DAVID RUELLE Integral representation of measures associated with a foliation

Publications mathématiques de l'I.H.É.S., tome 48 (1978), p. 127-132. http://www.numdam.org/item?id=PMIHES_1978_48_127_0

© Publications mathématiques de l'I.H.É.S., 1978, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www. ihes.fr/IHES/Publications/Publications.html), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

INTEGRAL REPRESENTATION OF MEASURES ASSOCIATED WITH A FOLIATION

by DAVID RUELLE

To Jean Leray

Let M be a compact differentiable manifold, \mathscr{F} a foliation of codimension k, and \mathscr{S} the set of open submanifolds of dimension k transversal to \mathscr{F} . A transverse measure ρ for \mathscr{F} is a collection of real measures ρ_{Σ} on the $\Sigma \in \mathscr{S}$, such that these measures correspond to each other by the canonical isomorphisms defined by \mathscr{F} . For a discussion of these notions, and applications, see Plante [8], Ruelle and Sullivan [10], Schwartzmann [11], Edwards, Millett and Sullivan [6], Sullivan [14], Garnett [7]. We note that we can, as in [10], assume that \mathscr{F} is only a partial foliation of M, and that the orientation assumptions of [10] are unnecessary here.

We generalize the notion of transverse measure by introducing measures associated with a cocycle. We call *cocycle* a family (f_{τ}) indexed by the canonical isomorphisms, such that:

(a) If τ maps $\Sigma \in \mathscr{S}$ onto $\Sigma' \in \mathscr{S}$, then f_{τ} is a continuous function on Σ' with strictly positive real values.

(b) If τ' maps Σ' onto Σ'' , then:

$$f_{\tau'\circ\tau} = f_{\tau'} \cdot (f_{\tau} \circ \tau'^{-1}).$$

We say that a collection $\rho = (\rho_{\Sigma})$ of real measures on the $\Sigma \in \mathscr{S}$ is a measure associated with the cocycle (f_{τ}) , or is a (f_{τ}) -measure, if the image of the measure ρ_{Σ} by $\tau : \Sigma \to \Sigma'$ is $f_{\tau} \cdot \rho_{\Sigma'}$. Otherwise stated:

$$f_{\tau} = \frac{d(\tau \rho_{\Sigma})}{d \rho_{\Sigma'}}$$
 a.e.

for each local isomorphism $\tau: \Sigma \to \Sigma'$. The transverse measures are those associated with the trivial cocycle (I_{τ}) . The notion of (f_{τ}) -measure occurs naturally in the work of Connes [5]; see also Bowen [1].

The (f_{τ}) -measures form a real vector space \mathcal{J} . We call vague topology the topology defined on \mathcal{J} by the semi-norms:

$$\rho \mapsto |\rho_{\Sigma}(\varphi)|$$

127

DAVID RUELLE

where φ is a real continuous function with compact support in $\Sigma \in \mathscr{S}$. We write $\rho \ge 0$ if $\rho_{\Sigma} \ge 0$ for all $\Sigma \in \mathscr{S}$. With these definitions \mathscr{J} is an ordered topological vector space.

Choose $\Sigma \in \mathscr{S}$ and a compact set $K \subset \Sigma$. There is a map α_K of \mathscr{J} in the space $\mathscr{C}(K)^*$ of measures on K, such that $\alpha_K \rho$ is the restriction of ρ_{Σ} to K. The map α_K is linear and order-preserving.

Lemma 1. — Let Σ , K be such that each leaf of \mathscr{F} intersects the interior of K in Σ . Then α_{K} is an isomorphism of the ordered vector space \mathscr{J} onto a subspace of $\mathscr{C}(K)^{*}$ closed for the vague topology.

Remember that the vague topology is the w^* -topology of $\mathscr{C}(K)^*$ as dual of the space $\mathscr{C}(K)$ of real continuous functions on K. Note that α_K need not be continuous for the vague topologies.

To prove the lemma we remark that if K' is compact in $\Sigma' \in \mathscr{S}$, there are finitely many open L_i in Σ' covering K', and canonical isomorphisms $\tau_i : L_i$ into Σ such that the closure of $\tau_i L_i$ lies in the interior of K. Therefore, using a partition of unity, and the fact that ρ is associated with the cocycle (f_{τ}) , we obtain an order preserving map π from the continuous functions on Σ' with support in K' to the continuous functions on Σ with support in K, such that $\rho_{\Sigma'}(\varphi) = \rho_{\Sigma}(\pi\varphi) = (\alpha_K \rho) (\pi\varphi)$. Thus α_K is injective, and $\rho \ge 0$ if and only if $\alpha_K \rho \ge 0$. Furthermore, if $\alpha_K \rho$ tends to a limit vaguely, $\alpha_{K'} \rho$ also converges vaguely, hence ρ converges vaguely, and the limit is obviously associated with the cocycle (f_{τ}) .

