).

Next, we can reduce the conjecture to a special case when clk(E) = γ0

is a fixed class for all simple objects E of Cl(k). Indeed, let us consider an
ind-constructible homomorphism cl′k : K0(Cl(k)) → Γ′ := Z ⊕ Z such that
cl′k(E) = (1, 0) if clk(E) = γ0 and cl′k(E) = (0, 1) if clk(E) ∈ {2γ0, 3γ0, . . . }
for a simple object E. Let choose two complex numbers z1, z2 in such a way
that 0 < Arg(z1) < Arg(z2) < π and define a central charge Z ′ : Γ′ → C

by the formula Z ′((1, 0)) = z1, Z
′((0, 1)) = z2. In this way we obtain a new

stability structure on the triangulated envelope of Cl(k) with the same heart.
In particular, the element Amotl will be decomposed into an infinite product:

Amotl =
−→∏

Amotl′

of series Amotl′ corresponding to abelian categories Cl′(k) for the new stability
structure. One of these categories will be the subcategory generated by
simple objects E such that cl′k(E) = γ0. Let us call such category pure of
class γ0. All other categories Cl′(k) do not contain objects with the class
γ0. Repeating the procedure we reduce the conjecture to the case of pure
category of the class mγ0 for some m > 1. Similarly to the above arguments
we can reduce it further to the case m = 1. In this case the conjecture follows
from the one below which concerns Hall algebras of categories which are no
longer required to carry a Calabi-Yau structure.
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In order to formulate this new conjecture we are going to use the fol-
lowing set-up. Let (C,A) be a pair consisting of an ind-constructible tri-
angulated A∞-category over a ground field k and A ⊂ Ob(C) be an ind-
constructible subset such that A(k) is the heart of a bounded t-structure
in C(k). We assume that simple objects of the abelian category A(k) form
a constructible subset of Ob(C)(k) and every object in A(k) is a finite ex-
tension of simple ones. These data are equivalent to a special kind of an
ind-constructible category with a stability structure. Namely, let us take
Γ := Z and define clk(E) = 1 for every simple object of A(k). It follows
that clk(F ) = length(F ) for any object of A(k). Furthermore, we choose
a complex number z0 in the upper-half plane and define a central charge
Z : Γ→ C by the formula Z(1) = z0. Then A = Cl for l = R>0 · z0. There-
fore the element AHall

l defined for this stability structure can be thought of
as a series in one variable:

AHall
l (t) = 1 +

∑

n>1

cnt
n.

Let us define a subalgebra H+(C) ⊂ H(C) to be the set of linear combi-
nation of elements of the form

Ln · [Z → Ob(C)]

where n ∈ Z and Z → Ob(C) is a 1-morphism of ind-constructible stacks (see
Section 4.2) with Z being an ordinary constructible set endowed with trivial
action of the trivial group. The multiplication law in H(C) preserves such
class of elements.

Conjecture 9 The element Fl(t) := AHall
l (Lt)AHall

l (t)−1 belongs to the com-

pleted Hall algebra Ĥ+(C) (i.e. we do not invert motives [GL(n)], n > 1 of
the general linear groups).

Below we discuss two special cases in which the above conjecture holds.
But first we present a similar motivating statement in the case of finite fields.
LetR be finitely generated algebra over a finite field Fq, andR−modf denotes
the category of finite-dimensional (over Fq) left R-modules. We define the
Hall algebra H(R−modf) as a unital associative algebra over the ring Z[1

q
]

generated by the isomorphism classes [M ] of objects of R −modf with the
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multiplication

[E] · [F ] = q− dimHom(F,E)
∑

α∈Ext1(F,E)

[Eα] ,

where, as before, Eα denotes an extension with the class α.

Proposition 13 Let

A(t) :=
∑

[M ]∈Iso(R−modf )

[M ]

# Aut(M)
tdimM .

Then
F (t) := A(qt)A(t)−1 ∈ H(R−modf)[[t]] .

Moreover,

F (t) =
∑

I⊂R,I=RI,dimR/I<∞

[R/I]tdimR/I .

Hence the quotient F (t) does not have denominator (qn − 1), n > 1 and
can be represented in terms of the “non-commutative Hilbert scheme” of left
ideals in R of finite codimension.

Proof. Let us make use of the basis of “renormalized” elements

[̂E] :=
[E]

# Aut(E)

in the Q-algebra H(R −modf )⊗Q. Then the product can be rewritten in
a more familiar form:

[̂E] · [̂F ] =
∑

[G]

c
c[G]
c[E],c[F ]

[̂G],

where the structure constant c
c[G]
c[E],c[F ]

∈ Z denotes the number of subobjects in

G isomorphic to E and such that the quotient is isomorphic to F . In these
notation we have:

A(t) =
∑

[M ]

[̂M ]tdimM .
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Since first statement of the Proposition follows from the second one, we are
going to show the latter. In the new notation it becomes:

∑

I⊂R,I=RI,dimR/I<∞

[̂R/I]# Aut(R/I) tdimR/I ·
∑

[M ]

[̂M ] tdimM =

=
∑

[N ]

[̂N ] qdimN tdimN .

Let us fix an object N , and consider the coefficient of the term [̂N ]tdimN .
In the RHS it is equal to qdimN . It is easy to see that the corresponding
coefficient in the LHS is of the form

∑

I⊂R,I=RI,dimR/I<∞

∑

N ′⊂N,N ′≃R/I

# Aut(R/I) =

=
∑

I⊂R,I=RI,dimR/I<∞

∑

R/I →֒N

1 = #N = qdimN .

Notice that in the last sum we consider all possible embeddings of R/I to
N and every summand corresponds to a choice of a cyclic vector in a cyclic
submodule in N . This proves the Proposition. �

The above Proposition suggest to interpret our category as a category of
modules and then apply similar arguments which reduce the sum (or even
the motivic integral) to the sum over all cyclic submodules. It is useful to
keep this in mind when considering two examples in the next subsection.

Remark 27 The subalgebra H+(C) of the Hall algebra has the advantage
that one can apply the Euler characteristic χ to its elements fiberwise over
Ob(C) , and get a constructible Z-valued function (with constructible support)
on the ind-constructible set Iso(C) of isomorphism classes of objects of C(k).
The multiplication in H+(C) descends to a multiplication on the abelian group
of such functions. It is easy to see that this multiplication is commutative,
and one has

νE × νF = νE⊕F

where νE etc. are delta-functions (see Section 6.1). This follows from the
fact that for any non-zero α ∈ Ext1(F,E) all objects Etα are isomorphic to

each other for t ∈ k
×
, and the Euler characteristic of Gm is zero.

119



7.4 Reduction to the case of category of modules

Here we present two special cases when the conjecture holds.
1) Assume that the abelian category A(k) contains only one24 (up to an

isomorphism) simple object E 6= 0, and this object is defined over the field
k. Hence Ext0

C(k)(E,E) ≃ k. We also assume that A∞-algebra Hom•(E,E)
is minimal, i.e. m1 = 0, and hence Hom•(E,E) = Ext•(E,E).

