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Abstract. The "strange attractors" plotted by computers and seen in physical 
experiments do not necessarily have an open basin of attraction. In view of this 
we study a new definition of attractors based on ideas of Conley. We argue that 
the attractors observed in the presence of small random perturbations 
correspond to this new definition. 

1. Introduction 

Let (f~) be a dynamical system, i.e., a group or semigroup of maps M ~ M  
parametrized by a discrete or continuous time t. We assume that M has a 
topological o1" differentiable structure, and that the f~ are continuous or differenti- 
able. There often exist subsets A of M which attract neighboring points x, this 
means that fix tends to A when t-~ oe. Such subsets A are called attracting sets or 
attractors. In the simplest cases A is an attracting fixed point or periodic orbit. 
More complicated situations have however been studied, notably Smale's Axiom 
A attractors (see Smale [35], Bowen [4], and Williams [37]). 

Attractors are of interest for the description of the ass~mptotic behavior of 
physical systems (or the long term behavior of all kinds of natural phenomena). In 
particular, some attractors (now called strange attractors) show the phenomenon 
of sensitive dependence on initial condition, i.e., a small change in initial condition 
grows exponentially with time (the perturbation need grow only as long as it is 
small). Landau [20] and Hopf [16] used quasiperiodic attractors 1 to try to 
describe hydrodynamic turbulence (these attractors do not exhibit sensitive 
dependence on initial condition). Lorenz [23] found an attractor with sensitive 
dependence in approximate convection equations, and suggested that this may 
explain the difficulty of long term weather predictions. Ruelle and Takens [33] 
proposed that hydrodynamic turbulence is described by non-quasiperiodic attrac- 

1 A quasiperiodic attractor is an attracting torus T ~ such that the time evolution restricted to 7"  
becomes, in suitaNe coordinates, a translation with dense orbits 
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tors (and introduced the name "strange attractor"). Hydrodynamical experiments 
by Ahlers [1], Gollub and Swinney [14], and others, favor the explanation of 
turbulence in terms of strange attractors with sensitive dependence on initial 
condition; a reasonable understanding of the onset of turbulence has now been 
obtained in those terms (see Ruelle [29] for a review). 

Dynamical systems can be studied by computer. Various new attractors have 
been found in this way (see H6non [15], Feigenbaum [10-12]), and they have been 
much investigated. 

In view of the above considerations, it seems desirable to give a precise 
mathematical definition of attractors, and this is the purpose of the present paper. 
One would like the definition to satisfy various requirements, and the require- 
ments turn out to be somewhat conflicting. We shall, in Sect. 2, discuss possible 
conditions which may be imposed in the definition of attracting sets. In Sects. 3 
and 4 we shall define attracting sets and attractors, respectively, and we shall study 
their properties. In Sect. 5 we argue that, under suitable conditions, a dynamical 
system with small random perturbations asymptotically "lives" on attractors. 
Section 6 contains some further remarks. 

2. Conditions on Attracting Sets and Attractors 

It is convenient to assume that a metric dist is given on M, although in Sect. 3 we 
shall need only a topology, and in Sect. 4 a uniform structure 2. The family (f~) of 
continuous maps f t  :M~+M is indexed 3 by 2g, ~+ (discrete time case), IR, or IR+ 
(continuous time case). The group or semigroup properties 

f0  =ident i ty ,  fSoft=f~+t 

hold wherever defined. We assume that (x, t )~ f t x  is continuous where defined 
(this is a new requirement only in the continuous time case, and will be used only 
in Sect. 4). In Theorem 4.4 we shall also require some uniform continuity which is 
automatically satisfied in applications to differentiable dynamical systems. We 
now make a list of properties which an attracting set or an attractor A may want 
to possess. 

(A) Invariance, i.e., f tA  = A for all t. 

(B) Attractivity. We may assume that there is a neighborhood U of A such that 
for every neighborhood V of A, f tUC V for all sufficiently large t. A weaker 
condition would be that A has a neighborhood W such that lim dist(ftx, A)=0  

t - *  o:? 

for all x s  W. We shall use the stronger condition in the definition of attracting sets. 
Attractors will satisfy an attractivity condition different from the above two. 

(C) Closedness or Compactness 

(D) Irreducibility. If an attracting set consists of a number of disjoint invariant 
pieces, one would like to consider each piece as an attractor, removing "irrelevant" 

2 We shall thus in fact use the topology and the uniform structure defined by the metric. For 
definitions, see for instance Bourbaki [2] 
3 ~+ and N+ are the sets of elements >0 in 2g and N, respectively 
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points like (perhaps) wandering points 4. Examples of irreducibility conditions are: 
positive transitivity [there is x e A such that the set of limit points of (ftx)t > o is A] 
or existence of an ergodic measure with support  A. We shall impose a still different 
condition (chain transitivity) in our definition of attractors. 