Lemma 2. — Let \mathscr{G} be a linear subspace of the space $\mathscr{C}(K)^*$ of real measures on the compact set K. If $\rho \in \mathscr{G}$ implies $|\rho| \in \mathscr{G}$, then the cone \mathscr{G}_+ of positive measures in \mathscr{G} is simplicial. If ρ , ρ' belong to distinct extremal generatrices of the cone \mathscr{G}_+ , they are disjoint measures.

Remember that a cone C in a real vector space is simplicial if the order that it defines on itself is a lattice (any two points have a min and a max). The easy proof of Lemma 2 is left to the reader.

Theorem. — The cone C of positive elements of \mathcal{J} is simplicial. If ρ , ρ' belong to distinct extremal generatrices of C, then the measures ρ_{Σ} , ρ'_{Σ} are disjoint for all $\Sigma \in \mathcal{S}$.

In view of Lemma 1, the theorem immediately follows from Lemma 2 applied to $\mathscr{G} = \alpha_{K} \mathscr{J}$.

The cone C is closed and has a basis B which is convex, compact, and metrizable. For instance, if Σ , K are as in Lemma 1, let φ have compact support in Σ , $\varphi \ge 0$, and $\varphi(x) = 1$ if $x \in K$; one can take:

 $B = \{ \rho \in \mathcal{J} : \rho \ge o \text{ and } \rho(\varphi) = I \}.$

According to Choquet's theory [4], the theorem implies that each $\rho \ge 0$ has a unique integral representation in terms of extremal elements of B:

$$\rho = \int_{B} \sigma m_{\rho}(d\sigma)$$

128

128

where m_{ρ} is carried by the set of extremal points of B. The arbitrariness in the choice of B corresponds to the fact that there is no natural normalization of positive (f_{τ}) -measures, but all choices of B give equivalent decompositions. If ρ is an extremal point of some B (*i.e.* if $\rho \neq 0$ and ρ belongs to an extremal generatrix of C) we say that ρ is a *pure* (f_{τ}) -measure (respectively a *pure transverse measure* in the case of the trivial cocycle). The theorem gives thus a unique decomposition of (f_{τ}) -measures into pure (f_{τ}) -measures, and states that two pure (f_{τ}) -measures are either proportional or disjoint $(^{1})$.

Given a positive (f_{τ}) -measure ρ , we let \mathscr{A}_{ρ} be the algebra of classes of bounded real functions on M which are constant on leaves of \mathscr{F} , and such that their restriction to each $\Sigma \in \mathscr{S}$ is ρ_{Σ} -measurable. Two functions are in the same class if their restrictions to each $\Sigma \in \mathscr{S}$ are equal ρ_{Σ} -almost everywhere.

Proposition. — A positive (f_{τ}) -measure ρ is pure if and only if \mathscr{A}_{ρ} is trivial (consisting of the constant functions).

If ρ is not pure, let $\rho = \rho^1 + \rho^2$ with non proportional (f_{τ}) -measures $\rho^1, \rho^2 \ge 0$. Choose Σ , K as in Lemma 1, and let $\sigma^i = \rho_{\Sigma}^i - \inf(\rho_{\Sigma}^1, \rho_{\Sigma}^2)$. There are ρ_{Σ} measurable functions $\psi_1, \psi_2 \ge 0$ such that $\sigma^i = \psi^i \rho_{\Sigma}$. We have $\psi^1 + \psi^2 \neq 0$ (because

$$\sigma^1 + \sigma^2 = \sup(\rho_{\Sigma}^1, \rho_{\Sigma}^2) \neq 0)$$

and $\psi_1.\psi_2 = 0$ a.e. (because σ^1 , σ^2 are disjoint). Choosing some Riemann metric d on the leaves of \mathscr{F} , let:

$$\Psi^{i}(x) = \lim_{n \to \infty} \min\{\psi_{i}(y), y \in \mathbf{K}, d(x, y) \leq n\}.$$

Clearly Ψ^1 , Ψ^2 belong to \mathscr{A}_{ρ} and are not proportional, so that \mathscr{A}_{ρ} is non trivial. Conversely, if \mathscr{A}_{ρ} is non trivial, it is immediate that ρ is not pure.