Proposition 14 The category A(k) is equivalent to the category B−modf,cont
of continuous finite-dimensional representations of a finitely generated topo-
logical algebra B.

Proof. There is a general way to construct the algebra B from the A∞-
structure. Let x1, . . . , xm be a basis in the vector space (Ext1(E,E))∗. Then
the higher compostion maps mn : Ext1(E,E)⊗n → Ext2(E,E), n > 2 define
a linear map

∑

n>2

mn : (Ext2(E,E))∗ → k〈〈x1, . . . , xm〉〉 =
∏

n>0

((Ext1(E,E))∗)⊗n .

We define a topological algebra BE := B as the quotient of k〈〈x1, . . . , xm〉〉
by the closure of the 2-sided ideal generated by the image of

∑
n>2mn.

Next we observe that any object M of A(k) is a finite extension of objects
isomorphic to E. Hence, it can be thought of as deformation of an object
mE := E ⊕E ⊕ · · · ⊕ E (m summands) preserving the filtration

E ⊂ E ⊕ E ⊂ · · · ⊂ mE ,

where m = length(M). Every such a deformation is given by a solution to
the Maurer-Cartan equation

∑

n>2

mn(α, . . . , α) = 0 ,

where α = (αij) is an upper-triangular matrix with coefficients from Ext1(E,E).
It is easy to see that such a solution gives rise to a representation of the alge-
bra B in the upper-triangular matrices of finite size. Furthermore one checks
that this correspondence provides an equivalence of categories

F : A(k) ≃ B −modf,cont .
24The arguments below extend immediately to the case of finitely many such objects.
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This proves the Proposition. �

Notice that
length(M) = dimF (M)

for any object M .
Using the framework of finite-dimensional continuous representations we

can modify the arguments from the proof of the Proposition 13 to the case
of motivic functions instead of finite fields and obtain the formula

AHall(Lt)AHall(t)−1 =
∑

n>0

[π : Hilbn(B)→ Ob(C)]tn,

where Hilbn(B) is the scheme of closed left ideals in B of codimension n
(non-commutative analog of Hilbert scheme) and π(I) = B/I for any such
ideal.

2) Let us assume that k = Fq and A is an abelian k-linear category
such that every object has finitely many subobjects. We define the map
cl : K0(A)→ Z such that cl([E]) = n if E is simple object and End(E) ≃ Fqn .

Proposition 15 Assume that A is a heart of a t-structure of a triangulated
Ext-finite Fq-linear A∞-category C. Let us consider the series

A(t) :=
∑

[M ]∈Iso(A)

[M ]

# Aut(M)
tcl(M) .

Then we claim that

F (t) := A(qt)A(t)−1 =
∑

[M ], M is cyclic

cM [M ]tcl(M) ,

where cM ∈ Z[1
q
], and the notion of a cyclic object is introduced below.

We are going to reduce the proof to the case of modules over an algebra.
Moreover we will give an explicit formula for the coefficients cM . In order to
do that we need the following categorical definition of a cyclic object.

Definition 19 We say that an object N in an artinian abelian category is
cyclic if there is no epimorphism N → E ⊕E where E 6= 0 is simple.
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In the category of finite-dimensional modules over an associative algebra
(over any field), cyclic objects are the same as cyclic modules.

Any object M ∈ A admits a decomposition M = ⊕αMα into a direct
sum of indecomposables. For each indecomposable summand Mα we have a
decomposition Mss

α = ⊕iEα,i of its maximal semisimple factor Mss
α (called

the cosocle of Mα) into a direct sum of simple objects Eα,i.
Let us assume that M is a cyclic object. It is equivalent to the condition

that all simple factors Eα,i are pairwise different. Notice that

End(Mss) = ⊕α,i End(Eα,i) ≃ ⊕α,iFqmα,i

where mα,i = cl(Eα,i) ∈ Z>0. Also, it follows from the cyclicity of M that

End(M)ss ≃ ⊕αFqnα

for some positive integers nα. It follows from the definition that mα,i is
divisible by nα for any pair (α, i). Observe that in the above notation

# Aut(M) = qr
∏

α

(qnα − 1) ,

where r is the dimension over Fq of the radical of End(M). Now we claim
that in the above Proposition 15

cM =
qcl(M) ·∏α,i

qmα,i−1
qmα,i

qr ·∏α(q
nα − 1)

.

The property nα|mα,i implies that cM ∈ Z[1
q
]. We are going to prove the

Proposition together with the above formula for cM .
Proof. We may assume that A is generated by finitely many simple ob-

jects (but they can be defined over different finite extensions of Fq). First, we
claim that A is equivalent to the category B−modf,cont of finite-dimensional
continuous representations of a topological algebra B, similarly to the pre-
vious example. More precisely, let N = ⊕iEi be the direct sum of all simple
objects Ei, and set C := End(N). Then C is a semisimple associative unital
Fq-algebra, which is isomorphic to ⊕iFqcl(Ei). Let us consider Ext1(N,N) as
a C-bimodule and take

G := HomC⊗Cop−mod(Ext1(N,N), C ⊗ Cop)
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to be the dual bimodule. The topological free algebra

∏

n>0

G⊗C ⊗G⊗C · · · ⊗C G (n tensor factors)

contains a closed two-sided ideal generated by the image of the map
∑

n>2mn

(here we use the “A∞-origin” of our abelian category). We denote by B the
quotient of the free algebra by this ideal. Then B can be thought of as
a completed path algebra of the quiver defined by simple objects Ei with
the arrows which correspond to a basis of

(
Ext1(Ei, Ej)

)∗
. Similarly to the

previously considered example, we have an equivalence of categories Ψ : A ≃
B −modf,cont. Under this equivalence simple object Ei maps to the direct
summand Fqcl(Ei) of C, hence dim Ψ(Ei) = cl(Ei). It follows that for any
object M we have dim Ψ(M) = cl(M).

Lemma 3 Module M ∈ B −modf,cont is cyclic iff Mss is cyclic. Moreover
v ∈M is a generator iff its projection v ∈Mss is a generator.

Proof of lemma. The first statement follows directly from the definition of a
cyclic object. In order to prove the second statement assume that v ∈ Mss

is a generator. We want to prove that the quotient M/Bv = 0. If this is not
the case then we have an epimorphism M/Bv → Ei0 to a simple module Ei0 .
It follows that we have an epimorphism Mss → Ei0 such that v 7→ 0. This
contradicts to the assumption that v ∈ Mss is a generator. The lemma is
proved. �

In order to finish the proof of the Proposition, it is enough to check
that the coefficient cM given by a product formula on the previous page,
is equal to the number of isomorphism classes of generators v ∈ M up to
an automorphism of M . In order to do that we observe that the product∏

α,i(q
mα,i − 1) from the formula for cM is in fact equal to the number of

generators of Mss. Furthermore, the factor qcl(M)
Q

α,i q
mα,i is equal to the number

of liftings of a generator of Mss to a generator of M (this number is the
number of elements in the kernel of the projection M → Mss). Finally, we
recall that qr

∏
α(q

nα−1) = # Aut(M). Applying the above lemma we finish
the proof of the Proposition. �

Remark 28 It looks plausible that the Proposition holds without the assump-
tion that A is a t-structure of an A∞-category.
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We do not know the “motivic” analog of the above Proposition. In that
case one should replace A by an ind-constructible abelian category over any
field. There is a notion of semisimple and cyclic modules, it is preserved
under field extensions25. It looks natural to expect that an analog of the

quotient
Q

α,i(q
mα,i−1)

Q

α(qnα−1)
is the motive Aut(Mss)/Aut′(M) where Aut(Mss) is

the affine group scheme of automorphisms of Mss and Aut′(M) is the image
of the scheme of automorphisms of M in Aut(Mss). Both groups schemes
are algebraic tori. Although the motivic version is not absolutely clear, we
can write down the “numerical” version, which is the result of the quasi-
classical limit q1/2 → −1 (equivalently, this is the result of taking the Euler
characteristic of the corresponding motives).

