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Summary. — Let 5 = #; + #, be the Hilbert space of an n-particle
quantum system, where 7 is spanned by the bound states and J#,
corresponds to the continuous spectrum of the Hamiltonian. It is shown
that the wave functions which are in some sense localized in space and
energy form a compaet set in J. This is used to prove that a wave
packet y remains localized at finite distance for all time if y € %, and
that it disappears at infinity if y € #7,.

1. — Introduction and statement of results.

Let H be the Hamiltonian describing an n-particle system in potential-scat-
tering theory, H acts on a Hilbert space #'= L*(R"). We write #'= #, 4 #,
where ', is spanned by the bound states (eigenfunctions of H) and #, is the
orthogonal complement of #;. One expects that if p € #,, the wave function

) y = exp[—iHt]y

will remain at all times concentrated mostly in some bounded region of R”.
On the other hand if y €, one expects that the probability of finding the
system in any fixed bounded region of RY will vanish for large times. The
aim of this note is to give a precise statement and proof of these facts. Remark-
ably, the proof depends very little on the detailed structure of the interaction;
it is in particular valid for the case of potentials which are bounded below,

(*) Permanent address: IHES, 91, Bures-sur-Yvette.



656 D. RUELLE

whether or not these potentials vanish at infinity. What is used is the fact (")
that wave functions which are in some sense localized in a bounded region of
R¥ form a compact set in #= L*(R") (see Proposition 1 and its corollary
in Sect. 3).

We postpone to Sect. 2 the description of conditions on the interaction,
and state immediately our main result.

Theorem. Let H be defined according to A) or B) of Sect. 2. Let wef.

a) yesH, if and only if for each &> 0 there exists an R >0 such that

(2) sup f delp,|2 <e.

|z|=r

b) weH, if and only if, for each R> 0,

T

1
(3) }1_1)& det f de|y(@)j2=0.

o Je<r

2. — Definition of the Hamiltonian.
The Hamiltonian is formally defined by
4) H=—-A+V

acting on #= L*(RY). Here Ais the Laplace operator and V is a multiplicative
potential. We think of H as describing the system after elimination of the
motion of the centre of mass; thus, for » particles in v dimensions, N=(n — 1)».
We describe two situations where H can be defined naturally as a self-adjoint
operator.

A) Let the (real) function V be bounded below. Assume also that there
exists a set ScRY such that

a) the complement of § in RY has Lebesgue measure zero.
b) if €8, V is square integrable in some neighbourhood of .

(*) The importance of such a property in relativistic quantum mechanics has been
emphasized by Haac and Swikca (1). I was encouraged by Haac to publish the present
results, obtained mostly at the end of 1966.

() R. Haag and J. A. Swikca: Comm. Math. Phys., 1, 308 (1965).
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Let D be the space of functions ¢ which are twice differentiable, have com-
pact support and satisfy Ve L3(RY). By our assumptions H is naturally de-
fined on D, and D is dense in #. Furthermore, H is bounded below on D and
can thus be extended to a self-adjoint operator by the method of FRIEDRICHS (*).

B) Let y<3 and V be a sum of pair potentials @,;(x; — x,) such that
@€ L*(R’) + L®(R”). In that case a theorem of Karo () asserts that if ¢
belongs to the domain D of the Laplace operator, then Vg € L*(RY), and that (4)
defines H as a self-adjoint operator on D. Furthermore, if a > 0, there exists
b> 0 such that for all g D.

(5) |Vel <a]bg] +b]g] -

3. - Proofs.

In all the propositions below, it is assumed that H is defined according to
A) or B) of Sect. 2. Let H(A) be the spectral projection of H corresponding to
the interval (—oo, A]; we denote again by E(2) the range of E(1).

Lemma. Given ¢>0, R>0 and A, there exisis a finile-dimensional sub-
space F of H# such that, for all pe E(k),

(®) ol =| [ astyt] — ety

o

|a] < ”

where p, is the component of v along F.
Let first H be defined according to 4); since V is bounded below, there exists
A such that, for all ye E(4,),

(7) (s — Ap)<2p]* .
If H is defined according to (B) we have, using (5)

| Ayl <ty + [Vl <|Hp] +alsp] + bly] .

(*) See Riesz and Nacy (2) Sect. 124.