(E) Unique Decomposability into Irreducible Pieces 

(F) Stability Under Small Perturbations. Experiments are always subject to 
perturbations, and computer calculations to roundoff errors. Small perturbations 
will play an essential role in our definition of attractors. 

In Sect. 3 we shall define an attracting set by (A)-(C). Attractors will be defined 
in Sect. 4 so as to permit a natural decomposition of an attracting set into irre- 

ducible pieces. For  instance the vector field x ~ X ( x ) = - x 4 s i n  ~- on IR has the 
x 

interval [ - 1 ,  1] as an attracting set, and the corresponding irreducible pieces 

(attractors) will be the points _ 1 for n odd and 0; note that {0} is not an 
n 

attracting set. Attractors will in fact be limit sets, as time tends to + o% of 
perturbed trajectories, and our definition will have the effect that a dynamical 
system preserving a smooth measure on a connected compact  manifold will have 
the whole manifold as an attractor. In fact for the trivial system (if) with 
f t  = identity for all t on a connected manifold, one has the choice of declaring every 
point to be an attractor, or the whole manifold to be an attractor. We make the 
latter choice. The necessity of giving a definition of attractors weaker than that of 
attracting sets is clear from the example of the Feigenbaum Cantor  set (see 
Sect. 6.1); this is an attractor but not an attracting set because it is a limit of 
(nonattracting) periodic points. 

3. Attracting Sets 

Let M be a Hausdorff  topological space and (ft) a dynamical system (indexed by 
•, 2g+, IK or IR+, the f t  are continuous MUM).  We say that the closed set A C M is 
an attracting set if it has a neighborhood U such that the condition (a) and one of 
the conditions (b), (b'), (b"), b") below are satisfied. 

(a) For every neighborhood V of A, we have f tU C V when t is large enough. 
(b) f tA ~ A when t is large enough. 
(b') f tA = A Jbr all t. 
(b") (~ f t g =  A for some T. 

t > r  

(b") ftU=A for aU r. 
t >=T 

3.1. Proposition. Given (a), the conditions (b), (b'), (b"), (b") are all equivalent. I f  
U # O, then A ~ O. 

4 A point x is wandering if it has a neighborhood N such that f'Nc~N = 0 for all sufficiently large t. 
A point which is not wandering is called nonwandering: for each N we have ftN~N=l=O for some 
arbitrarily large t 



140 D.  Ruel le  

(b)=~(b') and (b"). For every T, (a) yields A3 (-] f'U, 
t > T  

A3 (-] f U  for large T. Thus, for sufficiently large T, T+'c, 
t > T  

A= ('] I~U3f  ~ 0 f lU=f lA .  
t > T + ~  t>=T 

while (b) gives 

(1) 

In particular f~A C A for all z. If we did not have equality in this inclusion, (b) 
would be contradicted, therefore we have proved that (b') holds. Because of this we 
may now derive (1) for all values of T, taking z = 0  proves (b'). 

(b")~(b). Given z, suppose that x(~fM, then AC(f~)-l(M\{x}) and, by (a), 
f t g  C (f~)-l(M\{x}) for sufficiently large t. Therefore f tU C M\{x} for sufficiently 
large t, and (b") implies that x¢A. We have proved f M  ~A, and therefore (b). 

(b')~(b) and (b ' )~(b")  obviously. This completes the equivalence proof. If A 
were empty, one could take V = 0, and this would contradict (a) when U + 0. 

A set U such that the properties (a), (b) are satisfied will be called a fundamental 
neighborhood of the attracting set A. The open set W =  U ( f )  - I U  is called the 

t 

basin of attraction of A ; W consists of those x~ M such that f l x ~ A  when t ~  oo, 
and therefore W is independent of the choice of U. Notice that i f ( f )  is a group we 
may take A equal to the whole manifold M, and then A = U = W. 

3.2. Proposition. If  U is open in M and ftU is contained in U and relatively compact 
for all sufficiently large t, then 

A= (~f tU 
t>O 

is a compact attractin 9 set with fundamental neighborhood U. 

By our assumption, if z is sufficiently large, the closure K of f~U is compact 
and contained in U. Thus 

and therefore 

is compact. 
Let V be open, V3A. Since 

O/,v  0oI,-, 

A =  O f t K  
t>-_o 

0 fK\V=O,  there will, by compactness, be 
t>=o 

t 1, t 2, ..., t, such that 

f t IKn ... n ft"K C V. 

Thus f tKCV for sufficiently large t, hence also f tUCV for sufficiently large t .  
Property (a) is thus satisfied, and since (b") holds by definition, A is an attracting 
set. 