It follows from the Proposition that in the quasi-classical limit only those
terms in the formula for cM are non-zero for which Aut(Mss) = Aut′(M). Let
us call such objects special cyclic. A cyclic object is special cyclic iff under
the extension of scalars to k the cococles of all indecomposable summands
(i.e. objects Mss

α in our notation) are simple.
In the case of finite-dimensional modules over an associative algebra A,

a cyclic object (or module) M is special iff the scheme of left ideals I ⊂ A
such that M ≃ A/I has Euler characteristic 1. For non-special cyclic objects
the corresponding Euler characteristic vanishes.

Let us return to our considerations in the case of 3d ind-constructible
Calabi-Yau category over a field k of characteristic zero. We reduced the
main conjecture to the case of a single ray, hence A(k) is the heart of a
t-structure of Cl. In this case isomorphism classes of special cyclic objects M
with the fixed class cl(M) form a constructible set SCn. Thus, we arrive to
the following formula

χΦ(Fl(t)) = χΦ(Amotl (Lt)Amotl (t)−1) =
=

∑
n>0 t

n
∫
SCn

(−1)(M,M)61(1− χ(MF (M)))dχ ,

where
∫
V
fdχ =

∑
n∈Z nχ(f−1(n)) denotes the “integral over Euler charac-

teristic” χ of the map f : V → Z, and χΦ is the composition of the ho-
momorphism Φ from the motivic Hall algebra to the motivic quantum torus
(restricted to subalgebra H+(C) ⊂ H(C)), and of the Euler characteristic
morphism acting on coefficients as χ : D+ → Z.

We remark that the RHS does not depend on the orientation data.

25Notice that notions of simple or indecomposable objects are not preserved under the
field extension.
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Conjecture 10 In case if the category C is not endowed with orientation
data the above procedure gives rise to well-defined stability data on the graded
Lie algebra gΓ of Poisson automorphisms of the algebraic Poisson torus
Hom(Γ,Gm) as well as a continuous local homeomorphism Stab(C, cl) →
Stab(gΓ).

7.5 Evidence for the integrality conjecture

In this section we present arguments in favor of the integrality of the “nu-
merical” DT-invariants Ω(γ). Recall that if E is an object of a k-linear
triangulated category, then we say that E is a Schur object if

Ext<0(E,E) = 0, Ext0(E,E) ≃ k · idE .

Let us assume now that C is an ind-constructible 3d Calabi-Yau category
generated by a Schur object E ∈ C(k) in the sense that the category C(k)
consists of finite extensions of the shifts E[i], i ∈ Z. In this case K0(C(k)) ≃
Z · clk(E). We take Γ = K0(C(k)) and the trivial skew-symmetric form on Γ.
For any z ∈ C, Im z > 0 our category carries an obvious stability condition
σz such that Z(E) := Z(clk(E)) = z, Arg(E) = Arg(z) ∈ (0, π). All objects
F ∈ Css(k) with Arg(F ) = Arg(E) are n-fold extensions of copies of E for
some n > 1. We denote by l the ray R>0 · z.

In the previous section we obtained a formula for χΦ(Fl(t)) in terms of
the integral over Euler characteristic over the moduli space of special cyclic
objects of Cl(k). We are going to make it more explicit further, by using
the potential of E. Let us recall (see Section 3.3) that with the object E we
associate a collection of cyclically invariant polylinear maps

WN : (Ext1(E,E)⊗N)Z/NZ → k, N > 3 ,

a1 ⊗ · · · ⊗ aN 7→ WN(a1, . . . , aN) = (mN−1(a1, . . . , aN1), aN) .

Let us choose a basis x1, . . . , xm in Ext1(E,E). Then to any n > 0 and
collection of matrices X1, . . . , Xm ∈Mat(n × n,k) we associate the number

W
(n)
N (X1, . . . , Xm) =

1

N

∑

16i1,...,iN 6m

WN(xi1 , . . . , xiN ) Tr(Xi1 . . .XiN ) .

Thus we have a polynomial on k
mn2

. The series

W (n) =
∑

N>3

W
(n)
N
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is a formal function on the formal neighborhood of the reduced closed sub-
scheme Nilpm,n ⊂ Amn2

whose k-points are collections of matrices

(X1, . . . , Xm) ∈Mat(n× n,k)

which satisfy the property that there exists a basis in which all (Xi)i=1,...,m are
strictly upper triangular. Equivalently, Tr(Xi1 . . .Xir) = 0 for any sequence

of indices i• ∈ {1, . . . , m} with r ≥ (n+ 1). This property ensures that W
(n)
N

is well-defined in a formal neighborhood of Nilpm,n. Then

χΦ(Fl(t)) = 1+
∑

n>1

tn
∫

NilpSC
m,n/PGL(n)

(−1)n
2(1−m)(1−χ(MF(X1,...,Xm)(W

(n))))dχ ,

where NilpSCm,n for n > 1 is a subscheme of Nilpm,n whose k-points consists
of those collections (X1, . . . , Xm) for which

codim

(∑

i

Im(Xi)

)
= 1 .

Let us comment on this formula. First we remark that it is sufficient
to integrate over the set Crit(W (n)) of critical points of W (n), since for all
non-critical points χ(MF(X1,...,Xm)(W

(n))) = 1. Repeating the arguments

of the previous section we obtain that C(k) is equivalent to the category
BW − modf,cont of continuous finite-dimensional representations over k of
the topological k-algebra BW = k〈〈x1, . . . , xm〉〉/(∂xi

W ), 1 6 i 6 m, where
xi, 1 6 i 6 m are the coordinates corresponding to the chosen basis xi, 1 6

i 6 m, and (∂xi
W ) denotes the closure of the 2-sided ideal generated by the

cyclic derivatives of the cyclic potential W =
∑

N>3N
−1WN . Indeed, it is

straightforward to see that a point (X1, . . . , Xm) ∈ Nilpm,n(k) gives rise to
a continuous n-dimensional representation of W if an only if it belongs to
Crit(W (n)). In terms of the category C(k) these points correspond to n-fold
extensions of the Schur object E by itself. Special cyclic modules correspond
to critical points belonging to NilpSCm,n ⊂ Nilpm,n.