(%) F. Riesz and B. 8z.-Naay: Legons &’ Analyse Fonctionelle, Académie des Sciences
de Hongrie, 1955.

(**) For this and extensions to k-body potentials and »> 3, see KaTo (®%) and
NELsoN (5).

(®) T. Karo: Trans. Am. Math. Soc., 70, 195 (1951).

(&) T. Kato: Perturbation Theory of Linear Operators (Berlin, 1966).

(®) E. Nerson: Journ. Math. Phys., 5, 332 (1964).
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Hence, taking a<1,

(v, —Ay) <[yl ay] < |9l —ar[|Hy| +b]y]]

and (7) holds again.

N

Let y be the characteristic function of the set {xe RY: S a2 < Rz}, then
i=1
(8) (, 2y) = fdxfw(x)|2-
lel< B

‘Consider now the Hamiltonian
(9) H=—-A— Ay,

with A>2¢-%4; we have by (7) and (8)

(10) (v, Fy) < 13 pli— 1 f daly(@).

lz|< R

‘The part of the spectrum of H below —34e® consists of a finite number of
eigenvalues (*); let F be the space spanned by the corresponding eigenfunctions,
then

(11) (p, Hy)>—$4e2|p]* — A" -

‘Comparison of (10) and (11) yields

a2) Iyl f dalyp () *— e,

lel< B
from which (6) follows.

Proposition 1. Let the real function o on R tend to zero at -+ oo and
(13) 8={yet: |y —EDy|<o@)]y| for all 7} .

Given £¢> 0 and R> 0 there exists a finite-dimensional subspace F of H# such

() A proof of this fact could be obtained by direct eomputation; another prooi,
due to LANFORD, is presented in the Appendix (Proposition 2). An extension to multi-
particle Hamiltonian has been obtained by HuNzIkKER (%).

(®) W. Hunziker: Helv. Phys. Acta, 39, 451 (1966).
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that, for all ye 8,
3
(14) Hwil>[ f dxw(w)lz] eyl
lz]<®

We choose 4, such that 0(4,)<}e. According to the lemma there exists
o finite-dimengional subspace F of # such that, for all y e,

¥
o) B | [ alEinel] e

|z]< &

1
>[ fdx|(E(zo)w)(w)P] —%ellwll-
o] < &
For e 8, we have

[(B)p) el —[vell <l — B(R)y) ] <y — Bl2)y] < kely]

[ [ dxl(E(lo)w)(ﬂf)PT—[ f dx|¢(x)1zr>

l«[<r |lsj< &
. ¥
= | [ astvor— (g > — 10— B =~ clot.
|el<r

Inserting these inequalities into (15) yields (14).
Corollary. Let 8 be given by (14) and

{16) T= {wef:[ fdwllp(a;)}2]%<17(R) for all R>O},

|a|> &

where the real function n tends to zero at + oco. The set ST has compact
closure in .

Notice first that ye T implies || <#(0), therefore S T is bounded, the
compactness follows from (14) and (16).

Proposition 2. Let £>0 and pest; let y, be defined by (1).
a) Given k>0 there ewists a finite-dimensional subspace F of # such
that for all t
b
1) tpol=| [ astpio] .
|z < B

b) Given a finite-dimensional subspace F of # there exists R> 0 such
that for all ¢

3
(18) [ f dwlwt(w)lz] > Iweri—e.

[z]<r
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a) We may assume |yp| = 1. If6(4) = |y — E(A)p|, the set {y,:tc R} is
contained in the set S defined by (13), and (17) follows from Proposition 1.

b) Let (¥°),,<, De an orthonormal basis of F. We choose an ortho-
normal system (§%),_,,, in L*(R") formed by functions with compact support
such that [|p*— §*| <[m]y[|*]"e*. Taking R such that the supports of the §*

are contained in {x: |z| < R}, we have

Hwtl‘H2_82: “Z I(W“7 Wt)l2‘82<§ |(¢“7 "/)t)lzz

which proves (18).
Proposition 3. Let peif.
a) weH, if and only if the set {y,:teR} has compact closure in H.

b) yeH, if and only if for every peH

r
.1
19 tim 7 [alig, oo,
0

For a proof of these statements see JACOBS () Sect. 8.

