GENERALIZED ZETA-FUNCTIONS FOR AXIOM A BASIC SETS

BY D. RUELLE

Communicated October 15, 1975

Let X be a set, $f: X \mapsto X$ a map, $\varphi: X \mapsto C$ a complex-valued function. We write formally

$$D(\varphi) = \exp\left[-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\xi \in \operatorname{Fix} f^n} \prod_{k=0}^{n-1} \varphi(f^k \xi)\right]$$

Taking φ constant, i.e. replacing φ by $z \in C$, we can interpret 1/D(z) as a zeta-function proved to be rational for Axiom A diffeomorphisms by Guckenheimer and Manning [6].

Similarly, if (f^t) is a flow on X, we write formally

$$d(A) = \prod_{\gamma} \left[1 - \exp \int_{0}^{\lambda(\gamma)} A(f^{t}x_{\gamma}) dt \right]$$

where the product extends over the periodic orbits γ of the flow, $\lambda(\gamma)$ is the prime period of γ and x_{γ} a point of γ .

In this note we indicate analyticity properties of $A \rightarrow D(e^A)$ or $A \rightarrow d(A)$ for diffeomorphisms or flows satisfying Smale's Axiom A, assuming only that A is Hölder continuous. Our results hold in particular for Anosov diffeomorphisms and flows, and when A is C^1 . Stronger properties of meromorphy hold under suitable assumptions of real-analyticity and will be published elsewhere by P. Cartier and the author.

Let Λ be a basic set for a C^1 diffeomorphisms or flow satisfying Smale's Axiom A (see [13]). Choosing a Riemann metric d, and $\alpha \in (0, 1)$ we let C^{α} be the Banach space of real Hölder continuous functions of exponent α , with the norm

$$||A||_{\alpha} = \sup \left\{ |A(x)| + \frac{|A(y) - A(x)|}{(d(x, y))^{\alpha}} : x, y \in \Lambda \text{ and } x \neq y \right\}$$

We denote by $C_{\mathbf{C}}^{\alpha}$ the corresponding space of complex functions.

1. THEOREM. Let the Axiom A diffeomorphism f restricted to the basic set Λ be topologically mixing. We denote by P(A) the (topological) pressure of a real continuous function A on Λ (see [8], [14], [4]). There is a continuous real function R on $C_{\rm C}^{\alpha}$ satisfying

AMS (MOS) subject classifications (1970). Primary 58F20; Secondary 82A05.

Copyright © 1976, American Mathematical Society

$$R(A) \ge \exp\left[-P(\operatorname{Re} A)\right] > 0,$$

$$R(A + c) = e^{-\operatorname{Re} c}R(A) \quad \text{when } c \in \mathbf{C}$$

and such that

(a) if $A \in C_{\mathbf{C}}^{\alpha}$, the following power series in z,

$$D(ze^{A}) = \exp\left[-\sum_{m=1}^{\infty} \frac{z^{m}}{m} \sum_{x \in \operatorname{Fix} f^{m}} \exp\sum_{k=0}^{m-1} A(f^{k}x)\right]$$

converges for |z| < R(A). The function $A \mapsto D(e^A)$ is analytic in $\{A \in C^{\alpha}_{\mathbb{C}} : R(A) > 1\}$.

(b) If $A \in C^{\alpha}$, then $R(A) > \exp[-P(A)]$, and $z \mapsto D(ze^{A})$ has only one zero in $\{z : |z| < R(A)\}$. This zero is simple and located at $\exp[-P(A)]$.

We shall also write P_f , R_f , D_f instead of P, R, D, to indicate the dependence on f.

We outline the proof of Theorem 1. First suppose that (Λ, f) is a subshift of finite type (see [13]). Then the theorem can be proved by the "transfer matrix" method of statistical mechanics (see [7], [1], [12], [9], [10]). The general case reduces to that one: using a Markov partition for Λ (see [11], [2]) one can, by a combinatorial lemma of Manning [6], write

$$D_f(ze^A) = \prod_{i \in I} \left[D_{\tau_i}(ze^{A \circ \pi_i}) \right]^{s_i}.$$

In this formula the index set *I* is finite, $s_i = \pm 1$, the τ_i are shifts acting on spaces Ω_i and the $\pi_i : \Omega_i \mapsto \Lambda$ are Holder continuous maps such that $\pi_i \tau_i = f\pi_i$. Furthermore there is an index $1 \in I$ such that $s_1 = +1$ and

$$P_f = P_{\tau_1} \circ \pi_1 > P_{\tau_i} \circ \pi_i \quad \text{if } i \neq 1$$