Considering an object M of length n as an upper-triangular deformation
of the “free” object nE = E ⊕ · · · ⊕ E (n-times) we see that

(M,M)61 = (nE, nE)61 + r, r := dim Im(W (n))′′(X1,...,Xm) .

Then

1−MF(X1,...,Xm)(W
(n)) = (1−MF (E))(1−MF0(QE)) ,
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where QE is a quadratic form and rkQE = r. Indeed, W (n) coincides with
the potential WnE of the object nE under the isomorphism Ext1(nE, nE) ≃
k
mn2

. Thus we see that

(−1)(M,M)61 = (−1)n
2(1−m)+r .

Since χ(1−MF0(QE)) = (−1)rkQE we obtain the desired formula for χΦ(Fl(t)).
Alternatively, in the integral one can replace the quotient NilpSCm,n/PGL(n)

by Nilpcyclm,n/GL
(1)(n). Here Nilpcyclm,n ⊂ Nilpm,n consists of collection of ma-

trices such that
k〈〈X1, . . . , Xm〉〉v1 = k

n

where v1 := (1, 0, . . . , 0) is the first base vector, and the group GL(1)(n) ⊂
GL(n) is the stabilizer of v1. Notice that GL(1)(n) acts freely on Nilpcyclm,n.
The reason is that the contribution of non-special cyclic objects vanishes
as follows from the vanishing of the Euler characteristic of corresponding
schemes of modules with chosen cyclic generators.

Conjecture 11 We have:

χΦ(Fl(t)) =
∏

n>1

(1− tn)nΩ(n) ,

where all Ω(n) = Ω(n clk(E)) are integer numbers (see Section 1.4).

Let us illustrate the conjecture in few examples.
1) Let m = 0 (i.e. the case of just one spherical object). Then W = 0

and BW = k. The only non-trivial cyclic representation have dimension one,
hence χ(Fl(t)) = 1− t. Then we have

Ω(1) = 1, Ω(n) = 0 for n > 1 .

2) Let m = 1,W (n)(X1) = Tr(Xd
1 ) for d = 3, 4, . . . . Then BW =

k[x1]/(x
d−1
1 ). There is a unique isomorphism class of cyclic BW -modules

in an dimension n = 0, 1, 2, . . . , d− 1. One can show directly that

χ(Fl(t)) = (1− t)d−1, Ω(1) = d− 1, Ω(n) = 0 for n > 1 .

3) Let m ≥ 1 be arbitrary and W = 0. In this case

χ(Fl(t)) = 1 +
∑

n>1

(−1)n
2(1−m)χ(Nilpcyclm,n/GL

(1)(n))tn .
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Euler characteristic χ(Nilpcyclm,n/GL
(1)(n)) coincides with the Euler char-

acteristic of the non-commutative Hilbert scheme H
(m)
n,1 from [59]. The latter

parametrizes left ideals of codimension n in the free algebra k〈x1, . . . , xm〉.
The reason why we can disregard all non-nilpotent collections (X1, . . . , Xm)
of matrices is that the latter carries a free action of the group Gm, such that
Xi 7→ λXi, 1 6 i 6 m where λ ∈ Gm(k). Hence the corresponding Euler
characteristic is trivial. Then using explicit formulas from [59] we obtain

G(m)(t) := χ(Fl(t)) =
∑

n>0

(−1)n(1−m)

(m− 1)n+ 1

(
mn

n

)
tn.

Notice that this series can be written as

exp

(∑

n>1

(−1)n(1−m)

mn

(
mn

n

)
tn

)
.

For m = 1 we have Ω(1) = −1,Ω(n) = 0, n > 2. In general

Ω(n) =
1

mn2

∑

d|n

µ(n/d)

(
md

d

)
(−1)(m−1)d+1 ,

where µ(k) is the Möbius function (for m = 2 see the entry A131868 in the
online Encyclopedia of integer sequences).

Remark 29 One can check that the generating function G = G(m) is alge-
braic: it satisfies the equation26

G(t) + t(−1)m(G(t))m − 1 = 0 .

An interesting question arises: which algebraic functions admit multiplica-
tive factorization of the form

∏
n>1(1 − tn)nΩ(n), where all Ω(n) are integer

numbers?

8 Donaldson-Thomas invariants and cluster

transformations

8.1 Spherical collections and mutations

Let C be a 3-dimensional ind-constructible Calabi-Yau category over a field
k of characteristic zero. Assume that it is endowed with a finite collection of

26Compare with the algebraic series in the Introduction, section 1.4.
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spherical generators E = {Ei}i∈I of C defined over k. Then Ext•C(k)(Ei, Ei)
is isomorphic to H•(S3,k), i ∈ I. The matrix of the Euler form (taken with
the minus sign)

aij := −χ
(
Ext•C(k)(Ei, Ej)

)

is integer and skew-symmetric. In fact, the ind-constructible category C
can be canonically reconstructed from the (plain, i.e. not ind-constructible)
k-linear Calabi-Yau A∞-category C(k), or even from its full subcategory con-
sisting of the collection E . In what follows we will omit the subscript C(k)
in the notation for Ext•-spaces.

Definition 20 The collection E is called cluster if for any i 6= j the graded
space ⊕m∈Z Extm(Ei, Ej) is either zero, or it is concentrated in one of two
degrees m = 1 or m = 2 only.

We will assume that our collection is cluster. In that case K0(C(k)) ≃ ZI

with the basis formed by the isomorphism classes [Ei], i ∈ I.
With the cluster collection E we associate a quiver Q such that Q does

not have oriented cycles of lengths 1 and 2, and aij > 0 is the number
of arrows from i to j (we identify the set of arrows from i to j with a
basis in Ext1(Ei, Ej)). Then the potential for the object E = ⊕i∈IEi gives
rise to the potential W = WQ of the quiver Q, i.e. the restriction of the
potential to ⊕i,j∈I Ext1(Ei, Ej). The latter is an infinite linear combination
of cyclic words (see [17], [77] where the potential appears abstractly without
the relation with Calabi-Yau categories). Any such linear combination is
called a potential of Q. In our case the potential is automatically minimal,
i.e. all words have length at least 3. The group of continuous automorphisms
of the completed path algebra of Q preserving the projectors pri, i ∈ I, acts
on the set of potentials of Q. We call it the gauge action. Let us state the
following general result.

Theorem 9 Let C be a 3-dimensional k-linear Calabi-Yau category gener-
ated by a finite collection E = {Ei}i∈I of generators satisfying the condition
that

• Ext0(Ei, Ei) = k idEi
,

• Ext0(Ei, Ej) = 0 for any i 6= j,

• Ext<0(Ei, Ej) = 0, for any i, j.
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The equivalence classes of such categories with respect to A∞-transformations
preserving the Calabi-Yau structure and the collection E , are in one-to-one
correspondence with the gauge equivalence classes of pairs (Q,W ) where Q
is a finite oriented quiver (possibly with cycles of length 1 or 2) and W is
a minimal potential of Q (i.e. its Taylor decomposition starts with terms of
degree at least 3).