Interpretation of the decomposition. — Let h be a diffeomorphism of a compact manifold B, and \mathscr{F} be the foliation by the orbits of the suspension of h. We identify B with a submanifold of codimension 1 of M, transverse to \mathscr{F} . The transverse measures of \mathscr{F} correspond then to the h-invariant measures on B. The pure transverse measures correspond to the h-ergodic measures, and the decomposition into pure transverse measures corresponds to the ergodic decomposition. The integral representation of positive (f_{τ}) -measures appears thus as an extension of ergodic theory. A different, deeper, relation is with the theory of Gibbs states in statistical mechanics, as discussed in the following example.

Example. — Let $A \in SL_n(\mathbb{Z})$ be hyperbolic, *i.e.* the spectrum of A is disjoint from $\{z : |z| = 1\}$. Let V^s (respectively V^u) be the subspace of \mathbb{R}^n associated with the eigenvalues less than I (respectively larger than I) in absolute value. We call \hat{A} the map

⁽¹⁾ For cases where there is only one pure (f_{τ}) -measure, see Bowen and Marcus [2], and also the Example below.

DAVID RUELLE

induced by A on $\mathbf{T}^n = \mathbf{R}^n / \mathbf{Z}^n$, and W^s , W^u the images of V^s , V^u in \mathbf{T}^n . It is readily seen that $\mathbf{G} = W^s \cap W^u$ is a *n*-generator subgroup of \mathbf{T}^n , G is dense in \mathbf{T}^n because W^s , W^u are dense.

Choose $a_1, \ldots, a_n \in \mathbb{R}^n$ such that their images in \mathbb{T}^n are generators of G. Write $a_i = (a_{i1}, \ldots, a_{in})$, take $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, and define:

$$\Gamma_x = \{ (x_1 + \sum_i t_i a_{i1}, \ldots, x_n + \sum_i t_i a_{in}, t_1, \ldots, t_n) \in \mathbf{R}^{2n} : t_1, \ldots, t_n \in \mathbf{R} \}.$$

The images \mathbf{F}_x of the Γ_x in $\mathbf{M} = \mathbf{T}^n \times \mathbf{T}^n$ constitute a codimension *n* foliation of M, with holonomy group G with respect to the Section $\mathbf{T}^n = \mathbf{T}^n \times \{0\}$. We shall define functions $f_{\tau} : \mathbf{T}^n \to \mathbf{R}$ when $\tau \in \mathbf{G}$, i.e. for the canonical isomorphisms of the section \mathbf{T}^n . It is easy to extend this definition to that of a cocycle for \mathscr{F} .

Let φ be a real Hölder continuous function on Tⁿ. We let:

$$f_{\tau}(x) = \exp \sum_{k=-\infty}^{\infty} (\varphi(\widehat{A}^k \tau^{-1} x) - \varphi(\widehat{A}^k x)).$$

There is one and only one measure ρ associated with this cocycle. In fact:

$$\rho_{\mathbf{T}^n} = \lim_{m \to +\infty} \frac{\mathbf{I}}{\mathbf{N}_m} (\exp \sum_{k=-m}^m \varphi(\hat{\mathbf{A}}^k x)) \, dx$$

where dx is Haar measure on \mathbf{T}^n , and N_m a normalizing factor. These statements have their origin in a relation between statistical mechanics and differentiable dynamical systems introduced by Sinai: $\rho_{\mathbf{T}^n}$ is a *Gibbs state* for the function φ (see Sinai [13], Capocaccia [3], Ruelle [9], Chapter 7). We notice that if $\varphi = 0$ then $\rho_{\mathbf{T}^n} = dx$, and uniqueness follows from the fact that G is a dense subgroup of \mathbf{T}^n . For the general case the reader is referred to the papers quoted above.

In view of the frequent non-uniqueness of Gibbs states we conjecture that, for the foliation discussed here, there exist cocycles with several non proportional associated measures.

Invariance under a diffeomorphism. — Let g be a diffeomorphism of M preserving \mathscr{F} (i.e. permuting the leaves). Suppose that (f_{τ}) is a cocycle *compatible* with g, *i.e.* such that:

$$f_{g\circ\tau\circ g^{-1}}=f_{\tau}\circ g^{-1}.$$

This condition is for instance always satisfied by the trivial cocycle (I_{τ}) .

