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Abstract. The asymptotic behavior of differentiable dynamical systems is ana-
lyzed. We discuss its description by asymptotic measures and the '"turbulent

behavior" associated with sensitive dependence on initial condition.

1. Generalities

The purpose of this talk is to discuss some qualitative features of

the time evolution of natural systems. The time evolution is described by an

equation

Xipp = f(xt) (discrete time) (1)
or

dxt

= = X(xt) (continuous time) (2)

The qualitative features that we want to discuss are those associated with
sensitive dependence on initial condition. We shall try to analyse sensitive
dependence on initial condition, see how it manifests itself as turbulent be-

havior, and find the simplest examples in which it occurs.

In applications X, represents the state (at time ¢t ) of the natural
system under consideration, and may vary in some infinite dimensional space

(as for instance in hydrodynamics). For the convenience of the mathematical dis-

*
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cussion we shall however suppose that the state space M of our system is

finite dimensional,

The time evolution is defined by maps £ Mp M (t discrete or
continuous). We shall assume that either M is R" and there is some bounded
open U cR" such that closure ftU cU for t >0, or that M 1is a compact
differentiable manifold*). We assume that the map f 1in (1) or the vector field
X in (2) are vl , i.e. r times continuously differentiable with r =1

In what follows I shall try to be mathematically correct, or at least not
misleading. However it has to be realized that many of the questions to be dis-
cussed are poorly understood mathematically. I shall definitely not limit myself
to those topics which are completely elucidated. I shall try to give an idea of

what lies beyond, at the cost of some conjectures and heuristic considerations.

2. Sensitive dependence on initial conditions.

It will often be convenient to distinguish the following three cases

I. Maps : discrete time, £ not necessarily invertible.

II. Diffeomorphisms : discrete time, f has a differentiable inverse, so that

ft

is defined for t = -1, -2,...

III. Flows : continuous time.

Sensitive dependence on initial condition means that if there is a
small change éxo in the initial condition X s the corresponding change
bx. = £ (x_ + %) - £5(x ) of x_ = £5(x ) grows and becomes large when t
t o o (o) t o

becomes large. More precisely we require éxt to grow exponentially with ¢t

Why this requirement is reasonable will appear in the next section.

The difference ft(x0 + axo) - ft(xo) = 6xt is meaningful only 1if our

manifold M 1is R" . In general, it is preferable to interpret 6xt as a vec-

) A compact differentiable manifold may always be thought of as imbedded in
]RN for suitably large N . The "tangent spaces" to M may then be identified

with subspaces of 'mN as intuition dictates,



tor tangent to the manifold; we have then

t
6x, = (T £7) &x
t X o)
o
t
where Tx f is a linear operator mapping the tangent space TX M to M at
o o

X to the tangent space Tx M at L If M is R" , then the tangent spa-

t
ces can be identified with R™ and Tx ft is just the m xm matrix of par-

tial derivatives of £ (x) with respect to x . The discussion of sensitive
dependence on initial condition translates thus into the study of Tx ft for
large t . We shall not try to make statements valid for all x € M (all ini-
tial conditions), but rather for almost all x with respect to some probability
measure p (on M ) invariant under £° (i.e. invariant under time evolution).
We shall try to argue later why an ensemble average (with respect to some p )
corresponds to time average for "most" initial conditions. For the moment we

accept as a fact of life the fact that x 1is distributed according to the

ft—invariant probability measure p . Then non commutative ergodic theorem of

Oseledec describes then the behavior of TX ft for large t .

3. The non commutative ergodic theorem.-

We first give the version of the theorem which is appropriate for the

study of maps (case I of Section 2).

Theorem 1. Let (M,Z,p) be a probability space and + : M+ M a measurable

map preserving o . Let also T : M~ MnGR) be a measurable map into the m x m

*)

matrices, such that

1og+ ¢l e Ll(M,p)
and write T = (20 TR T(x)

There is (O c M such that p(Q) =1 and for all x € O

1
lim (T™* THZ ™ =
X X X
n—-c

#) We write log+x = max{0, log x} .



exists f* denotes matrix transposition |,

Let exp Xi1)< ... < exp xiS(X)) be the eigenvalues of 1\.x [with
possibly (1) = ~o ] , and Uil),...,Uis(X)) the corresponding eigenspaces.
f V(r)= U(1)+---+U(r) we have

— 'x X X ———

lim & log”Tn u“ = X(r) when u € V(r)\v(r—l)

_'n X X X X

N e
for T 1; .e38(x)

The theorem published by Oseledec [6] assumes T and T invertible.
Its proof has been simplified by Raghunathan r8]. The above result can be ob-
tained by modifying Raghunathan's argument.

