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1. Introduction and Motivation

Let G be a connected reductive group defined over an algebraically closed field k of char-
acteristic zero. Let B be a Borel subgroup of G. A normal G-variety is called spherical if
it contains a dense B-orbit. Examples include flag varieties, symmetric spaces, and group
embeddings. Recall that a normal irreducible variety X is called an embedding of G, or a
group embedding, if X is a G × G-variety containing an open orbit isomorphic to G. Due
to the Bruhat decomposition, group embeddings are spherical G × G-varieties. Substantial
information about the topology of a group embedding can be obtained by restricting one’s
attention to the induced action of a maximal torus T ⊂ B of G. When G = B = T , we get
back the notion of toric varieties.

Let M be a reductive monoid with zero and unit group G. Then there exists a central
one-parameter subgroup ε : G∗

m → T , with image Z, such that lim
t→0

ε(t) = 0. Moreover, the

quotient space
Pε(M) := (M \ {0})/Z

is a normal projective variety on which G×G acts via (g, h) · [x] = [gxh−1]. Hence, Pε(M) is a
normal projective embedding of the quotient group G/Z. These varieties were introduced by
Renner in his study of algebraic monoids ([R2], [R3]). Notably, normal projective embeddings
of connected reductive groups are exactly the projectivizations of algebraic monoids [T].

Goresky, Kottwitz and MacPherson [GKM] developed a theory, nowadays called GKM
theory, that makes it possible to describe the equivariant cohomology of certain T -skeletal
varieties: complete algebraic varieties upon which an algebraic torus T acts with a finite
number of fixed points and weighted invariant curves. (For instance, projective group em-
beddings are T × T -skeletal.) Let X be a T -skeletal variety and denote by XT the fixed
point set. The main purpose of GKM theory is to identify the image of the functorial map
i∗ : H∗

T (X) → H∗
T (X

T ), assuming X is equivariantly formal. GKM theory has been mostly
applied to smooth projective T -skeletal varieties, because of the Bialynicki-Birula decompo-
sition [B]. Furthermore, the GKM data issued from the fixed points and invariant curves has
been explicitly obtained for some interesting cases: flag varieties (Carrell [C]), toric varieties
(Brion [Br1]) and regular embeddings of reductive groups (Brion [Br2] and Uma [U]). In the
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case of singular varieties, GKM theory has been applied to Schubert varieties [C] and to
rationally smooth projective group embeddings, due to the author’s work [G1, G2].

Because of its power as a computational tool, GKM theory has been implemented in
other equivariant “cohomology” theories on T -schemes. For instance, Brion [Br1] established
GKM theory for equivariant Chow groups, Vezzosi-Vistoli [VV] did the same for equivariant
algebraic K-theory, and Krishna [Kri] provided the tool in equivariant algebraic cobordism.
Nevertheless, in all of these generalizations, a crucial assumption on smoothness of the ambient
space needs to be made.

Our aim is to establish a version of GKM-theory for the equivariant K-theory of singular
varieties (Section 3). For convenience of the reader, we briefly recall some basic notions.
Let X be a T -scheme. Let K0

T (X) denote the Grothendieck group of T -equivariant vector
bundles on X. This is a ring, with the product given by the tensor product of equivariant
vector bundles. Let KT

0 (X) denote the Grothendieck group of T -equivariant coherent sheaves
on X. This is a module for the ring K0

T (X). If we identify the representation ring R(T ) with
K0

T (pt), then pullback by the projection X → pt gives a natural map R(T ) → K0
T (X). In this

way, K0
T (X) becomes an R(T )-algebra and KT

0 (X) an R(T )-module. The functor K0
T (−) is

contravariant with respect to arbitrary equivariant maps. In contrast, KT
0 (−) is covariant for

equivariant proper morphisms and contravariant for equivariant flat maps. If X is smooth,
then every T -equivariant coherent sheaf has a finite resolution by T -equivariant locally free
sheaves, and thus K0

T (X) ' KT
0 (X) ([Th1]).

In general, the K-theory groups are difficult to compute. In the case of singular varieties,
they can be quite large [AP, Introduction]. In the smooth case, however, there are three
powerful theorems that allow many computations and important comparison theorems of
Riemann-Roch type. The first one is the localization theorem of Borel-Atiyah-Segal type
[Th2] (see also [VV] for higher equivariant K-theory).