3.3. Irreducibility. A definition of irreducible attracting sets will be given in 
Sect. 4.5. 
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4. Attractors 

In  this section we assume that  M has a uniform structure given by a metric 5 dist. 
We assume also that  (x, t ) ~ f f x  is cont inuous  on M x {t}. A curve (not necessarily 
continuous),  i.e. a family (xt)t~Etom ~ (with t l>to) of points of  M is called an 
pseudoorbit if 

dist (f~x t + ~, J'~ + ~xt) < 

whenever c~, fl > 0, e + fl < 1 and t, t + ee  [to, t 1]- In the discrete time case this simply 
means dist(fxt, xt+ 1) < ~ for t = to , . . . ,  tl - 1 (see Bowen [3]  and references quoted  
there). We say that  the above s pseudoorbi t  is of  length t 1 - t o and goes from xt0 to 
x w Putt ing together two e pseudoorbits,  the one going from a to b and of  length T, 
the second going from b to c and of  length T', we obtain a 2e pseudoorbi t  (an s 
pseudoorbi t  in the discrete time case) of  length T +  T' and going from a to c. We 
introduce now a relation a;>-b, which we m ay  read "a goes to b" and which means 
roughly that  there is a slightly perturbed orbit  going from a to b. In fact, for 
a, b e M  we write a ~ b  if, for arbitrarily small e>0 ,  there is an s pseudoorbi t  going 
from a to b. We note the following easy fact. 

4.1. Proposition. The relation ~- is a preorder which means that it is reflexive 
(a?~a) and transitive (a;~b and b >-c imply a~-c). 

The relation ;~ is closed (i.e. if x and y tend to a and b respectively, and if x;~y 
then a>-b). 

Write a ~ b  if a>-b and b~-a. Since >- is a preorder, ,-~ is an equivalence 
relation and ~- induces an order on the equivalence classes, which we denote by 
[a]  > [b]  if a;~b. A minimal equivalence class will be called an attractor. We shall 
say that an equivalence class [a]  is a basic class if either a is a fixed point  or  
card [a]  > 1. 

The main source of  the above definitions is Conley [9]  (see also Hurley [17] 6) 
but  we have here a somewhat  different terminology and emphasis. The union of  
the basic classes is Conley's chain recurrent set, which has a nice characterization 
in terms of  at tracting sets (Conley [9, p. 37]). A set S is chain transitive if it is 
contained in a basic class, and a basic class is called a chain component. What  we 
call an at tract ing set is an attractor in the sense of  Conley;  we prefer to reserve the 
name of  at tractors to sets satisfying an irreducibility condit ion 7. Our  at tractors are 
the chain transitive quasiattractors of Hurley. Conley and Hurley restrict their 
at tention to compact  M (and continuous time); we discuss here a more  general 
si tuation in view of  physical applications (for instance to the Navier-Stokes 
equation, where M is a Banach space). Altogether, a number  o f  results in this 
section are no t  very new (and also not  very hard). These results will serve as a basis 

5 Two metrics d,d' define the same uniform structure if, for each e>0, there is 8>0 such that 
d(x,y)<~5 implies d'(x,y)<e and d'(x,y)<~ implies d(x,y)<s. One could actually proceed with a 
Hausdorff uniform structure which is not necessarily associated with a metric. If M is compact it has a 
unique uniform structure compatible with the topology. If M is compact with a countable base for the 
topology, it has a metric compatible with the topology 
6 Hurley obtains interesting results on the generic behavior of attracting sets 
7 Our terminology for attractors and basic classes agrees with the accepted terminology in the 
Axiom A case (Smale [35]) 
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for the discussion of small random perturbations in Sect. 5 (which constitutes the 
more original part of the present paper). 

4.2. Proposition. Every equivalence class [a] is closed. 
[a] is a basic class if and only if, for each e > O, there is an e pseudoorbit of  length 

> 1 going from a to a. 
The union of  all basic classes is closed. An attractor is a basic class. 
I f  a is a nonwandering point, [a] is a basic class. 
I f  [a] is a basic class, f '[a] C [a] for all t. 

These are again easy results. For  instance, if [a] is a basic class there exists a 
long 6 pseudoorbit with small 6 going from a to a, and therefore there are e 
pseudoorbits from a to f ta  and from f ta  to a. Thus f tae  [a], hence J*[a] C [a]. 

4.3. Corollary. I f  an (ft) ergodic probability measure 0 has compact support 8 this 
support is contained in a basic class. 

The algebra of real continuous functions on supp¢ is separable. Therefore, by 
the ergodic theorem, there is a~suppQ such that suppQ is the closure of {fa} .  
Since f tae  [a] by Proposition 4.2, supp0 C I-a]. 