< 1
Let m(r) = dim U(r)= dim V(r)— dim V(r 1). The numbers )( ?...,)(S(X)),
X b p 4 X x X
with multiplicities m(l) m(S(X)) constitute the spectrum of (p,T,T) at
P R L P 5 Ts
x . The Xir) are also called characteristic exponents. When n tends to

(s(x))

© L log”TnH tends to the maximum characteristic exponent } The
> n X X

spectrum is r-invariant; if p 1s T-ergodic the spectrum is almost every-

where constant.

To apply theorem 1 to differentiable maps of M it suffices, if
M=R", to take T=f , T(x) = T.f. If M is a compact manifold, it may
be necessary to cut it into a finite number of measurable pieces, each of which
is diffeomorphic*) to a subset of :mp, so that TxM is identified to R" for
all x . We see thus that the asymptotic behavior of &x = (Txft) 6x 1is ex-
ponential with t for large t . We have sensitive dependence on initial con-
dition if the maximum characteristic exponent is strictly positive. Of course,

other characteristic exponents are allowed to be negative.

If f 1is a diffeomorphism (case II of Section 2), the following ver-

sion of the non commutative ergodic theorem gives extra information.

#) We require thus the existence of a differentiable map with differentiable
inverse,from an open neighborhood of the closure of the piece of M considered,

% m
to an open set in R .



Theorem 2. Keeping the notation and assumptions of theorem 1, let T have a

measurable inverse, let T"! exist such that

1ogt ()7 ¢ Llm, p)

- = - = = 2 -1
and write TXn = (1 ") . ... T(T 2x) . T(r 1x)

We can assume that for x € (0 there is a splitting

R" = wil) G’Wiz) & such that the following limits exists
lim % log ”Tk n” = X(r) if u e W(r)\ {0}
k"i_w X X X
Obviously the lir) are the characteristic exponents, and the m
m(r) = dim wir) their multiplicities.
x

The splitting R = wil) 5] wiZ) @ ... depends measurably on x . If
M is a manifold and T = f a diffeomorphism, the splitting is in general not
continuous. One may assume that () is a Borel set of measure 1 with respect
to every f-invariant measure, and that the dependence of the splitting and the

spectrum on x € (0 1is Borel.

Suppose that one can take for () a closed f-invariant set, that there
is ¢ > 0 such that the spectrum is disjoint from the interval (-e¢, +¢) , and
that the spaces

+

w =
X

(x) - > (r)

z W s, W = W
r:)\(r)> o ¥ % r:k(r)< o X

X X
depend continuously on x € () . One says then that ( 1is hyperbolic. This is
the main ingredient in the Axiom A of Smale. There exists a detailed theory of
Axiom A diffeomorphisms, to which we shall refer to test various ideas. By con-
trast the ergodic theory of non-axiom A diffeomorphisms is in a state close to

non-existence.

We shall make no special discussion of the non commutative ergodic

theorem for flows (case III). The results are those expected.



4. Asymptotic measures,

The use of the non commutative ergodic theorem assumes that x 1is
distributed according to some f-invariant measure 0 (for simplicity we dis-
cuss the discrete time case). We have to examine this assumption, and also try
to restrict the choice of p , the invariant measures being often quite nume-

*)
rous

A natural idea is to define p as a time average

1 n-1
p = lim = z 8 " (3)
new k=0 fx

where éx is the Dirac measure at x and the limit is in the sense that the
integrals of continuous functions converge (vague limit). This procedure may
not work : one can find a diffeomorphism f and an open set (non empty) of

x such that (3) fails to exist (R. Bowen, private communication). Nevertheless
one can hope that the limit exists in many cases. For C2 axiom A diffeomor-
phisms**) one can show that there is a set M' such that bi\bﬂ has zero
Lebesgue measure***) and the limit (3) exists for x € M, taking a finite num-

ber of values. The asymptotic measures determined in this manner for Axiom A

diffeomorphisms are precisely those ergodic measures which make maximum the ex-

pression

{05 () %)
(r)> 0 X X

X

p(p) = h(p) -fp(dx) z

r:)

the maximum being in fact zero. In (4), h(p) is the entropy (or Kolmogorov -

Sinai invariant) of p with respect to f .