We come now to the proof of the theorem stated in Sect. 1. According to
Proposition 3 a), y €, if and ounly if, for all ¢ > 0, there is a finite-dimen-
sional subspace F of 5 such that, for all ¢,

(20) 1Pl = v —e.

By Proposition 2, this holds if and only if, for all > 0, there exists B> 0
such that, for all ¢,

[ f dwlwt(w)F]; lp—e,

fol<r

or equivalently

1) [ astpori> oo
le]< R

This proves part a) of the theorem.
According to Proposition 3b), yes#, if and only if, for every finite-

(") K. Jacoss: Lecture Notes on Ergodic Theory, Aarhus Universitet, Aarhus, 1963.
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dimensional subspace F of #,
T
.1 .
(22) ;213) TjdtHWWHZZ 0.
[1]

By Proposition 2, this holds if and only if (3) holds for every E > 0, proving
part &) of the theorem.

APPENDIX (by O. LANFORD)

Proposition 1. Let H, be a positive self-adjoint operator, V a symmetric oper-
ator; suppose that, for some 1,>0, V(2 +H,)"tis an (everywhere defined) com-
pact operator with norm strictly less than one. Then Hy-V is self-adjoint and its
negative part is compact.

It suffices to show that, for all 1> 2,, (A-++H,+V)! is everywhere defined
and bounded, and that the negative part of 1/A—(A+H V) is compact.
For this, it suffices to show that

(A+Hy+ V)= (A+ Hy)*+ T,

where T is compact. (Suppose D,, Dy, ... is an infinite sequence of mutually
orthogonal normalized vectors; then

lim sup (A+Hy+ V)" @, @,) <lim sup (A1+Ho) D, @,) +limsup | 7D, | <1/4,

since | T®,[—0.)
Now

(A+Hy+ V)= (A+ Hy) (1 + V(A + Hy))1 =

8

= A+ H) ' —(A+H) Y (—V(A+Hy)y ) V(A+ Hp) L.

n=0

il

By hypothesis, V(4,+H,)~* is a compact operator of norm strictly less than
one; the same is true of V(14 H,)~! because
V(A +Ho) ™= V(4o + Ho) (A + H,) (A + Hy) ™
and
” (;Lo + Ho)(;~ + Ho)ﬁlﬂ<1 .
Hence, (A+H,+V)*—(A+H,)* is compact, and the proposition is proved.

Proposition 2. Let | be a bounded real-valued square-integrable function on RY;
then the operator —A-+f on L3R¥) has compact negative part.
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By Proposition 1, it will suffice to find A>0 such that f(A—A)" is a
compact operator of norm strictly less than one. Since |f-(A—A) < |f[e:1/2,
it suffices to show that

f-A—24)

is compact for all 1> 0. Since

f-(2— Ay
is a norm limit of operators of the form
f-(A—A)1Py,

where Py is the spectral projection for A onto a compact interval K, it suf-
fices to prove that f-(A— A)1Py is compact. If yx is the characteristic func-
tion of the interval K, then f-(A—A)1P, may be realized as an integral
operator R¥ with kernel
Fil— 1) s 1l K)
N '

The kernel is square-integrable; therefore, f+(1— A)~1Py is a Hilbert-Schmidt
operator and so in particular is compact.

Remark. For N=1,2,3 the operator f-(1—A)1is already Hilbert-Sechmidt,
and its Hilbert-Schmidt norm goes to zero as A1 — co; therefore the condition
that f be bounded is superfluous.

RIASSUNTO (%)

Sia = H#y - H#, lo spazio hilbertiano di un sistema quantistico di » particelle,
in cui S & coperto dagli stati legati e g corrisponde allo spettro continuo del-
I’hamiltoniana. Si dimostra che le funzioni d’onda che sono in un certo genso localizzate
nello spazio e nell’energia formano un insieme compatto in J#. Da cid si dimostra che
un pacchetto d’onde y rimane localizzato ad una distanza finita in tutti gli istanti se
y € Hy, ¢ che scompare all’infinito se yE 7.

(*) Traduzione a cura della Redazione.

3aMevyaHns O CBSI3AHHLIX COCTOMHHAX B TOTEHUHAJILHOH TEOPHH paccesHus.

PesroMe aBTOpPOM HE IIPEICTABIICHO.