The case of cluster collections corresponds to quivers without oriented
cycles of length 1 and 2.

Proof. We will present the proof of the Theorem in the case of the category
with single object E (i.e. A = Hom(E,E) is a 3d Calabi-Yau algebra). The
general case can be proved in a similar way.

Let Q be a quiver with one vertex and |J | loops, where J is a finite
set. We assume that Q is endowed with the potential W0. We would like
to construct a 3d Calabi-Yau category with a single object E such that
the number of loops in Q is equal to Ext1(E,E) and the restriction of the
potential of the category to Ext1(E,E) coincides with the given W0. Our
considerations proceed such as follows. Assuming that such a category exists
we will find an explicit formula for the potential on A = Hom(E,E). Then
we simply take this explicit formula as the definition. If the desired category
is constructed then we can consider the graded vector space Ext•(E,E)[1]
which decomposes as

Ext0(E,E)[1]⊕ Ext1(E,E)⊕ Ext2(E,E)[−1]⊕ Ext3(E,E)[−2] .

The first and the last summand are isomorphic to k[1] and k[−2] respectively,
and the middle two summands are dual two each other. We introduce graded
coordinates on Ext•(E,E)[1] and denote them such as follows:

a) the coordinate α of degree +1 on Ext0(E,E)[1];
b) the coordinate a of degree −2 on Ext3(E,E)[−2];
c) the coordinates xi, i ∈ J of degree 0 on Ext1(E,E);
d) the coordinates ξi, i ∈ J of degree −1 on Ext2(E,E)[−1].
The Calabi-Yau structure on A gives rise to the minimal potential W =

W (α, xi, ξi, a), which is a series in cyclic words on the space Ext•(E,E)[1].
If it arises from the pair (Q,W0), then the restriction W (0, xi, 0, 0) must
coincide with W0 = W0(xi). Furthermore, A defines a non-commutative
formal pointed graded manifold endowed with a symplectic structure (see
[42]). The potential W satisfies the “classical BV equation” {W,W} = 0,
where {•, •} denotes the corresponding Poisson bracket.
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With these preliminary considerations we see what problem should be
solved. We need to construct an extension of W0 to the formal series W of
degree 0 in cyclic words on the graded vector space k[1]⊕kJ⊕kJ [−1]⊕k[−2],
satisfying the classical BV-equation with respect to the Poisson bracket

{W,W} =
∑

i

∂W/∂xi ∂W/∂ξi + ∂W/∂α ∂W/∂a .

Here is the construction. Let us start with the potential

Wcan = α2a +
∑

i∈J

(αxiξi − αξixi) .

This potential makes the above graded vector space into a 3d Calabi-Yau
algebra with associative product and the unit. The multiplication vanishes
on the graded components

Ext1(E,E)⊗ Ext1(E,E)→ Ext2(E,E)

and is a non-degenerate bilinear form on components

Ext1(E,E)⊗ Ext2(E,E)→ Ext3(E,E) ≃ k .

Now we see that starting with an arbitrary minimal potentialW0 on Ext1(E,E)
we can lift it to the minimal potential on Ext•(E,E) by setting

Ŵ := Wcan +W0 .

We claim that {Ŵ , Ŵ} = 0. Indeed, we have {Wcan,Wcan} = {W0,W0} = 0.
Moreover,

{Wcan,W0} = α
∑

i∈J

[xi, ∂W0/∂xi] = 0

(we use here the well-known identity
∑

i∈J [xi, ∂W0/∂xi] = 0).
Next we need to check compatibility of the above construction with the

gauge group action. Let G0 be the subgroup of the grading preserving auto-
morphisms of the group of continuous automorphisms of the algebra of formal
series k〈〈α, xi, ξi, a〉〉, i ∈ J . Let J ⊂ k〈〈α, xi, ξi, a〉〉 be a closed 2-sided ideal
generated by α, a and ξi for i ∈ J . Since every generator of J has non-zero
degree we conclude that the group G0 preserves J (it can be deduced from
the fact that it transforms generators into series of non-zero degrees). There-
fore we obtain a homomorphism of groups G0 → Aut(k〈〈xi〉〉), i ∈ J . The
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restriction of the potential W to Ext1(E,E) defines a surjection from the
set of A∞-equivalence classes of 3d Calabi-Yau algebras to the gauge equiv-
alence classes of (Q,W0), where Q is a quiver with one vertex endowed with
the minimal potential W0. Such algebras can be thought of as deformations
of the “ansatz”, which is a 3d Calabi-Yau algebra Acan corresponding to the
potential Wcan.

Finally we are going to show that the above surjection is in fact a bijection.
The latter will follow from the equivalence of the corresponding deformation
theories. The deformation theory of the Calabi-Yau algebra Acan is controlled
by a DGLA gAcan = ⊕n∈ZgnAcan

, which is a DG Lie subalgebra of the DG Lie
algebra

ĝAcan =

(∏

n>1

Cycln((A[1])∗)

)
[−1]

of all cyclic series in the variables α, xi, ξi, a, i ∈ J (the Lie bracket is given by
the Poisson bracket and the differential is given by {Wcan, •}). Namely, the
component of gAcan of degree N consists of all cyclic series which contain at
least 2 +N letters α, xi, ξi, a, i ∈ J . We will call the degree defined in terms
of these letter a cyclic degree in order to distinguish it from the cohomological
degree of complexes. Notice that the set of A∞-equivalence classes of minimal
3d Calabi-Yau agebras can be identified with the set of gauge equivalence
classes of solutions γ ∈ g1

Acan
to the Maurer-Cartan equation

dγ +
1

2
[γ, γ] = 0 .

Similarly, the set of gauge equivalence classes of minimal potentials on A1 =
Ext1(E,E) can be identified with the set of gauge equivalence classes of
solutions to the Maurer-Cartan equation in the DGLA h = h0 ⊕ h1, where

h0 =
∏

n>1

((A1)∗)⊗n ⊗ A1 , h1 =
∏

n>3

Cycln((A1)∗) .

Here we identify h0 with the Lie algebra of continuous derivations of the topo-
logical algebra k〈〈x1, . . . , xn〉〉 preserving the augmentation ideal (x1, . . . , xn),
and we identify h1 the h0-module of minimal cyclic potentials on A1.

The above construction of the “lifting” Ŵ = W0+Wcan can be interpreted
as a homomorphism of DGLAs ψ : h→ gAcan. Namely, h0 is identified (after
the shift [1]) with the space of such cyclic series in xi, ξi, i ∈ J which contain
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exactly one of the variables ξi and at least one of the variables xj for some
i, j ∈ J . Similarly h1 is identified with the space of cyclic series in xi, i ∈ J
which has terms of degree at least 3.

We claim that ψ induces an epimorphism (previous considerations ensure
that it is a monomorphism) of cohomology groups in degree 1, and for both
DGLAs h and gAcan there is no cohomology in degree greater or equal than
2. This would imply the desired surjectivity of ψ.

