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Abstract

We say that a functio (t) obeys WDVV equations, if for a given invertible symmetric maty®¢ and
all t € T C R, the expressionsg®y, () = n“c,\ﬁy(r) = n“akaﬂa,,F can be considered as structure
constants of commutative associative algebra; the maggxnverse top®? determines an invariant scalar
product on this algebra. A functiorf'(z, ) obeyingdydgx? (z, 7) = z‘lc(fﬂ 9:xY (z, 7) is called a cali-
bration of a solution of WDVV equations. We show that there exists an infinite-dimensional group acting
on the space of calibrated solutions of WDVV equations (in different form such a group was constructed in
[A. Givental, math.AG/0305409]). We describe the action of Lie algebra of this group.
0 2005 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional topological quantum field theory can be identified with a solution of WDVV
equations, or, in geometric terms, with a Frobenius manifold. In such a theory the algebra of
observable${ depends on parameters ..., 7, (on a point of a manifold’). Heren = dimH.
Two-point correlation functions

Nap = (eote,B> (l-l)
determine nondegenerate bilinear inner product on . Three-point correlation functions

Capy = (€aepey) (1.2)
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determine structure constants

c®y (1) = n"*capy (1) (1.3)

of the algebraH (r), which is commutative and associative (in the above form@as .., e,)
is a basis of vector spadé of observables; we assume that the vector sgaand the basis
(e1, ..., e,) do not depend om, but the correlation functiote,eg e, ) depends o).

One assumes that,s does not depend on and the expressiobycg, ;. is symmetric with
respect to indices, 8, y, A (we use the notatiof, for the derivatived/dt*). This means that
there exists a functiof' (s, ..., 7,), the free energy, obeying

Caﬁy(f) = aaﬂy F(7). (1.4)
The functionF satisfies the WDVV equations

n n

Z B3F(r) 5, 0°F(0) _Z 33F (1) 7 33F (1)

ot} 9199130 | drrarears araarwaré dtratbace’

(1.5)

reflecting associativity of the algebra with structure constapts (1) = n**c; g, (r). Usually
one requires that the first elementof the basis of{ is the unit element angl,g = c1qp, then

3°F
aceochort P (1.6)

It would be convenient for us to impose the condit{@r6) only at the end of our consideration.

In the above formulas we assumed that the vector spaoé observables does not depend
on the parametersy, ..., t,. This assumption is justified by a remark that starting with one of
the points of the manifold one can obtain all other points of this manifold using perturbation
theory (every observable can be considered as a perturbation). This construction can be used tc
specify a natural identification of all tangent spaces to this manifold. These tangent spaces can
be considered as Frobenius algebras (associative commutative algebras with nondegenerate inne
product). The geometry arising ah was analyzed ifil]. Using the terminology ofl] one can
say that7 is equipped with a structure of Frobenius manifold.

Let us define operatoig, (z) on the space df{-valued functions orT” by the formula

Vo =0y — 2 4. 1.7)
Herez is a complex parameter; if = ¢”e,, thencyp = Ca’By(pyEﬁ. It is easy to check that
operatorsv, corresponding te.gs, , nos Obeying WDVV equations satisfy

[Va(2). Vg(2)] =0, (1.8a)

(Va(z)(p’ 1//.) + ((p, Va(_z)a ‘(/f) = aO{((pv W) (18b)

Conversely, if(1.8a) and (1.8bpre satisfied, then,s,, andn.g correspond to a solution of
WDVV equations.

It follows from (1.8a)that there exists a functio$(z, z) defined forz £ 0, which takes values
in invertibler x n matrices (or, speaking in more invariant way, in the group74wif automor-
phisms of vector spack) and obeys

Vu(2)S(7,2) =0, (1.9)
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or, more precisely

98P, =z71c<, 5P (1.10)
Using (1.8b)one verifies thal(z) can be chosen (nonuniquely) in such a way that the normal-
ization conditions

S(z=00) =1, (1.11a)

S(r,2)8*(r, —2) =1 (1.11b)
are satisfied. Her6* stands for an operator adjoint fowith respect to bilinear inner product
(', ). The choice ofS(z, z) is called calibration of Frobenius manifold (of solution of WDVV
equations).

