A Remark on Bound States in Potential-Scattering Theory.

D. Ruelle (*)

University of California - Irvine

(ricevuto il 25 Novembre 1968)

Summary. – Let $\mathscr{H}=\mathscr{H}_{\mathcal{B}}+\mathscr{H}_{\mathcal{C}}$ be the Hilbert space of an *n*-particle quantum system, where $\mathscr{H}_{\mathcal{B}}$ is spanned by the bound states and $\mathscr{H}_{\mathcal{C}}$ corresponds to the continuous spectrum of the Hamiltonian. It is shown that the wave functions which are in some sense localized in space and energy form a compact set in \mathscr{H} . This is used to prove that a wave packet ψ remains localized at finite distance for all time if $\psi \in \mathscr{H}_{\mathcal{B}}$, and that it disappears at infinity if $\psi \in \mathscr{H}_{\mathcal{C}}$.

1. - Introduction and statement of results.

Let H be the Hamiltonian describing an n-particle system in potential-scattering theory, H acts on a Hilbert space $\mathscr{H} = L^2(\mathbb{R}^N)$. We write $\mathscr{H} = \mathscr{H}_{\mathbb{B}} + \mathscr{H}_{\mathbb{C}}$ where $\mathscr{H}_{\mathbb{B}}$ is spanned by the bound states (eigenfunctions of H) and $\mathscr{H}_{\mathbb{C}}$ is the orthogonal complement of $\mathscr{H}_{\mathbb{B}}$. One expects that if $\psi \in \mathscr{H}_{\mathbb{B}}$, the wave function

will remain at all times concentrated mostly in some bounded region of \mathbb{R}^N . On the other hand if $\psi \in \mathscr{H}_c$, one expects that the probability of finding the system in any fixed bounded region of \mathbb{R}^N will vanish for large times. The aim of this note is to give a precise statement and proof of these facts. Remarkably, the proof depends very little on the detailed structure of the interaction; it is in particular valid for the case of potentials which are bounded below,

^(*) Permanent address: IHES, 91, Bures-sur-Yvette.

656 D. RUELLE

whether or not these potentials vanish at infinity. What is used is the fact (*) that wave functions which are in some sense localized in a bounded region of \mathbb{R}^N form a compact set in $\mathscr{H} = L^2(\mathbb{R}^N)$ (see Proposition 1 and its corollary in Sect. 3).

We postpone to Sect. 2 the description of conditions on the interaction, and state immediately our main result.

Theorem. Let H be defined according to A) or B) of Sect. 2. Let $\psi \in \mathcal{H}$.

a) $\psi \in \mathcal{H}_{R}$ if and only if for each $\varepsilon > 0$ there exists an R > 0 such that

$$\sup_{t} \int_{|x| \gg R} \mathrm{d}x |\psi_{t}|^{2} < \varepsilon .$$

b) $\psi \in \mathcal{H}_o$ if and only if, for each R > 0,

(3)
$$\lim_{T\to\infty} \frac{1}{T} \int_0^T dt \int_{|x|\leqslant R} dx |\psi_t(x)|^2 = 0.$$

2. - Definition of the Hamiltonian.

The Hamiltonian is formally defined by

$$(4) H = -\Delta + V$$

acting on $\mathcal{H} = L^2(\mathbb{R}^N)$. Here Δ is the Laplace operator and V is a multiplicative potential. We think of H as describing the system after elimination of the motion of the centre of mass; thus, for n particles in v dimensions, N=(n-1)v. We describe two situations where H can be defined naturally as a self-adjoint operator.

- A) Let the (real) function V be bounded below. Assume also that there exists a set $S \subset \mathbb{R}^N$ such that
 - a) the complement of S in R^{N} has Lebesgue measure zero.
 - b) if $x \in S$, V is square integrable in some neighbourhood of x.

^(*) The importance of such a property in relativistic quantum mechanics has been emphasized by Haag and Swieca (1). I was encouraged by Haag to publish the present results, obtained mostly at the end of 1966.

⁽¹⁾ R. HAAG and J. A. SWIECA: Comm. Math. Phys., 1, 308 (1965).

Let D be the space of functions φ which are twice differentiable, have compact support and satisfy $V\varphi \in L^2(\mathbb{R}^N)$. By our assumptions H is naturally defined on D, and D is dense in \mathscr{H} . Furthermore, H is bounded below on D and can thus be extended to a self-adjoint operator by the method of FRIEDRICHS (*).