4.4. Theorem. Let A be a compact attracting set. We assume that A has a 
neighborhood on which f l  is uniformly continuous (this condition is satisfied when 
M is locally compact, or when M is a Banach manifold and f l  is differentiable of  
class C1). 

(a) I f  a~A and a>-b, then b~A. 
(b) I f  a is in the basin of attraction of A and I-a] is a basic class, then [a] C A and 

f~[a-I= [a] for all t 9. 
(c) I f  a is in the basin of  attraction of A, there is at least one attractor [b] such 

that a~b ,  and we have necessarily [b] C A. 
(d) A class [a] C A is an attractor if and only if, for every neighborhood V of E a], 

there is a neighborhood V' of [a] such that x6  V' and x>-y imply yE V. 
(e) Given a compact set K C A, we know that K * =  .U~ I-z] is compact (by 

Proposition 4.1). For all 0 > 0  one may choose e > 0  such that if y >- x ~ K and there is 
an e pseudoorbit from x to y, then dist(y, K*)<  0. 

(f) A is an attractor if  and only if it is a basic class. 

Let f2 be the neighborhood of A on which f l  is assumed to be uniformly 
continuous. There exist 6 > 0  and a neighborhood g2' of A such that the 
6-neighborhood 1° of f2' is contained in f2. For  any fundamental neighborhood t) 
of A we know that f t ~  will be in Q' for sufficiently large t. We may thus choose a 
smaller fundamental neighborhood U such that f " U  C f2' for all integers n >0. 

Take a neighborhood V of A, contained in U. There is 6 ' > 0  and a 
neighborhood V' of A such that the 6'-neighborhood of V' is contained in V. Using 

8 If we had a uniform structure, but not necessarily a metric, we should assume here that suppQ is a 
metrizable compact set 
9 If [a] is a basic class and {fl} is a group, then f~[a] = [a] already as a consequence of f~[a] C [a] 
~roposition 4.2) 
10 The f-neighborhood of ~' is the union of all balls of radius 6 centered at a point of Q' 



Attractors 143 

the compactness of A and [0, 1] and the continuity of (x, t)~flx, we can also 
choose a neighborhood V" of A such that ffV"CV' when 0___t_<l. A 6' 
pseudoorbit of length t_-< 1 starting in V" ends therefore in V. We take finally 6" > 0 
and a neighborhood V" of A such that the 6"-neighborhood of V" is contained 
in V". 

Since U is a fundamental neighborhood of A there is a positive integer N such 
that f*UC V" for t>N. In particular 

fnUCV" for n = N , N + I  .... , 2 N - 1 .  

Using now the uniform continuity of f l  we may choose e > 0  such that all e 
pseudoorbits of length N, N +  1 . . . .  , or 2 N - 1  starting at a point of U end at a 
point of V". It is no restriction to assume also e < 6', so that all e pseudoorbits of 
length te [N, 2N] starting at a point of U end at a point of V. Since we assumed 
V C U, we find that all e pseudoorbits of length t > N starting at a point of U end at 
a point of V. 

(a) If  aeA, we may write a =fNc, where ceA. Thus, for every e pseudoorbit  of 
length t > 0 from a to b there is an e pseudoorbit of length N + t > N from c to b, 
hence be V. We have thus shown that a~-b, with aeA implies beA. 

(b) If a is in the basin of attraction of A and [a] is a basic class we may 
construct a long e pseudoorbit with small e going from a to a. We may assume that 
the pseudoorbit enters U, and therefore that a is in any neighborhood V of A, 
thus ae  1. I f x  is the point on the pseudoorbit at length t before the end we may (by 
compactness) assume that x tends to a limit ceA when the length of the 
pseudoorbit tends to oe and e tends to 0. Then ftc =a and c..~a, so that ft[a] ~ [a]. 
Since ft[a] C [a] by Proposition 4.2, we have ft[a] = [a] for all t. 

(c) We now want to prove that, for a in the basin of attraction of A there is an 
attractor [b] such that a~b, and b is necessarily in A. The problem reduces to the 
case where ae  U and, according to earlier discussion, we only have to show that 
the set {[x] : a>-x} has a minimal element. Consider a totally ordered set X of 
classes [ x j  with a~x~. If  we can show that X is bounded below, the existence of a 
minimal element of {[x]:a>-x} will follow from Zorn's  lemma. The case where 
x~=ft'x for all ct and the t~>0 are bounded is trivial. Otherwise, by our earlier 
discussion, the distance d(x~, A) tends to 0 and we may choose y~e A with d(x~, y~) 
tending to zero. If b is the limit of a suitable subnet of (y~), the corresponding 
subnet of  (x~) tends to b and it follows that x~ > b for all a, hence [b] is a lower 
bound for X. 