Localization theorem of Borel-Atiyah-Segal type. Let X be a smooth complete T -
scheme. Let XT be the subscheme of fixed points and let iT : XT → X be the natural inclusion.
Then the pullback map i∗T : K0

T (X) → K0
T (X

T ) is injective, and it becomes surjective over
the quotient field of R(T ).

Let X be a smooth complete T -scheme. The second fundamental theorem in this context
identifies the image of i∗T inside K0

T (X
T ) ' K0(XT ) ⊗ R(T ). To state it, we introduce

some notation. Let H ⊂ T be a subtorus of codimension one. Observe that iT factors as
iT,H : XT → XH followed by iH : XH → XT . Thus, the image of i∗T is contained in the
image of i∗T,H . In symbols,

Im[i∗T : K0
T (X) → K0

T (X
T )] j

⋂
H⊂T

Im[i∗T,H : K0
T (X

H) → K0
T (X

T )],

where the intersection runs over all codimension-one subtori H of T . This observation leads
to a complete description of the image of i∗T (see [VV]). This criteria dates back to the work
of Chang-Skjelbred [CS] in equivariant cohomology.

CS property. Let X be a smooth complete T -scheme. Then the image of the injective map
i∗T : K0

T (X) → K0
T (X

T ) equals the intersection of the images of i∗T,H : K0
T (X

H) → K0
T (X

T ),
where H runs over all subtori of codimension one in T .

Now let X be a (complete) T -skeletal variety. For convenience, we assume that each T -
invariant irreducible curve has exactly two fixed points (e.g. X is equivariantly embedded in
a normal T -variety). In this setting, it is possible to define a ring PET (X) of piecewise expo-
nential functions. Indeed, let K0

T (X
T ) = ⊕x∈XTRx, where Rx is a copy of the representation

ring R(T ). We then define PET (X) as the subalgebra of K0
T (X

T ) given by

PET (X) = {(f1, . . . , fm) ∈ ⊕x∈XTRx | fi ≡ fj mod 1− e−χi,j}
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where xi and xj are the two distinct fixed points in the closure of the one-dimensional T -orbit
Ci,j , and χi,j is the character of T associated with Ci,j . This character is uniquely determined
up to sign (permuting the two fixed points changes χi,j to its opposite). In light of the CS
property, one obtains ([VV, U]):

GKM theorem. Let X be a smooth T -skeletal variety. Then i∗T : K0
T (X) → K0

T (X
T )

induces an isomorphism between K0
T (X) and PET (X). If X is also projective, then K0

T (X)
is a free R(T )-module of rank |XT |.

Thus far, it is clear that to any complete T -skeletal variety X we can associate the ring
PET (X), regardless of whether X is smooth or not. (In fact, if Pε(M) is a group embedding,
then PET×T (Pε(M)) has been explicitly written down in [G2].) Nonetheless, as it steams
from the previous facts, PET (X) does not always describe K0

T (X). This phenomena yields
a natural question. Let X be a T -skeletal variety. What kind of information does PET (X)
describe? If not equivariant K-theory, is it still reasonable to expect that PET (X) encodes
certain topological/geometric information that is common to all possible T -equivariant reso-
lution of singularities of X? The work of Payne [P] and Anderson-Payne [AP], inspired, in
turn, by the works of Fulton-MacPherson-Sottile-Sturmfels [FMSS] and Totaro [T], gives a
positive answer to these questions when X is a toric variety. Namely, the GKM data (i.e.
PET (X)) of a toric variety encodes all the information needed to reconstruct “Bott-Chern
operators” defined on the structure sheaves OTx of the T -orbit closures Tx ⊆ X (and their
equivariant resolutions). This positive result motivates us. In the pages to follow we will show
that Anderson-Payne’s assertion on toric varieties holds more generally for all T -skeletal va-
rieties. We also obtain a version of Poincaré duality for the equivariant Chow groups of
singular spherical varieties.

2. Statement of the problems and results

During my research visit to the Max-Planck-Institut für Mathematik (October-December
2013), I worked on the following problems:

(1) To address the questions posted at the end of the Introduction, I establish localization
theorems of Borel-Atiyah-Segal type for Fulton-MacPherson’s equivariant operational
Chow rings [Fu], [EG] and Anderson-Payne’s operational K-theory [AP]. Conse-
quently, I establish GKM theory for equivariant operational K-theory (see Section
3). This complements my results in [G3].