B) Let $v \leqslant 3$ and V be a sum of pair potentials $\Phi_{ij}(x_j - x_i)$ such that $\Phi_{ij} \in L^2(\mathbb{R}^p) + L^{\infty}(\mathbb{R}^p)$. In that case a theorem of Kato (**) asserts that if φ belongs to the domain D of the Laplace operator, then $V\varphi \in L^2(\mathbb{R}^N)$, and that (4) defines H as a self-adjoint operator on D. Furthermore, if a > 0, there exists b > 0 such that for all $\varphi \in D$.

$$||V\varphi|| \leqslant a||\Delta\varphi|| + b||\varphi||.$$

3. - Proofs.

In all the propositions below, it is assumed that H is defined according to A) or B) of Sect. 2. Let $E(\lambda)$ be the spectral projection of H corresponding to the interval $(-\infty, \lambda]$; we denote again by $E(\lambda)$ the range of $E(\lambda)$.

Lemma. Given $\varepsilon > 0$, R > 0 and λ_0 there exists a finite-dimensional subspace F of \mathcal{H} such that, for all $\psi \in E(\lambda_0)$,

(6)
$$\|\psi_F\| > \left[\int\limits_{|x| < R} \mathrm{d}x |\psi(x)|^2\right]^{\frac{1}{2}} - \varepsilon \|\psi\|,$$

where $\psi_{\mathbf{r}}$ is the component of ψ along F.

Let first H be defined according to A); since V is bounded below, there exists $\bar{\lambda}$ such that, for all $\psi \in E(\lambda_0)$,

$$(\gamma, -\Delta \psi) \leqslant \bar{\lambda} \|\psi\|^2.$$

If H is defined according to (B) we have, using (5)

$$\|\Delta \psi\| \le \|H\psi\| + \|V\psi\| \le \|H\psi\| + a\|\Delta \psi\| + b\|\psi\|.$$

^(*) See Riesz and Nagy (2) Sect. 124.

⁽²⁾ F. Riesz and B. Sz.-Nagy: Leçons d'Analyse Fonctionelle, Académie des Sciences de Hongrie, 1955.

^(**) For this and extensions to k-body potentials and v > 3, see Kato (3.4) and Nelson (5).

⁽³⁾ T. KATO: Trans. Am. Math. Soc., 70, 195 (1951).

⁽⁴⁾ T. Kato: Perturbation Theory of Linear Operators (Berlin, 1966).

⁽⁵⁾ E. Nelson: Journ. Math. Phys., 5, 332 (1964).

-658 D. RUELLE

Hence, taking a < 1,

$$(\psi, -\Delta \psi) \leqslant \|\psi\| \|\Delta \psi\| \leqslant \|\psi\| (1-a)^{-1} \|H\psi\| + b\|\psi\|$$

and (7) holds again.

Let χ be the characteristic function of the set $\left\{x \in \mathbb{R}^N : \sum_{i=1}^N |x^i|^2 < \mathbb{R}^2\right\}$, then

$$(\psi, \chi \psi) = \int_{|x| < R} \mathrm{d}x |\psi(x)|^2.$$

Consider now the Hamiltonian

$$\tilde{H} = -\Delta - \lambda \chi \,,$$

with $\lambda \geqslant 2\varepsilon^{-2}\bar{\lambda}$; we have by (7) and (8)

(10)
$$(\psi, \tilde{H}\psi) \leqslant \frac{1}{2} \lambda \varepsilon^2 \|\psi\|^2 - \lambda \int_{|x| < R} \mathrm{d}x |\psi(x)|^2.$$

The part of the spectrum of \widetilde{H} below $-\frac{1}{2}\lambda\epsilon^2$ consists of a finite number of eigenvalues (*); let F be the space spanned by the corresponding eigenfunctions, then

$$(\psi, \widetilde{H}\psi) \geqslant -\frac{1}{2} \lambda \varepsilon^2 \|\psi\|^2 - \lambda \|\psi_F\|^2.$$

Comparison of (10) and (11) yields

(12)
$$\|\psi_F\|^2 \geqslant \int_{|x| < R} \mathrm{d}x |\psi(x)|^2 - \varepsilon^2 \|\psi\|^2 ,$$

from which (6) follows.