We assume thai(z) is a holomorphic function aof € P1\{0}. (HereP! = CU{o0}.) Itis clear
that two solutions 0f1.10)obeying normalization conditior(d.11a) and (1.11kgre related by
the formula

S5(r,2) =S, M (2), (1.12)
whereM is a holomorphic function o1\ {0} obeying

M(o0) =1, (1.13a)
M@M*(—z) =1. (1.13b)

In other words, the choice of calibration is governed by the gBumgonsisting of holomorphic
matrix functions onP1\{0} satisfying(1.13a) and (1.13b)Notice that the function§"j§(r, 2)
obey

0,8%p = 085", (1.14)

which follows from symmetry of structure constantg<; = c;g. Using (1.14) one can con-
struct a function® (z, z) satisfying

S%p(t,2) = 0px" (7, 2); (1.15)
this function is defined up to a holomorphic summand that does not dependi@n we can
take x*(t, z) + p%(z) instead ofx®). For fixedz we can considetx!(z, z),...,x"(z,z)) as

coordinates on manifold’; these coordinates are defined up to affine transformations (a choice
of basis in the space of observables and a choice of calibration result in linear transformations of
these coordinates, the freedom in a choice%for given S leads to a shift of them).

In what follows we will modify the notion of calibration, saying that a calibrated solution of
WDVYV equations is a solution of these equations together with a solution of equations

dpdyx® =27 1cp%, 0x%, a=1,2, (1.16)
obeying normalization conditions

x%(t,00) =%, (2.17)

Napdx® (T, 2)3,xP (T, —2) = . (1.18)

Let us consider holomorphic functions @i = C\{0}, which take values in the groupL (H)
of invertible linear transformations @ or, more generally, in the group Aff() of invertible
affine transformations of{. Using bilinear inner product ofit we define a groufB (twisted
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loop group) as a group @L (H)-valued holomorphic function8(z) on C* obeying
B(z)B*(—z)=1. (1.19)

Similarly, we define a group as a group of AffH)-valued functiongB(z), d(z)), where the
linear partB(z) obeys(1.19) Here we write an affine transformation as a gdird), whereB
is a linear transformation antlis a shift:

x— Bx+d. (1.20)

Lie algebras of groupB andA are denoted bys and.A correspondingly. Notice that in the mod-
ified definition a choice of calibration is governed by the subgrauypof the groupA consisting
of transformations of the forr{lL.20)with B € B...

Let us take a calibrated solutiof¥ (), x%(z,z)) of WDVV equations and an element
(b(2),d(2)) € A. We define

8F(‘L')=—21_/[baﬂ(é‘)xa(ng) —i—d,g(g“)}x’g(r,—{)d;, (1.21)
i 2
r

8x%(t,2) =

L [P @P 0+ OB €0y 0 e 22
P ’ ’ '

2mi {—z
r

Herer is a circle with the center at= 0; in (1.22)we assume that the radius of this circle is less
than|z|. We will provethat (F + 8 F, x + 8x) is a calibrated solution of WDVV eguations. In
other words, the Lie algebtd (or, more precisely, its extension) acts on the space of calibrated
solutions of WDVV equations.

We did not include the existence of unit element in our axioms of two-dimensional TQFT. If
the existence of unit is required, we consider transformations given by elethéntsi(z)) € A,
whered(z) is related tab(z) in the following way

do(2) = zb14(2). (1.23)

It follows from (1.6) that we can impose a normalization condition 8Kz, z)
91x¥(7,2) = 77 1x%(1,2) + 8%1. (1.24)

Conversely, differentiatinll.24)and comparing witl{1.6) we obtain thaf1.24)impliese; = 1.
The relation(1.23)is compatible with the normalization conditig¢h.24). More precisely, if we
define the variation of® by means of1.22)whered(z) is related tab(z) as in(1.23)the newx®
again obeys the same normalization condition; hends the unit element also after variation.