Notice that the differential {Wcan, •} preserves the difference between
cyclic and cohomological degree. It follows that the complex gAcan is a direct
summand of the complex ĝAcan. The latter is dual to the cyclic complex
CC•(Acan). Let A+

can ⊂ Acan be a non-unital A∞-subalgebra consisting of
terms of positive cohomological degree. Then, one has for the cyclic ho-
mology: HC•(Acan) ≃ HC•(A

+
can) ⊕HC•(k). In terms of the dual complex

this isomorphism means the decomposition into a direct sum of the space of
cyclic series in variables xi, ξi, a, i ∈ J (corresponds to (HC•(A

+
can))

∗) and the
space of cyclic series in the variable α of odd cyclic degree (corresponds to
(HC•(k)∗). It is easy to see that the series in the variable α do not contribute
to the cohomology of gAcan ⊂ ĝAcan.

The cohomological degree of series in variables xi, ξi, a, i ∈ I is non-
positive. Recall that we shifted the grading in Lie algebras by 1 with respect
to the cohomological grading. Hence H>2(gAcan) = 0. Also, it is immediate
that H1(gAcan) is isomorphic to the space of cyclic series in the variables
xi, i ∈ I with terms of degree at least 3. Hence H1(gAcan) ≃ h1 ≃ H1(h) (the
latter holds since the differential on h is trivial). This concludes the proof.
�

Next, we will introduce the notion of a mutation on the set of cluster
collections in a given category C. Let us choose an element of I which we
will denote by 0. We are going to write i < 0 if ai0 > 0, and i > 0 if i 6= 0
and ai0 6 0. The mutation of E at the object E0 is defined as a new spherical
collection E ′ = (E ′i)i∈I such that:

E ′i = Ei, i < 0,
E ′0 = E0[−1],
E ′i = RE0(Ei), i > 0 .

where RE0(Ei) := Cone(E0 ⊗ Ext•(E0, Ei) → Ei) is the reflection functor
given by the cone of the natural evaluation map. Explicitly, the object E ′i
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for i > 0 fits in the exact triangle

Ei → E ′i → E0 ⊗ Ext1(E0, Ei) .

Notice that all objects E ′i, i 6= 0 belong to the abelian category generated
by Ei, i ∈ I. We remark that the spherical collection E ′ is not necessarily a
cluster one.

At the level of the lattice Γ := ZI the change of the spherical col-
lections E → E ′ corresponds to the following relation between the basis
vi := clk(Ei), i ∈ I and the mutated basis v′i = clk(E

′
i), i ∈ I:

v′i = vi, i < 0,
v′0 = −v0,
v′i = vi − 〈v0, vi〉v0 = vi + a0iv0, i > 0 .

We recall that aij = −〈vi, vj〉. The mutated matrix (a′ij) is given by

a′ij = aij + ai0a0j if i < 0 < j,
a′i0 = −ai0,
a′0i = −a0i,
a′ij = aij , otherwise.

Thus we see that the mutation at E0 gives rise to the mutation of the matrix
(aij) in the sense of cluster algebras (see [77]). Notice that at the categorical
level the mutation is not an involution. The composition of the mutation at
E0 and of the mutation at E ′0 = E0[−1] is the reflection functor RE0 applied
to all elements of the cluster collection.

Identifying Calabi-Yau categories endowed with cluster collections with
quivers with potentials we obtain the well-known notion of mutation of a
quiver with potential (see [77]). Then we have the following result.

Theorem 10 In the scheme (an infinite-dimensional affine space) of poten-
tials PT there is a countable set of algebraic hypersurfaces Xi, i > 1 invariant
under the gauge group action, such that for any potential belonging to the set
PT \∪i>1Xi one can make mutations indefinitely, obtaining each time a po-
tential from PT \ ∪i>1Xi. In particular, all corresponding quivers do not
have oriented cycles of length one or two.

Sketch of the proof. The mutated spherical collection fails to be cluster if
for some i 6= j we have simultaneously Ext1(E ′i, E

′
j) 6= 0 and Ext2(E ′i, E

′
j) 6=
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0. This property is not stable under deformations of 3-dimensional Calabi-
Yau A∞-category, since we can add a quadratic term to the potential WE′

i⊕E
′
j

reducing the dimension of Ext1(E ′i, E
′
j) and Ext2(E ′i, E

′
j). Therefore, the

property that the mutated collection is also a cluster one holds on a Zariski
open non-empty subset of the space of all potentials. Moreover, the mu-
tation induces a birational identification between varieties (maybe infinite-
dimensional) of gauge equivalence classes of generic potentials for quivers
corresponding to skew-symmetric matrices (aij) and (a′ij). �

Any cluster collection E = {Ei}i∈I defines an open domain UE ⊂ Stab(C, cl),
where Γ = K0(C(k)), cl = id. Namely, for any collection zi ∈ C, Im zi > 0, i ∈
I we have a stability condition σ(zi) := σ(zi)i∈I

with the t-structure defined
by (Ei)i∈I and the central charge Z such that Z(Ei) := Z(cl(Ei)) = zi, i ∈ I.
The heart of the t-structure is an abelian category AE generated by (Ei)i∈I ,
which is artinian with simple objects Ei, i ∈ I. This abelian category is
equivalent to the category of continuous finite-dimensional representations
of the algebra BW where W is the potential of the path algebra of the quiver
Q. If E ′ is a cluster collection obtained from E by the mutation at E0 then
the domains UE and UE ′ do not have common interior points, but have a com-
mon part of the boundary which is the wall of second kind. The common
boundary corresponds to the stability structure with Z(E0) ∈ R<0.

rXXXXXXXXXy

XXXXXXXXXz

C
C
C
C
C
C
C
CO

�
�
�
�
�
�
���

6

Z(E0)

Z(E0[−1])

Z(Ei), i 6= 0
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Category AE ′ is obtained from AE by tilting. Namely, any object M of
AE admits a unique presentation as an extension

0→ nE0 →M → N → 0

where N ∈ B := {E ∈ AE | Hom(E,E0) = 0}. Similarly, any object M ′ of
AE ′ admits a unique presentation as an extension

0→ N → M ′ → nE0[−1]→ 0

with N ∈ B.

8.2 Orientation data for cluster collections

Let E = (Ei)i∈I be a cluster collection. We set R := RE = Ext•(E,E),
where E = ⊕i∈IEi. Then R is an A∞-algebra. We denote by M := ME the
algebra R considered as R-bimodule. Using the truncation functors τ6i and
τ>i we define a sub-bimodule M>2 = τ>2M as well as a quotient bimodule
M/M>2, which is isomorphic to M61 = τ61M . Then we can deform the
extension M>2 → M → M61 into the direct sum of bimodules M>2 ⊕M61.
Moreover, one can check that there exists a deformation which consists of
self-dual bimodules (i.e. they give rise to self-dual functors in the sense of
Section 5.3). Thus we would like to define an orientation data using the
splitting given by the bifunctor F which corresponds to the bimodule M61,
i.e. (Ei, Ej) 7→ τ61 Ext•(Ei, Ej). Let E ′ = (E ′i)i∈I be the cluster collection
obtained by a mutation at i = 0. One can check directly that Z/2Z-valued
quadratic form defined on K0(C(k)) by

[E] =
∑

I∈I

ni[Ei] 7→
∑

i∈I

n2
i −

∑

i,j∈I,aij>0

aijninj mod2Z

is invariant under mutations. This means that the parity of the super line
bundle

√
DF = sdet(τ61 Ext•(F, F )) is preserved under mutations. This

makes plausible the following conjecture.