(2) I provide a notion of rational smoothness for the Chow groups of possibly singular
schemes. My results yield a version of Poincaré duality for the operational Chow
rings of possibly singular group embeddings. This extends some results on simplicial
toric varieties to more general varieties. Brion’s notion of equivariant multiplicities
[Br1] as well as Renner’s combinatorial classification of group embeddings [R1], [R3]
play a crucial role in my work.

In future work I plan to apply the machinery developed in items (1) and (2) to better
understand the geometry, topology and combinatorics of spherical varieties. Below is a more
detailed account of the progress I have made on these problems.

3. Localization theorem of Borel-Atiyah-Segal type for equivariant
operational theories

Fulton-MacPherson [Fu] devised a machinery that produces a “cohomology” theory out of
a homology theory. This “cohomology” has all the formal properties one could hope for, and
it is well suited for the study of singular schemes. Taking as input KT

0 (−), Anderson-Payne
[AP] obtained a theory that is very well suited for computations. Let X be a T -scheme.
The T -equivariant operational K-theory ring of X, denoted opK0

T (X), is defined as follows:
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an element c ∈ opK0
T (X) is a collection of homomorphisms cf : KT

0 (Y ) → KT
0 (Y ) for every

T -map f : Y → X. These homomorphisms must be compatible with (equivariant) proper
pushforward, flat pullback and Gysin morphisms [AP]. For any X, the ring structure on
opK0

T (X) is given by composition of such homomorphisms. With this product, opK0
T (X)

becomes an associative commutative ring with unit. Moreover, opK0
T (X) is contravariantly

functorial in X. Other salient functorial properties of opK0
T (−) are:

(a) For any X, there is a canonical homomorphism K0
T (X) → opK0

T (X) of R(T )-algebras,
sending a class γ to the operator [γ] which acts via [γ]g = g∗γ · ξ, for any T -map g :
Y → X and ξ ∈ KT

0 (Y ). There is also a canonical map opK0
T (X) → KT

0 (X) defined
by c 7→ cidX [OX ], where OX is the structure sheaf of X. Put together, they provide a
factorization of the canonical homomorphism K0

T (X) → KT
0 (X).

(b) When X is smooth, the homomorphisms K0
T (X) → opK0

T (X) → KT
0 (X) are all isomor-

phisms of R(T )-modules.

(c) If π : X̃ → X is an equivariant envelope (that is, any T -invariant subvariety of X is the

birational image of a T -invariant subvariety of X̃), then the following sequence is exact

0 → opK0
T (X) → opK0

T (X̃) → opK0
T (X̃ ×X X̃).

In my preprint [G4] I use property (c) above, together with resolution of singularities and

the fact that π : X̃H → XH is also an envelope (for any subtorus H ⊂ T ), to establish:

(I) The localization theorem of Borel-Atiyah-Segal type for opK0
T (X), whenever X is a

complete T -scheme.

(II) The CS property for opK0
T (X), where X is any complete T -scheme.

(III) If X is a singular T -skeletal variety, then opK0
T (X) ' PET (X). Moreover, if X is

G-spherical, then, using a result of [AP], the R(T )-module structure on opK0
T (X) is

determined by the identity

opK∗
T (X) ' HomR(T )(K

T
0 (X), R(T ))

(see [G3] for the corresponding statement in operational Chow groups). In particular,
when X is G-spherical, we show via “topology” that the ring PET (X) is a finitely
generated R(T )-module.

Together with the combinatorial results of [G2], this yields an explicit extension of Anderson-
Payne’s work on toric varieties to all projective group embeddings. Our results are being
collected in the preprint [G4], to be available on the arxiv by mid-January 2014 (a copy will
also be sent to MPIM). We should remark that our arguments easily adapt to equivariant
operational Chow groups (with Q-coefficients). This is used next.

4. On a notion of rational smoothness for Chow groups. Equivariant
Poincaré duality.

Let X be a T -scheme. Denote by AT
∗ (X) the T -equivariant Chow group of X ([EG]).