In this way we obtain an action of Lie algebfaon the space of calibrated Frobenius mani-
folds with unit elements. This action corresponds to the action of twisted loop group constructed
by Givental in[2]. Notice that Givental’s construction provides an action of twisted loop group
on the space of genus 0 TQFT coupled to gravity. If the Frobenius manifold is constructed by
means of semi-infinite variation of Hodge structures the existence of the action of the twisted
loop group follows from results of Barannikd8]. In semi-simple case a different construction
of the action of the same group was given by van de Leur [#@eGivental presented strong
evidence that for all genera the same group acts on the space of TQFT’s coupled to gravity, at
least at the level of perturbation theory. Recently one of us (M.K., in preparation) defined the
action of twisted loop group also for open—closed theory confirming a conjecture of another of
us (A. Schwarz).
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2. Geometry of Frobenius manifolds

We have seen that coordinate®(z, z) are defined up to affine transformations. This means
that we obtained a family of affine structur@s on manifold7 depending on parametere
PP1\ {0}. We can consider the direct product®¥ x 7 as a holomorphic bundle ov&t; all fibers
of this bundle except the fiber over= 0 are affine spaces.

Itis useful to give an invariant description of the above structure. To do this we naotice that our
construction of affine structuré® can be regarded as a particular case of general construction
of affine structure by means of torsion-free flat connecmg”p (the connection is torsion-free

if Fa}:g = Fga; it is flat if covariant derivatives constructed by means of Christoffel symEg;s

commute). We can say tharlcaﬂ,, determines a family of torsion-free flat connectionsn

that has a pole of order 1 at= 0. Conversely, let us consider a holomorphic buriever P

with the fiber over Ge P! identified with7 . Let us assume that all fibers over points P1\ {0}

are equipped with affine structure and that the affine structure is defined by means of torsion-free
flat connectionl’aZ6 (z) having a pole of order 1 at= 0. If the bundle at hand is holomorphically

trivial we can identify its total space with! x 7’ this identification gives a coordinate system
on the total space wherig’;s is linear with respect to /& (we use the fact that every holomorphic

function ofz € P1\ {0} having first-order pole at = 0 is linear with respect to/k).

Due to(1.18)one can construct a nondegenerate bilinear pairing between tangent spaces to
affine space$, and7_, wherez € P1\{0} (notice that tangent spaces at different points of affine
space are identified). More precisely, we can rew(fité8)as

Napdx®(z, 2)8xP(z,—2) = NudtheT?.

This equation shows that the metrjgg induces covariantly constant pairing between tangent
spaces to affine spac&s and7__; for fixed r andz tending to zero this pairing has a limit (in
our coordinate system it does not depend:piiThe statement about existence of limit remains
correct ift is not fixed, but depends analytically giin a neighborhood of = 0. To analyze the
case whernr = 7(z) we should prove that the expression

ox“ axP
Nap FEs P (2.1)
=12, 97" lt=1(~2),~2)
has a finite limit ag tends to zero. To use the relatiGh18)we decompose
ox®
ot (7,2)

into Taylor series at the poirtyo, z); we apply this decomposition to the case= t(z), 10 =
7(—z). One can check that fartending to zero the leading term can be written in the form
0x* 0x* 1, apno 0x
— =— — ct), —. 2.2
ath (t.2) TH + Z ¢ ( ))‘ o (2:2)

|
(t0,2)  p=0'"

HereC stands for the matrix
C,= (" — tg)czﬂ(to).

Applying (2.2) and (1.18ve obtain that2.1) has a limit ag tends to zero; it converges to
(eXpé)K Now (23)
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Cl=2— v .
p dz Z_OCW(TO)

In the derivation 0f2.2) one should use the formula
32x 1 ¢ Ox¢
B
atPacy  © Prge
and similar formulas expressing higher partial derivativeg®in terms of the first derivatives.
(One obtains such formulas differentiati(®j4).) We assume thattends to zero and keep only

the leading term; then there is no necessity to take derivative§yoﬁifferentiating(2.4). We
obtain that in our approximation

(2.4)

ak+lxot

ax“
) Jy o) Pk—1 L aP
atParri- gt o a2 Cpup gy
It is easy to check thd®.2)follows from (2.5).
Let us describe now geometric data that permit us to construct a calibrated solution of WDVV.
We start with holomorphic bundle ovB! and a family of torsion-free flat connectiong, (z, 7)

on the fibersT; of this bundle that depend holomorphically ore P1\{0} and have a pole of
order 1 at; = 0. We assume that the bundle is holomorphically trivial; trivialization permits us
to represent the connections in the for@fﬂ(z, T) = Z_lCayﬁ(T) in corresponding coordinate
system.