(d) Let V be a neighborhood of [ a ]CA and suppose that there is no 
neighborhood V' of [a] such that xe V' and x ~ y  imply ye  I1. Then one can find 
(x,),(y~) such that x,N-y~, d(x~, [ a ] )~0 ,  and y~¢V. By going to a subnet one may 
assume that x~--,xe [a], y ~ y e  A\V. Thus x >-y¢ V and [a] cannot be an attractor. 
Conversely, if [a] is not an attractor one can find x e [ a ]  and y¢[a] with x~y.  
Therefore if V,~y there is no V' with the listed properties. 

(e) Otherwise one could find sequences (x,), (yn) with x ,e  K such that y,>-x,, 
1 

there is a - pseudoorbit from x,  to y,, and the distance from y, to K* is > 0. One 
n 

may assume that xn~2eK, y ,~peA,  hence x..~y so that p e K *  in contradiction 
with dist(y, K*) > 0. 
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(0 If  A is an attractor, it is a basic class by Proposition 4.2. On the other hand 
if A is a basic class, it is an attractor in view of (c). 

4.5. Definition of Irreducible Attracting Sets. In the situation of Theorem 4.4, it is 
natural to say that an attracting set is irreducible if it is a basic class (or 
equivalently an attractor). In particular, an attracting set is irreducible if it is 
positively transitive 11 or if it is the support  of an ergodic probability measure (see 
Corollary 4.3). 

4.6. Remark. In the situation of Theorem 4.4, if [a] is an intersection of attracting 
sets, then [a] is an attractor [use Theorem 4.4(a)]. Conversely, every attractor is 
the intersection of the attracting sets containing it, when {f~} is a group, or when A 
has a neighborhood U such that f tU is relatively compact for large t (in that case 
we may choose U, S compact  C U, and s such that f U C S  for t>s). This result is 
basically due to Conley [9, p. 37], and motivates Hurley's definition of chain 
transitive quasiattractors. To prove the result, let l-a] be an attractor, and U~ the 
interior of the set of points x such that there is an arbitrary long e pseudoorbit 
from a to x. Therefore U~ contains the ~ neighborhood off~U~ for t > 1. We write 
K~= t~f~U~.~_~ We assume e small so that U~ is contained in a fundamental 

= 

neighborhood of A, and therefore K~ C A ; by our assumptions we may also assume 
that closftUCS closed C U for t>s, and ftS is closed for t>0 .  In particular 

K.= Nits 
t>__O 

and K~ is compact. For open V3K~ we claim that ftU, C V for t large enough. 
Otherwise, let x, eft"S\V with t ,+ l - t ,>s  so that ft"+~SCff"S. Since U~ is 
contained in a fundamental neighborhood of A, we may take x,,~xe A\V and we 
have xs ~ftS---K, in contradiction with x¢ V. K, is thus an attracting set, and 

[a]C Q>~oK~c ~>o U~=[a], 
proving our assumption. 

5. Small Random Perturbations 

The idea of this section is to show that for a dynamical system submitted to small 
random perturbations, the motion is asymptotically concentrated on attractors. 
We shall be able to prove this (with some qualifications) for discrete time 
dynamical systems with bounded perturbations satisfying an "absolute con- 
tinuity" condition. 

5.I. Diffi~sions with Compact Support. Let M be a metric space ~ z and f :  M~-,M be a 
continuous map, generating a discrete time dynamical system (ft). Let e > 6  >0.  
We say that an affine map F from the space of probability measures with compact 
support in M to itself is an (5, 6)-diffusion associated with f if the following 
conditions are satisfied 13. 

t 1 The definition has been given in Sect. 2 (D). For a brief discussion see Ruelle [29, Appendix A.2] 
12 For the essential results of this section it would be sufficient to assume that we have a metrizable 
uniform structure 
13 6 denotes the unit mass at x, Bx(e ) the open ball of radius e centered at x, and Bx(e) its closure 
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(a) suppFfi x Cf/~x( 0. 
(b) suppFfix3f/3x(b ). 
(c) I f  ~ : M ~ I R  is continuous, then x~(Ffx)dp is continuous, and (F#)ck 

= ~ ~(dx)[(F3x)~ ]. In particular 

suppF#=closure  0 suppFb~. 
xEsupp~ 

(d) I f  ¢ :M~-dR is continuous, the set {(Ffiy)¢ :y~/]x(~)} is a closed interval. 
Property (d) holds if one can find a weaker topology on/~x(6) such that this set 

becomes compact, and the map y~(Fby) is continuous with respect to the compact 
topology on Bx(6 ) and the vague topology on measures. 

5.2. Remark. The above formulation corresponds to thinking of F as f preceded by 
a small diffusion. This permits the treatment of measures with compact support in 
the infinite dimensional case. In the finite dimensional (locally compact) case one 
could take F to be f followed by a small diffusion. 