Proposition 1. Let the real function δ on R tend to zero at $+\infty$ and

(13)
$$S = \{ \psi \in \mathcal{H} : \| \psi - E(\lambda) \psi \| \leqslant \delta(\lambda) \| \psi \| \text{ for all } \lambda \}.$$

Given $\varepsilon>0$ and R>0 there exists a finite-dimensional subspace F of ${\mathscr H}$ such

^(*) A proof of this fact could be obtained by direct computation; another proof, due to Lanford, is presented in the Appendix (Proposition 2). An extension to multiparticle Hamiltonian has been obtained by Hunziker (6).

⁽⁶⁾ W. Hunziker: Helv. Phys. Acta, 39, 451 (1966).

that, for all $\psi \in S$,

$$\|\psi_F\| \geqslant \left[\int_{\|x\| < R} \mathrm{d}x |\psi(x)|^2\right]^{\frac{1}{2}} - \varepsilon \|\psi\|.$$

We choose λ_0 such that $\delta(\lambda_0) \leqslant \frac{1}{3}\varepsilon$. According to the lemma there exists a finite-dimensional subspace F of \mathscr{H} such that, for all $\psi \in \mathscr{H}$,

$$(15) \qquad \| \left(E(\lambda_0) \psi \right)_F \| \geqslant \left[\int\limits_{|x| < R} \mathrm{d}x | \left(E(\lambda_0) \psi \right)(x)|^2 \right]^{\frac{1}{2}} - \frac{1}{3} \varepsilon \| E(\lambda_0) \psi \| \geqslant$$

$$\geqslant \left[\int\limits_{|x| < R} \mathrm{d}x | \left(E(\lambda_0) \psi \right)(x)|^2 \right]^{\frac{1}{2}} - \frac{1}{3} \varepsilon \| \psi \|.$$

For $\psi \in S$, we have

$$\begin{split} & \| \big(E(\lambda_0) \psi \big)_F \| - \| \psi_F \| \leqslant \| \big(\psi - E(\lambda_0) \psi \big)_F \| \leqslant \| \psi - E(\lambda_0) \psi \| \leqslant \frac{1}{3} \varepsilon \| \psi \| , \\ & \left[\int\limits_{|x| < R} \mathrm{d}x \big| \big(E(\lambda_0) \psi \big)(x) \big|^2 \right]^{\frac{1}{2}} - \left[\int\limits_{|x| < R} \mathrm{d}x |\psi(x)|^2 \right]^{\frac{1}{2}} \geqslant \\ & \geqslant - \left[\int\limits_{|x| < R} \mathrm{d}x |\psi(x) - \big(E(\lambda_0) \psi \big)(x) \big|^2 \right]^{\frac{1}{2}} \geqslant - \| \psi - E(\lambda_0) \psi \| \geqslant - \frac{1}{3} \varepsilon \| \psi \| . \end{split}$$

Inserting these inequalities into (15) yields (14).

Corollary. Let S be given by (14) and

(16)
$$T = \left\{ \psi \in \mathcal{H} : \left[\int_{|x| > R} \mathrm{d}x |\psi(x)|^2 \right]^{\frac{1}{2}} \leqslant \eta(R) \text{ for all } R \geqslant 0 \right\},$$

where the real function η tends to zero at $+\infty$. The set $S \cap T$ has compact closure in \mathscr{H} .

Notice first that $\psi \in T$ implies $\|\psi\| \leq \eta(0)$, therefore $S \cap T$ is bounded, the compactness follows from (14) and (16).

Proposition 2. Let $\varepsilon > 0$ and $\psi \in \mathcal{H}$; let ψ_{ε} be defined by (1).

a) Given R>0 there exists a finite-dimensional subspace F of ${\mathscr H}$ such that for all t

(17)
$$\|\psi_{tF}\| \geqslant \left[\int_{|x|\leq R} \mathrm{d}x |\psi_{t}(x)|^{2}\right]^{\frac{1}{2}} - \varepsilon.$$

b) Given a finite-dimensional subspace F of $\mathcal H$ there exists R>0 such that for all t

(18)
$$\left[\int_{|x| < R} \mathrm{d}x |\psi_t(x)|^2\right]^{\frac{1}{2}} \geqslant \|\psi_{tF}\| - \varepsilon.$$