If $\rho = (\rho_{\Sigma})$ is a (f_{τ}) -measure, then $g\rho = (g\rho_{g^{-1}\Sigma})$ is again a (f_{τ}) -measure. This is because:

$$\tau(g\rho_{g^{-1}\Sigma}) = g(g^{-1}\circ\tau\circ g)\,\rho_{g^{-1}\Sigma} = g(f_{g^{-1}\tau g}\rho_{g^{-1}\Sigma})$$
$$= g((f_{\tau}\circ g)\,\cdot\rho_{g^{-1}\Sigma}) = f_{\tau}\,\cdot(g\rho_{g^{-1}\Sigma}).$$

Thus $g \mathcal{J} = \mathcal{J}$, and in fact g C = C, where C is the cone of positive measures in \mathcal{J} . Suppose $\mathcal{J} \neq 0$, and let B be a compact basis of C. We have $B = C \cap \{\rho : \lambda(\rho) = I\}$

130

for some continuous linear functional ρ on \mathscr{J} . The map $\rho \mapsto g\rho/\lambda(g\rho)$ has a fixed point $\rho_0 \in B$. Therefore $g\rho_0 = \lambda_0 \rho_0$, where $\lambda_0 = \lambda(g\rho_0) > 0$, and λ_0 is in general different from 1.

Consider now the case of the trivial cocycle, *i.e.* of transverse measures. Under suitable conditions, discussed in [10], [14], λ_0 is an eigenvalue of the action of g on cohomology, and the corresponding class is associated with a geometric current determined by ρ_0 . If the class is nonzero, λ_0 is thus an algebraic number (in fact, a unit in the ring of algebraic integers).

Question: under what conditions do the numbers λ_0 associated with the transverse measures of a foliation form a finite set of algebraic numbers? A. Connes has pointed out to me that this is not always the case.

Diffeomorphisms which expand leaves. — Let the foliation \mathscr{F} contain a leaf with polynomial growth (*i.e.* the Riemann volume of a ball $B(x, r) \subset L$ increases polynomially with its radius r) then Plante [8] has shown that \mathscr{F} has a transverse measure $\rho \neq 0$ with support in the closure of L.

If the diffeomorphism g preserves \mathscr{F} and expands the leaves (*i.e.* multiplies sufficiently small distances on leaves, with respect to some Riemann metric, by a factor >C>1), then the leaves have polynomial growth. This was proved by Sullivan and Williams [15]; see also Shub [12]. In particular \mathscr{F} has a transverse measure $\rho \neq 0$, and by the preceding Section we may assume that $g\rho_0 = \lambda_0 \rho_0$. We recover thus a result stated in another context by Sullivan (see [14], III, 13): if the diffeomorphisms g preserves \mathscr{F} and expands the leaves, there is a transverse measure $\rho_0 \neq 0$ such that $g\rho_0 = \lambda_0 \rho_0$.

Acknowledgements. — My thanks are due to Dennis Sullivan who convinced me that measures associated with a foliation are interesting, and to Alain Connes who explained to me his beautiful recent results.

REFERENCES

- [1] R. BOWEN, Anosov foliations are hyperfinite. Preprint.
- [2] R. BOWEN and B. MARCUS, Unique ergodicity for horocycle foliation. Preprint.
- [3] D. CAPOCACCIA, A definition of Gibbs state for a compact set with Z^v action, Commun. Math. Phys., 48 (1976), 85-88.
- [4] G. CHOQUET et P.-A. MEYER, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, 13 (1963), 139-154.
- [5] A. CONNES. Unpublished.
- [6] R. EDWARDS, K. MILLETT and D. SULLIVAN, Foliations with all leaves compact, Topology, 16 (1977), 13-32.
- [7] L. GARNETT, An ergodic theory for foliations. Preprint.
- [8] J. PLANTE, Foliations with measure preserving holonomy, Ann. Math., 102 (1975), 327-362.
- [9] D. RUELLE, Thermodynamic formalism, Addison-Wesley, Reading, Mass., 1978.

DAVID RUELLE

[10] D. RUELLE and D. SULLIVAN, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327.

[11] S. SCHWARTZMANN, Asymptotic cycles, Ann. Math., 66 (1957), 270-284.

[12] M. SHUB, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.

 [13] Ia. G. SINAI, Gibbsian measures in ergodic theory, Uspehi Mat. Nauk, 27, nº 4 (1972), 21-64. English translation, Russian Math. Surveys, 27, nº 4 (1972), 21-69.

[14] D. SULLIVAN, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones math.,
36 (1976), 225-255.

[15] D. SULLIVAN and R. F. WILLIAMS, On the homology of attractors, Topology, 15 (1976), 259-262.

IHES/PM/77/181, mai 1977.