Condition (a) expresses that the perturbations are bounded, while (b) is an 
"absolute continuity" type condition, without which one cannot expect the next 
result to be true. 

5.3. Theorem. Let (ft) be a discrete time dynamical system, and assume that the class 
[a] is not an attractor. For sufficiently small ~, if F is an (e, ~5)-diffusion associated 
with f ,  and v a probability measure with compact support in M, then 

lim (Ftv)(B~(6)) = 0. (2) 

In particular, if v~ is a vague limit a4 of the measures Uv, then aesuppvo~. 

Let a ~ b  and be[a] .  Since b¢[a],  for e small enough there are no 2e 
pseudoorbits from b to a. Therefore there is no pseudoorbit from Bfb(e ) to B,(0. In 
particular there is no e pseudoorbit from B:b(e ) to B,(6). 

If x e/~(5), (b) gives suppF6 x 3 fBx(5)~fa. Since a>-b there is a ~ pseudo orbit 
going from a to b, say (Xo, Xl, ...,x,,) with Xo=a, x,,=b. We have just seen that 
f xoesuppF@ Using (c) we obtain also 

fxl, E supp FZbx, ..,, fx.,  ~ supp F"  + 1 fix. 

If ¢ is a continuous function with values in [0, 1] and support in/3:b(e), and if 
(a(fb) > 0, we have thus 

(Fm+~gx)(¢)>0 for all xeB,(6). 

In view of (d), there is f l>0  such that 

(F'+lb~)(¢)>fl for xe/3~(6) 

and therefore, if # is a positive measure, (c) gives 

(F" + ~ #)(B fb(e)) >= (F" + ~ #)(d?) >= flp(Ba(6)). 

Let ye  Bib(e ). In view of (a) and (c), each point of supp F"6y is of the form fy,,, for 
some 2e pseudoorbit (b, y, y p . . . ,  y,). Since there is no 2e pseudoorbit from b to a, 
suppF"6y must be disjoint from B~(6). 

14 v~ is a vague limit of Uv if, for all a > 0 ,  N and  continuous q~, ... ,¢N:M~MR, there are arbitrary 
large t with I(Uv)(dpi ) -  %(¢i)] < ~ for i =  1 . . . . .  N 
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Given the probabi l i ty  measure  v, suppose now that  

Uv(Ba(5))>7>O, for t = t l , . . . , t  k. 

Then, if T > t  I, ... ,tk, we find 

1 > (F "r+'+ lv)(M\B,(6)) 

>= k ~ .  

F r o m  this (2) results immediately.  

5.4. Diffusions with "large" Support. We have assumed above  that  F6 x has small 
compac t  support .  We discuss here briefly the case where suppF6  x is not  small, for 
instance not  compac t  15 We say that  an affine m a p  f rom probabi l i ty  measures  to 
probabi l i ty  measures  is an (e, 6, ~) diffusion associated with f if it satisfies 

(a') (FSx)(fB~(e)) > 1 - 

and the condit ions (b)-(d) of  6.1. Fo r  sufficiently small e an a rgument  similar to the 
p roo f  of  Theorem 5.3, with the same choice of  fl, yields 

lim sup 1 N~- 1 - - -  

N~oo N t=o (Uv)(Ba(6))<fl. 

In some cases one m a y  assume that  ~/fl~O, and obtain  invar iant  measures  which 
do not  contain a in their suppor t  16, but  a simple and general result seems difficult 
to obtain. Diffusions with "large" suppor t  are impor t an t  because they occur  
natural ly in the cont inuous  t ime case. 

5.5. Discussion. We return to the discussion of an (e, 6) diffusion associated with a 
m a p  f ,  and assume tha t  the compac t  suppor t  of  the probabi l i ty  measure  v is 
contained in the domain  of a t t ract ion of a compac t  a t t ract ing set A such tha t  A 
has a ne ighborhood  on which f is uniformly cont inuous  17. Theorems  4.4 and 5.3 
are then bo th  applicable. 