Let us suppose in addition that we have a covariantly constant nondegenerate bilinear pairing
between tangent spaces to fibers avand over—z for z # 0 that depends holomorphically an
(As we noticed affine structure di permits us to identify tangent spaces at all pointg0j
This pairing gives a flat metric ofi,,. We assume that the pairing between tangent spacgs to
and7_; has a limit if the points off; and7_, tend to a point ofly staying on a holomorphic
section of our bundle over a neighborhood:af 0. (It is sufficient to assume that the pairing is
bounded, because a holomorphic function bounded in a neighborhood of a point has a removable
singularity at this point.)

Writing the bilinear pairing in the coordinate system coming from a trivialization of the bundle
we obtain that the pairing can be described by means of maigkr) that does not depend
on z. (Independence aof follows from the fact that a bounded holomorphic functionzdé a
constant.) We conclude from our assumption about the figethat the matrix;.g () specifies
a nondegenerate flat metric on fibers.

It follows from above remarks that” g andn,.g obey(1.8a) and (1.8hhence they specify a
solution to WDVV equation; the choice of trivialization of affine bundle d#&y{0} corresponds
to the choice of calibration.

(2.5)

3. Symmetries of WDVV equation

Let us consider a solution to WDVV equations and its calibratit(e, z). As we have seen,
the functionsx®(t, z) determine an affine structure on fibers of the trivial bundle @Veexcept
the fiber over; = 0. One can obtaif! pasting together two open disksg < oo and|z| > 0. We
can construct a new holomorphic bundle o#rtwisting the direct produdP! x 7 over C*,
which is the common region of these two diskg and D,. The total space of the new bundle
is obtained by means of identification @~ x 7 C Dg x 7 with C* x 7 C Do, x 7 by the
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formula (z, t) ~ (z, f;(1)). Here f,: T, — T, is an analytic automorphism &, (of the fiber
overz € C*) that depends analytically afe C*. The fiberT, is equipped with affine structure.
We will assume thaff, : T, — T is an affine transformation; then the fibers of the new bundle
over all pointsz € P1\{0} also can be considered as affine spaces.

If f, is sufficiently close to identity the new holomorphic bundle is holomorphically trivial
(this follows from the remark that holomorphically trivial vector bundles form an open subset of
the space of holomorphic vector bundles oPé&). As we know, there exists a pairing between
tangent spaces to the fibeéfsand7_,. To guarantee the existence of similar pairing for the new
bundle we should impose some conditions on affine myap3, — 7,. Namely, if

f: =(B(2).d(2)) (3.1)

we should require
B(z)B(—2)* =1 (3.2)

Notice that we did not change the pairing over the inner disk, therefore the behavior of the pairing
asz tends to zero does not change. We imposed the condition the pairing is bounded on every
holomorphic section over a neighborhood:e£ O; this condition is fulfilled for the new bundle.
Hence the new bundle also specifies a calibrated solution to WDVV equations.

The group of matrix function®3(z) obeying(3.2) is a (version of) twisted loop group of
[2]. The group of affine transformations of the fo(f1)with the linear part obeyin¢3.2) was
denoted byA in Sectionl and the corresponding Lie algebra was denotedlbin what follows
it will be convenient to considef, as an operator on the vector space of observatiles

It follows from the above consideration that the Lie algedracts on the space of calibrated
solutions of WDVV equations. Our goal is to calculate this action more explicitly.