660 D. RUELLE

- a) We may assume $\|\psi\| = 1$. If $\delta(\lambda) = \|\psi E(\lambda)\psi\|$, the set $\{\psi_t : t \in R\}$ is contained in the set S defined by (13), and (17) follows from Proposition 1.
- b) Let $(\psi^{\alpha})_{1 \leqslant \alpha \leqslant m}$ be an orthonormal basis of F. We choose an orthonormal system $(\tilde{\psi}^{\alpha})_{1 \leqslant \alpha \leqslant m}$ in $L^{2}(R^{N})$ formed by functions with compact support such that $\|\psi^{\alpha} \tilde{\psi}^{\alpha}\| \leqslant [m\|\psi\|^{2}]^{-1} \varepsilon^{2}$. Taking R such that the supports of the $\tilde{\psi}^{\alpha}$ are contained in $\{x : |x| < R\}$, we have

$$\begin{split} \|\psi_{tF}\|^2 - \varepsilon^2 &= \sum_{\alpha} |(\psi^{\alpha}, \psi_t)|^2 - \varepsilon^2 \leqslant \sum_{\alpha} |(\tilde{\psi}^{\alpha}, \psi_t)|^2 = \\ &= \sum_{\alpha} \left| \int\limits_{|x| < R} \mathrm{d}x \, \tilde{\psi}^{\alpha}(x)^* \, \psi_t(x) \right|^2 \leqslant \int\limits_{|x| < R} \mathrm{d}x |\psi_t(x)|^2 \,, \end{split}$$

which proves (18).

Proposition 3. Let $\psi \in \mathcal{H}$.

- a) $\psi \in \mathcal{H}_{\mathbb{R}}$ if and only if the set $\{\psi_t : t \in \mathbb{R}\}$ has compact closure in \mathcal{H} .
- b) $\psi \in \mathcal{H}_{\sigma}$ if and only if for every $\varphi \in \mathcal{H}$

(19)
$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\!\mathrm{d}t|(\varphi,\psi_t)|^2=0.$$

For a proof of these statements see Jacobs (7) Sect. 8.

We come now to the proof of the theorem stated in Sect. 1. According to Proposition 3 a), $\psi \in \mathcal{H}_B$ if and only if, for all $\varepsilon > 0$, there is a finite-dimensional subspace F of \mathcal{H} such that, for all t,

$$\|\psi_{tF}\| \geqslant \|\psi_{t}\| - \varepsilon.$$

By Proposition 2, this holds if and only if, for all $\varepsilon > 0$, there exists R > 0 such that, for all t,

$$\left[\int\limits_{|x|<\,R}\mathrm{d}x|\psi_{\,t}(x)|^2\right]^{\frac{1}{2}}\!\!\gg\!\|\psi_{\,t}\|-\,\varepsilon\;,$$

or equivalently

(21)
$$\int_{|x| < R} \mathrm{d}x |\psi_t(x)|^2 \gg \|\psi_t\|^2 - \varepsilon.$$

This proves part a) of the theorem.

According to Proposition 3 b), $\psi \in \mathcal{H}_{\sigma}$ if and only if, for every finite-

⁽⁷⁾ K. JACOBS: Lecture Notes on Ergodic Theory, Aarhus Universitet, Aarhus, 1963.

dimensional subspace F of \mathcal{H} ,

(22)
$$\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} dt \|\psi_{tF}\|^{2} = 0.$$

By Proposition 2, this holds if and only if (3) holds for every R > 0, proving part b) of the theorem.

Proposition 1. Let H_0 be a positive self-adjoint operator, V a symmetric operator; suppose that, for some $\lambda_0 > 0$, $V(\lambda_0 + H_0)^{-1}$ is an (everywhere defined) compact operator with norm strictly less than one. Then $H_0 + V$ is self-adjoint and its negative part is compact.