Conjecture 12 Bifunctors ME61 andME
′

61 define isomorphic orientation data
on C.

In order to check the conjecture one needs to find a self-dual A1-deformation
of ME61 ⊕ (ME

′

61)
∨ to a bifunctor of the type N ⊕N∨ (we identify bifunctors

with bimodules here).
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8.3 Quantum DT-invariants for quivers

For any σ ∈ UE (recall domain UE introduced at the end of Section 8.1) we
have the corresponding element AHall

V , where V is any strict sector containing
all Z(Ei), i ∈ I. The element AHall

V does not depend on σ. Moreover, this
element depends only on the gauge equivalence class of the corresponding
potential. The associated element AV,q := AE,q of the quantum torus RV,q

depends (for a generic potential) on the matrix (aij) only.
Let us associate with our quiver Q the quantum torus RQ,q. By definition

it is an associative unital algebra over the field Q(q1/2) of rational functions,
with invertible generators ê±1

i , i ∈ I subject to the relations

êiêj = qaji êj êi .

We are going to use its double D(RQ,q), which is generated by RQ,q, new set
of generators ê∨i , i ∈ I subject to the additional set of relations:

ê∨i ê
∨
j = ê∨j ê

∨
i , ê

∨
i êj = q−δij êj ê

∨
i , i, j ∈ I .

The corresponding quasi-classical limits are Poisson tori which we will denote
by TQ and D(TQ) respectively.

Identifying RΓ,q with RQ,q in the obvious way we obtain an element

EQ = 1 + · · · ∈ R̂Q,q

corresponding to AE,q. We observe that EQ is a series in non-negative powers
of êi, i ∈ I.

Conjugation with EQ gives rise to an automorphism of the quantum torus
D(RQ,q). By the “absence of poles” conjecture it does not have poles at
qn = 1, n > 1. In particular it defines a formal symplectomorphism of the
double torus D(TQ) (see Section 2.6, with the notation bij := −aij).

8.4 Quivers and cluster transformations

The formal power series EQ in êi, i ∈ I defined in the previous section satisfy
a number of remarkable properties.

1) If |I| = 1 then Q is a quiver with one vertex i. We have

EQ = E(êi) ,
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where E is the quantum dilogarithm function.
2) Let I = I1 ⊔ I2 , and we assume that ai1,i2 < 0 for any i1 ∈ I1, i2 ∈ I2.

Then we have two subquivers Q1 and Q2 of Q with the sets of vertices I1 and
I2 correspondingly, and all the arrows connecting Q1 and Q2 go only in the
direction from Q2 to Q1 (i.e. there is no arrows from Q1 to Q2).

Proposition 16 One has:

EQ = EQ1EQ2

where we embed RQj ,q, j = 1, 2 into RQ,q in the obvious way: êi 7→ êi for
i ∈ I1 or i ∈ I2.

Proof. Consider the stability condition σ ∈ UE on the Calabi-Yau category
CQ associated with Q and a generic potential. Let E = {Ei}i∈I be the
corresponding cluster collection. We choose a stability condition σ ∈ UE
in such a way that Arg(Ei1) > Arg(Ei2) for i1 ∈ I1, i2 ∈ I2. In this case
CssQ = CssQ1

⊔ CssQ2
. This implies the desired identity. �

Remark 30 It follows from the Properties 1) and 2) that for any acyclic
quiver Q the element EQ can be expressed as the product of E(êi), i ∈ I. In
particular, the conjugation by EQ has a well-defined quasi-classical limit as
q1/2 → −1, which is a birational symplectomorphism of the torus D(TQ).

3) Let Q′ be the quiver obtained from Q by the mutation at 0 ∈ I.
We denote the standard generators of the corresponding quantum tori by
(ê′i)i∈I , ê

′
i = êcl

k
(E′

i)
and (êi)i∈I , êi = êcl

k
(Ei) respectively. Let us introduce the

elements
RQ = E(ê0)

−1 · EQ, RQ′ = EQ′ · E(ê′0)
−1 .

Here RQ is a series in variables êi for i < 0, and in (dependent) variables
êi, êiê0, . . . , êiê

a0i
0 for j > 0. Similarly, RQ′ is a series in variables ê′i for i < 0

and ê′i, ê
′
iê
′
0 . . . , ê

′
i(ê
′
0)
a0i for i > 0.

Then RQ = RQ′ under the identification

ê′i = êi, i < 0 ,
ê′0 = ê−1

0 ,

ê′i = q−
1
2
a20i êiê

a0i
0 , i > 0 .
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This follows from the above-discussed picture of tilting via the wall-crossing,
more precisely, from the formula

E(êcl
k
(E0))

−1AE,q = AE ′,qE(ê− cl
k
(E0))

−1.

Element RQ = RQ′ corresponds to the integral over the space of objects of
category B in notation at the end of Section 8.1.

For the convenience of the reader we give also the formulas comparing
dual coordinates on the double quantum torus:

ê∨i
′ = ê∨i , ∀i 6= 0 ,

ê∨0
′ = (ê∨0 )−1 ·∏i>0 (ê∨i )

a0i .

Let us now consider the minimal class P of oriented finite quivers which
satisfies the following properties:

a) the trivial quiver (one vertex no arrows) belongs to P;
b) class P is closed under mutations;
c) if Q1, Q2 ∈ P then a quiver Q obtained from the disjoint union of

Q1 and Q2 by inserting a finite number of arrows from Q2 to Q1 (without
changing anything else for Q1 and Q2) also belongs to P. We will say in
this case that Q is an extension of Q1 by Q2. At the level of categories this
means that any object J of the category A(E) generated by Ei ∈ E , i ∈ I is
an extension F1 → J → F2 where F1 (resp. F2) is an object of the abelian
category generated by Ei, i ∈ I1 (resp. Ei, i ∈ I2).

This class P enjoys the property that the gauge group associated with
Q ∈ P when acting on the space of potentials on Q has one open orbit (this
can be shown by induction), hence the corresponding 3-dimensional Calabi-
Yau category is rigid. Moreover for any Q ∈ P the element EQ is a finite
product of the elements E(f), where f = êγ is a monomial. In particular,
the conjugation with EQ has a quasi-classical limit as q1/2 → −1, which is a
birational transformation.