One can verify fllT that for every differentiable map f of a com-

#) An axiom A diffeomorphism may have either only finitely many ergodic measures

(carried by periodic orbits) or continuously many ergodic measures.
¥#) There is a similar result for axiom A flows. See [14], [9], [2].

##%) By "Lebesgue measure" on a compact manifold M we mean the measure associa-

ted with any Riemann metric (any two such measures are equivalent).



pact manifold M into itself, and every f-invariant measure p , p(p) <O ,
where p(p) 1is defined by (4). This suggests that one should look for the

limits (3) among the measures satisfying (4) provided one discards a set of

x with zero Lebesgue measure. Here is a heuristic argument in favor of that

idea.
Let Vv be the Lebesgue measure on M , normalized to 1. Suppose the
measures
n-1
k
% Z fv
k=0
ln-l
tend to a limit p when n ?* « , then one can expect that the = % § K
(] £x
tends for y - almost all x to p or to one of its ergodic components
n-1
rIf 1 > 6 K tends to a limit px for V-almost all x , then
o fx
p= f'v(dx) By 1. We assume that for p-almost all € € M , there is an
"unstable manifold" \_ tangent to W. = % W(r) , such that the family
§ 2 r:)ér)< (0] s
of the v, is invariant under f . [Such a result 1s known in

g
certains cases, see Pesin [7] ]. The manifolds lg are expanded by f' ex-
ponentially fast for large n . Due to this stretching along the manifolds
¢ % , the measures fnv for large n will tend to remain smooth in the di-
rection parallel to the Vé (while their density may acquire a large transverse
derivative). Therefore we expect p to have conditional measures along the
U é which have continuous density with respect to Lebesgue measure on the U é .
If that is the case, one can estimate the entropy of p to be at least the
integral of the logarithm of the expansion coefficient along the unstable mani-
folds, i.e.
m(r) (r)

X

h(p) 2 fp(dx) 3
r:)\xr) >0

Since the reverse inequality also holds, we have p(p) =0 .

To the above heuristic argument there should correspond a theorem.
Its precise formulation and conditions of applicability are not yet known but
should be more general than the rather restricted axiom A class. The important
question of the stability of the asymptotic measures under small stochastic

perturbations is discussed below in the appendix.
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We can try to make use of the equality

(x) . (x)
h = %
(p) s o m Xx (5)

for asymptotic measures p (we assume p ergodic and the right-hand side is
given its p-almost everywhere constant value). In particular, the right-hand
side is quite accessible numerically, while h(p) 1s not. One can thus estima-
te h(p) by taking some initial condition & , computing x = ng for some

large N , and then computing Z(r) m(r)k(r)

by Theorem 1 of Section 3.
X
r:)\X >0

Notice that if one somehow knows that the topological entropy
sup {h(p) : p invariant}

vanishes, then (5) implies that there is no sensitive dependence on initial
condition. The converse is a theorem : i1f all characteristic exponents of all
invariant measures are < 0 , then (because p(p) <0 ) the topological entropy

is 0 .

Since the measures which satisfy (5) are those which maximize p(p)
(as given by (4)), one can try to approximate them by a variational procedure.
It remains to be seen if one can use this method practically to get an idea of

the asymptotic measures for a problem such as that of fluid turbulence,

Finally, let us remark (after Benettin et al [1] ) that the largest
(s(x)) )

characteristic exponent ¥ = Xx , which characterizes the sensitive depen-

dence on initial condition, satisfies

]
= h(p) < x < h(p)

if (5) holds.

5. Turbulent behavior.

It is generally impractical to change the initial condition of a dyna-
mical system occuring in nature, and to observe the behavior of éxt as t
increases, There are however indirect ways in which the sensitive dependence
on initial condition manifests itself, giving rise to what we shall call tur-

3#
bulent behavior ). In particular, X, will be neither asymptotically constant

#) The connection with the theory of fluid turbulence is not discussed here.

See Lorenz [4], Ruelle and Takens [12].



nor periodic, but will have an apparently erratic appearance.

If one can measure the position x, at each time with x high but
only finite precision as is the case for natural phenomena - it is found that

systems with sensitive dependence on initial condition loose information at the
5 m(r))\(r)
ao

rate (i.e. h(p) according to the relation (5)). One

would like to deduce from this some decay properties of the time correlation

functions
FCE) =fp(dx) (%) w(f;) . [[ocp] [[ml:]

when |t| *® (o and | are assumed differentiable). At this moment a theorem
is known only for axiom A diffeomorphisms, where it has been proved that F

decreases exponentially at infinity. In particular the positive measure

teZ

has continuous density, a property known as continuous (frequency)spectrum. One

expects continuous spectrum to occur under much more general conditions than
axiom A . Actually continuous spectrum is observed experimentally in fluid tur-

bulence (see particularly [3]).