Let  A be the union of all a t t rac tors  contained in A, A its closure, and 
A * =  U [z]. I f  a is in the basin of  a t t rac t ion of  A we may,  by Theorem 4.4(c) 

Z~A 

assume that  a ~ b ~ A .  Given 0 > 0  we m a y  also, by Theorem 4.4(0, choose e such 
that, if a is not  in the 0-ne ighborhood of A*, and if a>-b~A, there is no 2s 
pseudoorb i t  f rom b to a. With  a, b, e so chosen in the p roof  of  T h e o r e m  5.3, (2) 
holds. In  other  words, given 0 > 0, for sufficiently small e, if F is an (e, 6) diffusion 
associated with f ,  and v a probabi l i ty  measure  with compac t  suppor t  in the basin 
of  a t t ract ion of A, 

l im (Ftv)(Ba(6)) = 0 
t ~ o O  

15 We may work with the class of probability measures v such that v is carried by a countable union 
of compact subsets of M. This gives a natural definition of support, and the possibility to integrate 
bounded continuous functions 
16 Let F=OFI+(1-O)F z where F 1 is an (e,6) diffusion, then o:/fl~O when 0-*1 
17 One might assume instead that v is carried by a countable union of compact subsets of the basin of 
attraction of A 
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for some 6 = 6(a) and all a not in the 0 neighborhood of A*. Vague limits of Ftv 
when t ~  co and then e-~0 can be defined, and are thus probability measures on A 
with support in A*. We have established the following Corollary of Theorem 5.3 (it 
really is a corollary of the proof of this theorem). 

5.6. Corollary. Let (if) be a discrete time dynamical system, F an (~, (5) diffusion 
associated with J; and v a probability measure with compact support in the basin of 
attraction of an attracting set A. We assume that A has a neighborhood on which f is 
uniformly continuous. We denote by A the union of all attractors contained in A, by 
the closure of A, and we write A*= [.9 [z]. 

z E A  

For every neighborhood 0 of A*, if ~ is small enough 

lira Uv(M\O) = 0 
t ~ o O  

In particular any vague limit lira lim Uv' has support in A*. 
~ 0  t--+c~ 

It may be that one can replace A* by a smaller set in this corollary. In any case, 
if A is closed (for instance if the number of attractors is finite) then A* = A and one 
obtains measures with support asymptotically in A. 

6. Further Remarks 

6.1. Examples. In the study of maps of the interval, Feigenbaum is has encountered 
a remarkable phenomenon of accumulation to a limit of an infinite sequence of 
bifurcations. For  n=0 ,  1, ... an attracting periodic orbit of period 2" becomes 
repulsive, while an attracting periodic orbit of period 2 "+ 1 is created. As n ~  co, a 
Cantor set is produced, which is an attractor in the sense of Sect. 4. This 
Feigenbaum Cantor set is not an attracting set because there are repulsive periodic 
orbits of period 2" arbitrarily close to it. 

Starting with the usual construction of a Cantor set in [0, 1] by successive 
removal of the "middle third" intervals, we obtain a dynamical system by 
introducing a repelling fixed point in each "removed" interval. With respect to this 
dynamical system, the Cantor set consists of fixed points, each of which is an 
attractor. In this case the set of attractors is thus uncountable (cf. Hurley [17, 3.4]). 

In Sect. 2 we introduced the example of the vector field X(x)= - x  4 sin n_. 
x 

Modifying this to X(x)= - e  1/x for x <0  we see that the points 1In for n odd are 
attractors; their limit 0 is however not an attractor. The set of attractors need thus 
not be closed. 

On the circle IR (mod27z) consider the vector field X(x)= 1 -  cosx. The whole 
circle is an attractor, but only 0 is a nonwandering point. An attractor may thus 
contain wandering points, and in particular be different from the support of any 
ergodic probability measure. 

18 See Feigenbaum [10-12], Misiurewicz [24], Collet et al. [8], Collet and Eckmann [71, Campanino 
and Epstein [6], and Lanford [2] 
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6.2. Stable and Unstable Manifolds. Suppose for simplicity that (if) is a group, and 
define the stable manifold and the unstable manifold of a point a respectively by 

~ :  = { x : lim d(ffx' fta)=O 

7J: = {x : limt_~ d(f- tx '  f -~a)=0} .  

Then, if [a] is a basic class, ~2  >-aN-TJ~ +. (In particular, if [a] and [hi are basic 
classes such that ~P+ c~ 7~; - 4= 0, then a ~b .  If a ~ b then ~Pa + C~ k¢ b C [a]. If [a] is an 
attractor, then ~+ C [a].) While this result is true quite generally, it is particularly 
interesting for differentiable dynamical systems (diffeomorphisms or flows), be- 
cause ~ is then often an immersed differentiable manifold, of which one has some 
understandingt 9. 

6.3. Axiom A Dynamical Systems. Let (if) (with t~2~ or tslR) be a dynamical system 
satisfying the Axiom A and No Cycle Conditions 2°. Then the Axiom A basic sets 
and attractors are just what we have called basic classes and attractors. There is a 
finite number of basic sets, conventionally ordered by the same relation which we 
have introduced on basic classes. Axiom A systems are the prototype which one 
tries to imitate to obtain a general theory of differentiable dynamical systems; this 
is true in particular for the study of asymptotic measures, which we discuss now. 