Throughout this section, Chow groups are taken with Q-coefficients. When X is smooth, the
group AT

∗ (X) admits a natural product by intersection of cycles. In this case, we denote by
A∗

T (X) the corresponding ring. Set S := A∗
T (pt). It can be identified with the polynomial

ring on the character group of T . Pullback by the projection X → pt gives a natural map
S → AT

∗ (X). In this way, AT
∗ (X) becomes a S-module (or a S-algebra if X is smooth).

Let X be a T -scheme. Call a fixed point x ∈ X non-degenerate if all weights of T in
the tangent space TxX are non-zero. Likewise, call a fixed point x ∈ X attractive if there
exists a one-parameter subgroup λ : Gm → T and a Zariski neighborhood U of x, such that
lim
t→0

λ(t) · y = x for all points y in U . Clearly, attractive fixed points are non-degenerate. To
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study possibly singular varieties, Brion [Br1] developed a notion of equivariant multiplicity
at non-degenerate fixed points. This notion is crucially used in our work.

Now let X be an affine T -variety with an attractive fixed point x. It follows from [Br3] that
X = {y ∈ X | limt→0 λ(t) y = x0}, for a suitable one-parameter subgroup λ. We say that
(X,x) is an attractive cell in this situation. If (X,x) is an attractive cell, then the geometric
quotient

P(X) := [X \ {x}]/Gm

exists and we call it the link at x. This is a projective variety since X is assumed to be
affine. In [G1] we studied the links of complex rationally smooth cells. Recall that a complex
algebraic variety X, of dimension n, is called rationally smooth if

Hm(X,X − {y}) = (0) if m 6= 2n, and H2n(X,X − {y}) = Q.

for all x ∈ X. Such varieties satisfy Poincaré duality with rational coefficients. If (X,x) is a
complex rational cell, then P(X) is a rational cohomology complex projective space. Many
important results on the equivariant cohomology of T -varieties admitting a paving by rational
cells are provided in [G1], for instance, such varieties have no cohomology in odd degrees and
their equivariant cohomology is a free S-module. Our goal is to provide analogues of these
notions, and a version of Poincaré duality, in the context of equivariant Chow groups. This
program was started in [G3].

Definition. Let (X,x) be an attractive cell of dimension n. We say that X is an algebraic
rational cell if and only if

A∗(P(X)) ' A∗(Pn−1).

To see how this “local” notion is well-suited for the study of more general schemes, we
need to introduce a few extra tools from [B]. Let X be a complete T -scheme and let XT be
the subscheme of fixed points. Assume that XT consists of finitely many isolated points. Let
XT = {x1, . . . , xm}. Pick a generic one-parameter subgroup γ : Gm → T , i.e. Xγ = XT .
For each i = 1, . . . ,m, define Wi(γ) := {x ∈ X | limt→0 γ(t)x = xi}. Clearly X =

⊔
Wi(γ),

and each Wi(γ) is a locally closed T -invariant subscheme of X. The decomposition {Wi(γ)}
is called the BB-decomposition of X (associated to γ), and the Wi(γ)’s are called cells of
the decomposition. A BB-decomposition {Wi(γ)} is called filtrable, if there exists a finite
increasing sequence X0 ⊂ X1 ⊂ . . . ⊂ Xm of T -invariant closed subschemes of X such that:

a) X0 = ∅, Xm = X,

b) Xj \Xj−1 is a cell of the decomposition {Wi(γ)}, for each j = 1, . . . ,m.

Definition. Let X be a variety equipped with a T -action. We say that X is Q-filtrable if
the following two conditions hold: (1) the fixed point set XT is finite, and (2) there exists a
generic one-parameter subgroup γ : Gm → T for which the associated BB-decomposition of
X is filtrable and the corresponding cells are (affine) algebraic rational cells.

The next result, recorded in [G3], shows that algebraic rational cells are a good substitute
for the notion of affine space in the study of equivariant Chow groups of singular varieties.

Theorem. Let X be a Q-filtrable T -variety. Then the rational T -equivariant Chow group
AT

∗ (X)Q is a free SQ-module of rank |XT |. In fact, it is freely generated by the classes of the
closures of the cells Wi(γ). Furthermore, the ordinary rational Chow group A∗(X)Q is also

freely generated by the classes of the cell closures Wi(γ).