 $[\pi_1$ defines the symbolic dynamics associated with the Markov partition; therefore $P_f = P_{\tau_1} \circ \pi_1$ (see for instance [4]). If $i \neq 1, \pi_i \Omega_i \neq \Lambda$ and therefore the pressure of f restricted to $\pi_i \Omega_i$ is $< P_f$. This gives bounds on f-periodic points in $\pi_i \Omega_i$, and therefore on τ_i -periodic points in Ω_i , implying $P_{\tau_i} \circ \pi_1 > P_{\tau_i} \circ \pi_i$]. The conditions of the theorem are satisfied if we take

$$R_f(A) = \min\left\{ R_{\tau_1}(A \circ \pi_1), \min_{i \neq 1} \exp(-P_{\tau_i}(\operatorname{Re} A \circ \pi_i)) \right\}$$

COROLLARY. P is a real-analytic function on C^{α} ; $e^{P(A)}$ is the radius of convergence of the series

$$\sum_{m=1}^{\infty} \frac{z^m}{m} \sum_{x \in K_m} \exp \sum_{k=0}^{m-1} A(f^k x)$$

where K_m consists of the f-periodic points of prime period m.

2. THEOREM. Let Λ be a basic set for an Axiom A flow (f^t). We denote by P(A) the topological pressure of a real continuous function A on Λ (see [5]). There is a continuous real function $r \ge 0$ on $C_{\mathbf{C}}^{\alpha}$ such that:

(a) if $A \in C^{\alpha}_{\mathbb{C}}$, the product

$$d(A - u) = \prod_{\gamma} \left[1 - \exp \int_{0}^{\lambda(\gamma)} (A(f^{t}x_{\gamma}) - u) dt \right]$$

is convergent for $\operatorname{Re} u > P(\operatorname{Re} A)$ and extends to an analytic function of u for $|u - P(\operatorname{Re} A)| < r(A)$. The function d is analytic in $\{A \in C^{\alpha}: P(\operatorname{Re} A) < r(A)\}$;

(b) If $A \in C^{\alpha}$, then r(A) > 0, and $u \mapsto d(A - u)$ has only one zero in {u: Re u > P(A) or |u - P(A)| < r(A)}. This zero is simple and located at P(A).

The proof is based on a technique of counting periodic orbits due to Bowen [3, §5].

COROLLARY. P is a real-analytic function on C^{α} ; P(A) is the abscissa of convergence of the Dirichlet series $\sum_{\gamma} \exp \int_{0}^{\lambda(\gamma)} (A(f^{t}x_{\gamma}) - u) dt.$

REMARK. The functions $z \mapsto D(ze^A)$ of Theorem 1 and $u \mapsto d(A - u)$ of Theorem 2 do not in general extend to meromorphic functions in the whole complex plane. Counterexamples have been constructed by G. Gallavotti (private communication).

REFERENCES

1. H. Araki, Gibbs states of a one dimensional quantum lattice, Comm. Math. Phys. 14 (1969), 120-157. MR 42 #8834.

2. R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 43 #2740.

3. — , Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 49 #4041.

-----, Equilibrium states and the ergodic theory of Anosov diffeomorphisms 4. -(to appear).

5. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.

6. A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215-220. MR 44 #5982.

7. D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267-278. MR 38 #3013.

8. _____, Statistical mechanics on a compact set with Z^{ν} -action satisfying expansiveness and specification, Bull Amer. Math. Soc. 78 (1972), 988-991; Trans. Amer. Math. Soc. 185 (1973), 237-251. MR 47 #4292.

9. ——, A measure associated with Axiom A attractors, Amer. J. Math. (to appear).

10. -----, Notes on classical statistical mechanics (to appear).

11. Ja. G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70-80 = Functional Anal. Appl. 2 (1968), 39-52. MR 40 #3591.

155

12. Ja. G. Sinaĭ, Gibbsian measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4 (166), 21-64 = Russian Math. Surveys 27 (1972), no. 4, 21-70.

13. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; erratum 139, p. 1593.

14. P. Walters, A variational principle for the pressure of continuous transformations (to appear).

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, BURES-SUR-YVETTE, FRANCE

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 82, Number 1, January 1976

ERRATUM, VOLUME 81

On p. 823 of the September 1975 Bulletin the name of Robert L. Anderson was inadvertently included as a panel member for the AMS-MAA Committee on the Training of Graduate Students to Teach. He should have been listed as a panel member for the AMS Committee on Employment and Educational Policy discussion on "Seeking employment outside academia: Views from some who have recently succeeded".