One of the first nontrivial examples of a quiver Q which is not in the class
P is the quiver Q3 which has three vertices and two parallel arrows between
any two vertices (see the Figure). This quiver is stable under mutations. The
element EQ3 satisfies an overdetermined system of equations. The computer
check shows that the conjugation with EQ3 has the quasi-classical limit which
is not rational. It is not clear whether it admits an analytic continuation.
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Ĵ

r

The mutation property of Q3 has the following explicit corollary. Namely,
there exist collections

ci,j,k, bm1,m2,n ∈ Q(q1/2), i, j, k ∈ Z>0, m1, n > 0, −m1 6 m2 6 m1

such that the following system of equations is satisfied:

c0,0,0 = b0,0,0 = 1, ci,j,k = cj,k,i = ck,i,j ,

cn0,n1,n2 =
∑

l>0

εlq
l(n2−n1)bn1,n0−l−n1,n2 ,

cn0,n1,n2 =
∑

l>0

εlq
l(n2−n0)bn0,n0+l−n1,n2 ,

where

εl =
ql

2/2

(ql − 1) . . . (ql − ql−1)

are coefficients of the series E. To have a solution of this system of equations
is the same as to write the element

EQ =
∑

i,j,k

ci,j,kê(i,j,k) ,

where we identified Γ with Z3. The above system of equations follows from
the identity RQ3 = RQ′

3
since Q3 = Q′3 after the mutation. The elements

bm1,m2,n are derived from ci,j,k.
Notice that the above system of equations has a solution which is not

unique. Therefore the element EQ is determined non-uniquely, but only up
to a multiplication by a series of the type

1 +
∑

n>1

an ê
n
1,1,1, an ∈ Q(q1/2)
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which belongs to the center of the quantum torus RQ3,q.
Let as before E = (Ei)i∈I be a cluster collection in C such that the cor-

responding potential is generic. We make an additional assumption that the
conjugation AdAE,q

: x 7→ AE,qxA
−1
E,q is a birational transformation of the

double quantum torus RΓ⊕Γ∨,q ≃ D(RQ,q). This means that it is an auto-
morphism of the (well-defined) skew fieldKΓ⊕Γ∨,q of fractions of this quantum
torus. In the equivalent language of quivers it suffices to require that Q ∈ P.

Let us denote by ΦE the automorphism of KΓ⊕Γ∨,q given by

ΦE(x) = (Ad−1
AE,q
◦τ)(x) ,

where τ is the involution induced by the antipodal involution γ 7→ −γ of
Γ⊕ Γ∨.

Proposition 17 If E ′ = (E ′i)i∈I is the cluster collection obtained by the mu-
tation at E0 then

Ad−1
E(êcl

k
(E0))
◦ΦE ◦ AdE(êcl

k
(E0)) = ΦE ′ .

Proof. From the known identity

Ad−1
E(êcl

k
(E0))
◦AdAE,q

= AdAE′,q
◦Ad−1

E(ê− cl
k
(E0))

we obtain the desired one by multiplying it from the right by τ ◦AdE(êcl
k
(E0)).

�

Now we can state a similar result for a quiver Q which satisfies the condi-
tion that AdEQ

is a birational transformation of the skew field KQ of fractions

of the double quantum torus D(RQ,q). Let us define ΦQ := Ad−1
EQ
◦τ where

τ is the obvious involution:

τ(êi) = ê−1
i , τ(ê∨i ) = (ê∨i )

−1 .

Let Q′ be the quiver obtained as a mutation of Q at the vertex 0 ∈ I. Then
we have the following corollary of the above Proposition.

Corollary 4 Let us define the map CQ,0 : KQ,q → KQ′,q as the composition

KQ,q → KΓ⊕Γ∨,q → KΓ⊕Γ∨,q → KQ′,q ,

where the middle arrow is the automorphism Ad−1
E(êcl

k
(E0))

while the other maps

are obvious isomorphisms of skew fields. Then

CQ,0 ◦ ΦQ = ΦQ′ ◦ CQ,0 .
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Proof. It is just a reformulation of the previous Proposition in the lan-
guage of quivers. �

Let us compute CQ,0(êi), where êi = êcl
k
(Ei), i ∈ I, as well as CQ,0(ê

∨
i ), i ∈

I. We have to compute the action of Ad−1
E(êcl

k
(E0))

on these generators. Thus

we obtain

ê0 7→ (ê′0)
−1 ,

êi 7→ ê′i ·
∏

06n6ai0−1(1 + qn+1/2(ê′0)
−1)−1, i < 0 ,

êi 7→ ê′i ·
∏

06n6ai0−1(1 + qn+1/2ê′0), i > 0 .

Similarly we obtain that

ê∨i 7→ ê∨i
′, i 6= 0 ,

ê∨0 7→ (ê∨0
′)−1 ·∏i>0(ê

∨
i
′)a0i · (1 + q1/2(ê′0)

−1)−1 .

Under quasi-classical limit the generators êi, i ∈ I go to the coordinates
yi, i ∈ I and ê∨i go to the coordinates xi, i ∈ I of the symplectic double torus
(see Section 2.6). Then in those coordinates we obtain

yi 7→ y′i
(1−1/y′0)ai0

, i < 0 ,

y0 7→ (y′0)
−1 ,

yi 7→ y′i(1− y′0)a0i , i > 0 .

For the dual coordinates we have:

xi 7→ x′i, i 6= 0 ,
x0 7→ (x′0)

−1 ·∏i>0(x
′
i)
a0i · (1− 1/y′0)

−1 .

Up to a change of sign these are cluster transformations. Namely, if we
set Xi = −yi, X ′i = −y′i, Ai = 1/xi, i ∈ I then our formulas become formulas
(17) and (18) from [23] (in the notation from loc. cit).

Remark 31 Let us recall the variety N from Section 2.6 defined by the equa-
tions N = {yi = −∏j∈I x

aij

j , i ∈ I}, and let N ′ be a similar variety defined
for the transformed coordinates x′i, y

′
i, i ∈ I. One can check that the quasi-

classical limit of CQ,0 transforms N into N ′. Furthermore, the quasi-classical
limit of the automorphism ΦQ preserves N .

Remark 32 1) Let us assume that AdAE,q
is birational (e.g. for Q ∈ P).The

above considerations show that the conjugacy class of the element ΦQ is an
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invariant of the quiver Q under mutations. Passing to quasi-classical limit
we obtain an invariant of a quiver (under mutations) which is a conjugacy
class in the group of birational transformations of the classical double torus.
2) The categorical version of the above remark holds in a greater generality.
Namely, let us assume that C has a t-structure generated by finitely many
objects. Then we can define the motivic DT-invariant AmotC := AmotV (and
its quantum and semi-classical relatives) for every stability condition such
that all the generators of the t-structure are stable. Here V can be any strict
sector containing their central charges, so we can replace it by the upper-half
plane. Then the conjugacy class of the automorphism ΦC := Ad−1

AC
◦τ (if it

makes sense) will be independent (under appropriate conditions) of the choice
of stability condition.
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[66] B. Szendröi, Non-commutative Donaldson-Thomas theory and the coni-
fold, arXiv:0705.3419.

[67] R. Thomas, Moment maps, monodromy and mirror manifolds,
arXiv:math/0104196.

147



[68] R. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds,
and bundles on K3 fibrations, arXiv:math/9806111.

[69] R. Thomas, Stability conditions and the braid group
arXiv:math/0212214.
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