Elements of4 can be considered as paiigz), d(z)), whereb(z) is a holomorphic function
onC* with values in linear maps{ — H obeyingb(z) + b(—z)* = 0 andd(z) is a holomorphic
‘H-valued function orC*. To calculate the action d@b(z), d(z)) we should trivialize the twisted
bundle. This means that for evetye 7 = T, we should find a holomorphic section of the
twisted bundle taking the valueat z = co. We will write this holomorphic section as a pair of
holomorphic sections of direct produby x 7 and Do, x 7 with appropriate gluing conditions
on C*. Representing sections @f; x 7 as7 -valued functions we can write down the gluing
condition in the form

(8", + b2 (2))x* (k (2), 2) + d"(2) = x"(2(2), 2), (3.3)
wherea”(z) and«”(z) close tor” can be expressed as

a’(z) =t” +a”(z), innerdiskDy,

kP(z) =17 +k(z), outerdiskDx. (3.4)

Here we are working with infinitesimal group transformation, corresponding to Lie algebra ele-
ment(b(¢), d(¢)). We requirek(z, oo) = 0 to get a section containinge 7 = T.
From(3.3)we have

0" () =a’ () — k() = (STHD) u[ba" (Ox* (@) + d* ()] (3.5)
Knowing (3.5), we can express andk in terms of Cauchy integral
)
or) = [ LDy (3.6)

2ri {—z
r
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where " is any circle with the center at the origin. This integral represents a function that is
holomorphic everywhere except fér, on which it has a jum@?”, and then tends to zero at
infinity. Using these facts we obtain

a’(z) = @°(z) (3.7)
insider",
kP (z) = PP (2) (3.8)

outsidel” and

k?(z) > 0 asz— oo. (3.9)

The expressiol(3.8)for k” leads immediately to the expressi@in22)for 5x“.

To calculate the variation of structure constantge notice that we do not change the connec-
tion over the inner disk; the only changedrcomes from the change of coordinates. Using the
standard rules for the variation of connection one can obtain that the structure constants behave
like a tensor by the change of coordinates; this fact was usfgg].iRecall, that structure con-
stants describe the behavior of connection at the poiaD where the connection has a pole.)
The change of coordinateat z = 0 is governed by the formula

1 wp(s“)d 1 0P Uhie (X)) 4 do (§)]9ex7 (—8)

Pl =0) = — -
A’ (z=0)=— ; > ; dc. (3.10)
r r
Calculating the Jacobian matrix a0
Lr, — atH
da?
1 [,LEb o o (o2
=6y — 5 10 O, 608" (=) + xM(©)hdex” (=) ] de
Tl ¢
r
ne
S [Py oy, (3.11)
2ri ¢
r

we obtain the variation of structure constants

Sca’ (1) = (L) o LP (LY e, e () — o (1) — Oc (cal ) 87¢
1 / n*€ds ()

= oni [aa(ceﬁy)auxg(_g)+Cuﬂyaaaex0(_§)] dg

¢
r
1 bff € o € v o
> #[n“ ey 3ex (=)0 x7 (£) + 1Py, Bux™ (=) 8ex (¢)
r
+ 15€caP £ 0ex™ (=) 3, X7 (§) + 18y (c? ) ) 8 x™ (=0)x (¢)
+1"euf o dex (=0)x7 (0)] dg. (3.12)

Taking into accoun(l.4), we see tha{3.12)leads to the expressidqth.21)for § F.
Let us assume now that the first element of the basl¢ &f the unit element angl,s = c104.
We would like to require that these assumptions are fulfilled also for the deformed solution of
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WDVYV equations. Then we should have

1 [ 0%lds (§) = £b15 Q)]

5(5’3&):5&151(‘[):%/ o (¢ : $b15 (&
r

This is true if we have the relatioil.23) between the functiond(z) andb(z). We have seen in

the introduction how to change the expressiongfoandsx® if we require the existence of unit

element. We came again to the same prescription.

The monomials

9,8%(=¢)de =0. (3.13)

m

baﬁ,mz_
with coefficients obeying
botﬁ,m = (_1)m+lbﬁot,m, (3.14)

can be considered as (topological) generators of the Lie alggbkat us write down corre-
sponding variations of’ and of coefficients, that appear in the decompositionxsf(z, z) in a
seriesc®(t,z) = > v o h*"z ", It follows from (1.21), (1.22) and (1.23pat