It suffices to show that, for all $\lambda \ge \lambda_0$, $(\lambda + H_0 + V)^{-1}$ is everywhere defined and bounded, and that the negative part of $1/\lambda - (\lambda + H_0 + V)^{-1}$ is compact. For this, it suffices to show that

$$(\lambda + H_0 + V)^{-1} = (\lambda + H_0)^{-1} + T$$

where T is compact. (Suppose $\Phi_1, \Phi_2, ...$ is an infinite sequence of mutually orthogonal normalized vectors; then

$$\limsup_n \left((\lambda + H_0 + V)^{-1} \boldsymbol{\Phi}_n, \boldsymbol{\Phi}_n \right) \leqslant \limsup_n \left((\lambda + H_0)^{-1} \boldsymbol{\Phi}_n, \boldsymbol{\Phi}_n \right) + \limsup_n \|T\boldsymbol{\Phi}_n\| \leqslant 1/\lambda,$$

since
$$||T\Phi_n|| \to 0$$
.)

$$\begin{split} (\lambda + H_0 + V)^{-1} &= (\lambda + H_0)^{-1} \big(1 + V(\lambda + H_0)^{-1} \big)^{-1} = \\ &= (\lambda + H_0)^{-1} - (\lambda + H_0)^{-1} \sum_{n=0}^{\infty} \big(-V(\lambda + H_0)^{-1} \big)^n \, V(\lambda + H_0)^{-1} \, . \end{split}$$

By hypothesis, $V(\lambda_0 + H_0)^{-1}$ is a compact operator of norm strictly less than one; the same is true of $V(\lambda + H_0)^{-1}$ because

$$V(\lambda + H_0)^{-1} = V(\lambda_0 + H_0)^{-1}(\lambda_0 + H_0)(\lambda + H_0)^{-1}$$

and

$$\|(\lambda_0 + H_0)(\lambda + H_0)^{-1}\| \leqslant 1$$
.

Hence, $(\lambda + H_0 + V)^{-1} - (\lambda + H_0)^{-1}$ is compact, and the proposition is proved. Proposition 2. Let f be a bounded real-valued square-integrable function on \mathbb{R}^N ; then the operator $-\Delta + f$ on $L^2(\mathbb{R}^N)$ has compact negative part. 662 D. RUELLE

By Proposition 1, it will suffice to find $\lambda > 0$ such that $f(\lambda - \Delta)^{-1}$ is a compact operator of norm strictly less than one. Since $||f \cdot (\lambda - \Delta)^{-1}|| \le ||f||_{\infty} \cdot 1/\lambda$, it suffices to show that

$$f \cdot (\lambda - \Delta)^{-1}$$

is compact for all $\lambda > 0$. Since

$$f \cdot (\lambda - \Delta)^{-1}$$

is a norm limit of operators of the form

$$f \cdot (\lambda - \Delta)^{-1} \mathbf{P}_{\kappa}$$
,

where P_{κ} is the spectral projection for Δ onto a compact interval K, it suffices to prove that $f \cdot (\lambda - \Delta)^{-1} P_{\kappa}$ is compact. If χ_{κ} is the characteristic function of the interval K, then $f \cdot (\lambda - \Delta)^{-1} P_{\kappa}$ may be realized as an integral operator R^{κ} with kernel

$$\tilde{f}(k'-k) \frac{1}{\lambda+k^2} \chi_{\mathbb{R}}(-k^2)$$
.

The kernel is square-integrable; therefore, $f \cdot (\lambda - \Delta)^{-1} P_{\kappa}$ is a Hilbert-Schmidt operator and so in particular is compact.

Remark. For N=1,2,3 the operator $f \cdot (\lambda - \Delta)^{-1}$ is already Hilbert-Schmidt, and its Hilbert-Schmidt norm goes to zero as $\lambda \to \infty$; therefore the condition that f be bounded is superfluous.

RIASSUNTO (*)

Sia $\mathcal{H} = \mathcal{H}_B + \mathcal{H}_C$ lo spazio hilbertiano di un sistema quantistico di n particelle, in cui \mathcal{H}_B è coperto dagli stati legati e \mathcal{H}_σ corrisponde allo spettro continuo dell'hamiltoniana. Si dimostra che le funzioni d'onda che sono in un certo senso localizzate nello spazio e nell'energia formano un insieme compatto in \mathcal{H} . Da ciò si dimostra che un pacchetto d'onde ψ rimane localizzato ad una distanza finita in tutti gli istanti se $\psi \in \mathcal{H}_B$, e che scompare all'infinito se $\psi \in \mathcal{H}_C$.

Замечания о связанных состояниях в потенциальной теории рассеяния.

Резюме автором не представлено.

^(*) Traduzione a cura della Redazione.