Remarkably, when k = C, examples of projective Q-filtrable varieties are rationally smooth
group embeddings. This yields purely algebraic proofs of the topological results of [G2]. We
should point out that the class of Q-filtrable varieties is strictly larger than that of rationally
smooth T -varieties (see [G5] for more details).

Section 3 shows that Fulton-MacPherson’s equivariant operational Chow groups are well-
adapted to the study of singular spaces. A more precise statement is given below.
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Theorem [G3]. Let X be a G-spherical variety. Let T be a maximal torus of G. Then the
equivariant Kronecker duality map

KT : opA∗
T (X) −→ HomS(A

T
∗ (X), AT

∗ (pt)) α 7→ (β 7→
∫
X
(β ∩ α))

is an isomorphism of S-modules. In particular, opA∗
T (X) is a torsion free finitely generated

S-module.

For a T -scheme X, there is also an equivariant Poincaré duality map:

PT : opAk
T (X) → AT

n−k(X), z 7→ z ∩ [X].

Our upcoming paper [G5] is motivated by this question: Let X be G-spherical variety. As-
sume that X is Q-filtrable. When is PT an isomorphism? An answer is given next.

Theorem [G5]. Let X be a Q-filtrable spherical variety. If all equivariant multiplicities are
non-zero (e.g. all fixed points are attractive), then the equivariant Poincaré duality map is
injective. If moreover the Chow homology Betti numbers satisfy Ak(X) = An−k(X), then the
equivariant Poincaré duality map is also surjective (over Q).

In [G5] we give some combinatorial characterizations of Q-filtrability, and provide a de-
scription of the operational Chow rings of spherical varieties (generalizing [Br1]). The results
of [G5] are modeled after the topological results of Brion [Br4]. His results characterize
Poincaré duality in equivariant cohomology. My work is inspired by his, and it is a contri-
bution towards characterizing Poincaré duality in intersection theory. The pioneering work
of Vistoli [Vis] on Alexander schemes is another source of inspiration for us. The paper [G5]
will be available on the arxiv by the end of January 2014 (and a copy will be sent to MPIM).

5. Upcoming preprints and delivered talks

(1) Upcoming preprints (written almost entirely at MPIM):
(a) Localization in equivariant operational theories and the Chang-Skjelbred princi-

ple [G4].
(b) On a notion of rational smoothness for intersection theory [G5].
(c) Equivariant intersection theory on group embeddings.

(2) Delivered talks:
(a) December 5th: Heinrich-Heine-Universität Düsseldorf.

Organizer: Nicolas Perrin.
Title: Equivariant intersection theory of group embeddings.

(b) December 10th: MPIM, Germany. Seminar on Algebra, Geometry and Physics.
Organizer: Yu. Manin.
Title: Equivariant Chow cohomology of spherical varieties.

6. Visitors and other projects planned

(1) From October 30th to November 4th, Matteo Paganin (Sabancı Üniversitesi, Istan-
bul) visited me at MPIM. Our plan is to understand the equivariant operational
algebraic cobordism [GK] of singular spherical varieties, using my version of GKM
theory. Since equivariant algebraic cobordism is a universal cohomology theory, we
anticipate that the results of this project would shed some more light on the structure
of the associated formal group laws. We plan to work on explicit examples.

(2) In future collaboration with Nicolas Perrin (Mathematisches Institut, Düsseldorf),
we plan to describe the (equivariant) quantum cohomology and quantum K-theory
of certain spherical varieties (e.g., group embeddings, symmetric spaces) and provide
explicit formulas for the underlying Schubert calculus. Some important results in this
direction have been obtained by Chaput, Manivel and Perrin for the case of minuscule
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homogeneous spaces and rational homogeneous spaces. A crucial ingredient here is the
quantum to classical principle. This principle allows to compute QH∗(X), where X is
a sufficiently nice space, in terms of the singular cohomology of a suitable replacement
Yd, which, in many cases, turns out to be a spherical variety. By my previous work,
we anticipate a GKM presentation of H∗

T (Yd) and H∗(Yd). Such description would be
a fundamental step towards implementing a Schubert calculus in QH∗(X). Indeed,
we aim at providing (geometric) bases for these rings and formulas to multiply them.
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