6. Simplest examples of turbulent behavior.

The simplest examples of sensitive dependence on initial condition
have been reviewed recently in [10]. We recall that the lowest dimension for
which sensitive dependence occurs is respectively 1,2,3 in cases I,1IL,III of

Section 2 (maps, diffeomorphisms, flows)

On the 3-torus, a flow with sensitive dependence on initial condition
can be obtained by an arbitrarily C2—small perturbation of a quasiperiodic
flow. For a m-torus m > 3 , C2 can be replaced by C* (see [5]) . This
means that if a small coupling is introduced between 3 or more oscillators,
turbulent behavior may result. Using oscillating electric circuits, it should
be possible to visualize the transition to continuous spectrum when a suitable
coupling is introduced between the oscillators. Alternatively if the frequencies
are in the audible range, the transition to continuous spectrum should corre-

spond to a change in the musical nature of the corresponding sound. Thesc expe-



o i

riments - contrasting the coupling of 3 oscillators with the coupling of
2 oscillators - have not been performed as far as I know. Since they are easy

I strongly suggest that they should be attempted*).

7. Conclusions.

The domain of researchwhich has been reviewed here is one where pro-
gress is slow, due to great mathematical difficulties. The potential applica-
tions are however very important, both from the purely theoretical viewpoint
(understanding of turbulence), and from a very practical viewpoint (discussion
of individual systems with sensitive dependence on initial condition). It seems
to me that even in the present very imperfect state of the theory it has started
to be possible to interpret in a meaningful way some of the typlcal aspects of

"turbulent" differentiable dynamical systems.

* A computer study of three coupled oscillators has been made by Sherman and
Mc Laughlin le] . Unfortunately their paper does not make clear exactly what

mathematical system is treated.

It has to be remarked that, although the flows on T2 do not have
sensitive dependence on intial condition, they may have only the trivial eigen-
function 1 [see A.N. Kolmogorov "On dynamical systems with integral invariants
on the torus", Dokl. Akad. Nauk SSSR 93 N° 5, 763-766 (1953)] . This situation
appears to be exceptional (M. Herman, private opinion), and it is not clear

what the Fourier transform of F¢m then looks 1like.
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AEEendix

In section 4 we have justified the consideration of certain asymptotic
measures by the fact that they describe the ergodic averages for almost all
initial conditions (with respect to Lebesgue measure). Another point of view is
that the time evolution (1) or (2) is in practice always perturbed by some noise,
being thus replaced by a stochastic process. One can argue heuristically that
the same class of measures is obtained in this manner as before, namely invariant
measures which are "continuous along the unstable direction". This is because
the smearing corresponding to the noise term preserves the "continuity along the
unstable direction". In the axiom A case this argument has been made rigorous

(see below the references to Sinai and Kifer).

One more remark about the asymptotic measures. The conditional measure
on an unstable manifold has a density with respect to the "Lebesgue measure" on
that leaf and, by f-invariance, these densities satisfy proportionality relations
involving the Jacobian of f in the unstable direction. These conditions corre-
spond to the "Gibbs state" condition just as the variational principle of Section
4 corresponds to the definition of equilibrium states in statistical mechanics.
The asymptotic measures or "ensembles" representing turbulence thus bear, tech-
nically, a remarkable resemblance with the ensembles of equilibrium statistical

mechanics.



Ia.

Ju.

Juis

- 14 -

G. Sinai. Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27 N°4, 21-64
(1972), English translation. Russian Math. Surveys 27 N°4, 21-69 (1972).

I. Kifer. On the limiting behavior of invariant measures of small random
perturbations of some smooth dynamical systems, Dokl. Akad. Nauk. SSSR
216 N°5, 979-981 (1974) English translation. Soviet Math. Dokl. 15,
918-921 (1974).

I. Kifer. On small random perturbations of some smooth dynamical systems.
Izv. Akad. Nauk SSSR. Ser. Mat. 38 N°5, 1091-1115 (1974) English trans-
lation. Math. USSR Izvestija. 8, 1083-1107 (1974).

IHES/P/77/190