1
8F (1) = ba1.27% + be1.1h® — Ebo,ﬁ,lr“rﬁ + by1.0h%? 4 byg ot hPL

+ D barmh® " b |:(—1)'"r°‘h/3’—m+1

m<0

2

n=m

-1
1
+ = Z (_1)m+nhoz,—nhﬁ,—m+n+1i| }’ (315)

i
8x*(1.2) =< Y 9ph®*7F YN " aen (- 1) (blg,_i+1+ > bmmh%m’)z”

k>0 i>01=0 m<—i
00
- Z naa[zbla,m +b)\o,mxk(tvz)]z_ma (316)
m=—00

Shon — npe Z 8pha,i+n71 36h0’l(—1)lblg,—i+l
0<IKi<oo
+ np& Z 8pha,i+n—laeha,l(_l)lbka’mh)n,—m—i
o<I<i<—m<o

- 770“7 |:bla,n+l + Z bko,mh}hnmi|- (317)

m<n

In particular, form = 1 we obtain

1
§F (1) = bg1.1h*t — Ebaﬁ,lr“rf‘,

Scapy (t) = nlebkl,laaceﬂyv (3.18)
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5t =8h*0 =0,
Oh*" =17 b1y 10, h™" = 1" by 1™ n > L. (3.19)
Form =2

SF (1) = by1,27%,
Scapy () =0, (3.20)

57 =5n*0 =0,

Sh*t = =1 b1, 2,

ShO" = =1 by 4 ok T2 n > 2. (3.21)
Form > 2 we obtain

SF(t) =0,
Scupy (1) =0, (3.22)

Sh*" =0, 0<n<m,
(Sha’m_l = _naabla,m,
Sh*" = =% by mh™"™, n>m. (3.23)

4. Comparison with Givental’s approach

Givental's construction of twisted loop group acting on the space of Frobenius manifolds
is based on another geometric interpretation of the notion of Frobenius structure. For every
calibrated solution of WDVV equation one can construct a functidfidhat depends on infi-
nite number of parametet?, ..., ¢", ..., whereg* € H. (The functionalF can be interpreted
as free energy depending on primary fields and descendants. The construcfioim ¢érms
of free energyF, defined on “small phase spacgl, and calibration is given iiil,5].) More
precisely, one should considégt as a formal power series with respect to its arguments; it is
important to emphasize that parametgfsused by Givental are obtained from standard para-
meterst?, ..., ", ... in the expression of free energy by means of a shittlinNotice, that in
Givental’s paper it is assumed that there exists a unit elemenjand c144. (This is a standard
assumption relaxed in present paper mostly to simplify the exposition.)

Let us introduce a space @{-valued Laurent polynomials(z) equipped with symplectic
form

w(a,b) = rGQQ(z), b(—z)) = (Zni)_lf(a(z), b(—z)) dz
r
= 2ri) ! / a® (D) napb®? (—2) dz. (4.1)
r

This space can be identified wiff¥ L whereL is a Lagrangian subspace consisting of poly-
nomialsg® + g1z + ¢%z2 + - --. The functionalF can be considered as a function bnwe
construct a Lagrangian submanifaldcorresponding t¢- by means of standard formula

pi=0F/dq". (4.2)
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One can prov@?], thatL is a Lagrangian cone with the vertex at the origin and that every tangent
spaceT, L to L is tangent toL exactly alongz7, L. (More precisely, ifK is a tangent space

to £ then its intersection withC consists of points of the formk wherek € K.) Conversely,
every Lagrangian cone obeying these conditions corresponds to calibrated solution of WDVV
equations. Givental defines twisted loop group as a group of matrix Laurent series satisfying

MZ)M*(—z) =1. (4.3)

It is easy to check that elements of this group can be interpreted as linear symplectic trans-
formations commuting with multiplication by. Lagrangian cones corresponding to calibrated
solutions of WDVV equations are defined in terms of symplectic geometry and multiplication
by z. This means that an element of twisted loop group transforms such a cone into another cone
of the same kind and a calibrated solution of WDVV equations into another calibrated solution.
(This is a rigorous statement if one works at the level of Lie algebras; to define the action of an
element of twisted loop group one should be more precise with the definition of free energy in
terms of formal series.) Using the constructiorfoin terms of F and calibration one can calcu-
late the action of Lie algebra of twisted loop group on calibrated solutions of WDVV equations;
one gets formulas that agree wifg15), (3.16) One should emphasize, however, that Givental
works with formal series instead of functions.