6.4. Asymptotic Measures and Strange Attractors. Call asymptotic measures the 
measures which occur as "zero noise" limits of stationary measures under small 
stochastic perturbations of a dynamical system (if). We shall here assume that M 
is a compact manifold, and that the kernel F6 x of the diffusion F is absolutely 
continuous with respect to Lebesgue measure on M. The discussion of Sect. 5 gives 
information on the support of the asymptotic measures. For  Axiom A diffeomor- 
phisms and flows (with No Cycle), one has information on the measures 
themselves zl. There is just one asymptotic measure per attractor; it is character- 
ized by having conditional probabilities on unstable manifolds which are ab- 
solutely continuous with respect to the Lebesgue measure on the unstable 
manifold. In the Axiom A case one also knows the behavior of f ly  for large t near a 
nonattracting basic set: if v has continuous density with respect to Lebesgue 
measure, the mass remaining in a neighborhood of the basic set decays exponen- 
tially 2:. If Axiom A does not hold, one may still hope that asymptotic measures 
are absolutely continuous on unstable manifolds in many cases 23, but exceptions 
are known. It has been shown by Pugh and Shub [26] that if there is a measure 
absolutely continuous on unstable manifolds, it is the ergodic average for initial 
points forming a set of Lebesgue measure > 0 on the manifold. 

It should be pointed out here that finding the asymptotic measures is an 
essentially deeper question than estimating their support. To see this, notice that 
our discussion in Sect. 5 uses only the topology of M (assuming M compact). On 

19 See Smale 1,35], Pesin [25], and Ruelle [30, 31] 
20 See Smate 1-35, 36] and Bowen [4] 
2t See Sinai [34], Ruelle 1,27], Bowen and RueUe [5], and Kifer [18] 
22 The rate of decay is identified as a "pressure"; see Bowen and Ruelle [5] and Kifer 1,18] 
23 This has been advocated in Ruelle [28] 
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the other hand the asymptotic measures depend essentially on the differentiable 
structure. For instance the measure theoretic entropy of the asymptotic measure of 
an Anosov diffeomorphism varies when the diffeomorphism is perturbed 24 in 
spite of structural stability. 

Attractors present themselves to us mostly as experimental objects (from 
computer, physical or chemical experiments). These objects come equipped with 
an asymptotic measure and one may define a strange attractor by the fact that its 
asymptotic measure has a positive characteristic exponent. This means that f tx  
and f ( x+Ax)  diverge exponentially (almost everywhere). It is not clear at this 
point if a definition of strange attractors can be given independently of the 
consideration of an asymptotic measure. This is an important question from a 
structural point of view as we have noted above. 

6.5. Generation of Attractors by Digital Computers. When a long orbit 
{f~x : te [0, N]} is calculated by a digital computer, one has to take into account 
the existence of roundoff errors. The roundoff errors are bounded, and it is 
reasonable to assume that their distribution is in some sense absolutely con- 
tinuous. The discussion of Sect. 5 therefore applies and it is very likely that 
computer generated pictures of "attractors" really represent attractors as defined 
here. (Notice that computers always study discrete time dynamical systems, even 
when solving differential equations.) One should however beware of the fact that 
very large values of N may be necessary in some cases to reach the asymptotic 
behavior. Another fact to keep in mind is that, when acting on precisely the same 
numbers, the computer always makes precisely the same roundoff error. This 
violates the absolutely continuous independent distribution of errors which we 
have postulated, as soon as the computer comes back to a point already visited. 
Since a computer is a finite machine, such loops necessarily occur, but one might 
expect them to be extremely long. In reality, it has been observed by Levy [22] that 
relatively short loops (of length ~ 103) occur in moderate precision calculations of 
the Htnon  attractor. To avoid this one should choose the precision such that the 
length of loops becomes large with respect to N. 

6.6. Application to Physical Experiments. In the discussion of experiments with 
hydrodynamical systems (or chemical systems, etc.) one meets with several 
difficulties. The fact that the time parameter is continuous is not a serious problem 
in itself, but implies that the random fluctuations cannot be assumed to remain 
bounded (if they are uncorrelated at different times). Furthermore the distribution 
of fluctuations is poorly understood (there is a good theory of thermal fluctuations 
in equilibrium, but it does not easily extend outside equilibrium, see Fox [13]). 
Referring to Sect. 5.4, one sees that the experimental data will be close to 
attractors provided the frequency of large fluctuations (measured by e) is small in 
terms of the time needed to leave nonattractor basic sets (this is of the order of 
/~- i). This condition is difficult to verify in principle, even if it is clear that it will 
often be satisfied in practice. 

24 For a hyperbolic toral automorphism the entropy of the asymptotic measure is equal to the 
topological entropy, but becomes strictly less by a small perturbation 
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