Let us discuss the relation between Givental’s geometric picture and the setup of the present
paper. We will work with symplectic vector spa€eof H-valued holomorphic functions o™
having a pole or a removable singularity at infinity; the symplectic fornd @& defined by the
formula(4.1).

We start with a calibrated solution of WDVV equations and define a subsgf as a set of all
functions of the forrmpk%, wherer € T, x(1, z) = (x1(1, 2), ..., x"(1, 2)) is a calibration
and p*(z) is a polynomial. One can say thAtis a union of vector space8, = {zp”xa(%” |
p* € C[z]} labeled byr € 7. Itis easy to check that is an isotropic submanifold @f. Indeed,
the tangent spacé ; = 7;L to £ at the pointf = zp*(z) 252 2 0 is spanned by, and
af/att, ..., af/dt". Using the relation

8f 5 92 x(t, z) 2 0x(t, 2)
8‘[‘7 - ( ) )"8 o - (Z)Ckyo a‘[y

and(1.18)we find that the forn{4.1) vanishes on all tangent spaces.
Let us suppose now thats = c14p and that the function® obeys the normalization condi-
tion (2.4). Introducing the notatiod #-* = x*(t, z) + z, we conclude fron{2.4) that the point

(4.4)

J(r,2) =201J(7,2) (4.5)

belongs toL, (it can be represented gt = sz(z)% with p(z) = (1,0,...,0)). Ap-

plying (4.4) we see that the tangent spatg = T,L at this point is spanned byg. and
af/at® = dx/dt?, in other words, it consists of vectors of the fomﬁ(z)%, wherep’ is an
arbitrary polynomial. Using2.4) we obtain that this tangent space is Lagrangian. The isotropic
submanifoldZ is a union of vector spaces, hence it is always a cone. The subSetarfsisting

of points where the matriy”*(0)c,”, is nondegenerate can be regarded as Lagrangian cone.
Notice that this subset can be empty if we do not assume the existence of unit element; it is
nonempty if for at least one element of the algebra with structure constantshe operator of
multiplication by this element is invertible. (We use the fact that an isotropic subspdcd.aé
Lagrangian if its projection oi is surjective.)
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Let us describe the way to obtain calibrated solutions from Lagrangian cones following the
considerations applied if2] to the case when there exists a unit element. Let us consider a
Lagrangian con& C T*L with the vertex at the origin assuming that every tangent space
to L is tangent tol exactly along:7, L. Let us assume that for evetythe conel contains a
point J (z, t) = ¢z + © + r(z, T) wherer(oo, t) = 0. Then the derivativedJ/dt* form a basis
in A/zA where A stands for one of these tangent spaces. They can be regarded also as free
generators ofA considered a€’[z]-module. Using the fact thatoJ /9t € zA C £ we obtain
that the second derivative®2.J/dt*z? are in A and therefore can be represented as linear
combinations ofJ/9t* with coefficients that are polynomials with respecttérom the other
side these second derivatives have a removable singularity at infinity, hence the coefficients do
not depend or. These coefficients,” g specify a family of torsion-free flat connections by the
formula(1.7). (The connections are flat because @cP) has a nondegenerate soluti®, t) =
aJ/0t1.)

The connections we constructed together witfz, ) specify a calibrated solution to the
WDVV equations.To finish the proof of this statement we should cl2di. However, one can
verify that(2.1)follows from(1.18) (Both of these conditions can be interpreted geometrically as
compatibility of nondegenerate linear pairing between tangent spaces to affine Epacd3_,
with the connectiorf“oﬂ’ (z) = Z_lcayﬂ.) We used(1.18)to prove that the cone constructed by
means of a calibrated solution to WDVV equations is isotropic; one can use the same arguments
in opposite direction: to show that the family of connections obtained from a Lagrangian cone
obeys(1.18)

The formulas of present paper can be obtained in Givental’s approach by means of reconstruc-
tion formula of[1,5]. Such a derivation is sketched in the appendix to the preprint version of the
paper (hep-th/0508221).
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