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Abstract. There is increasing theoretical and numerical evidence that for many
interesting dynamical systems the power spectrum of an observable A extends to a
meromorphic function in the complex frequency plane. The position of the complex
poles or “resonances” is independent of the observable A which is monitored. In this
paper, we study the resonances for intermittent dynamical systems by using a proba-

bilistic independence assumption about recurrence times. A close agreement between

theory and numerical experiments is obtained.



1. Introduction

It has been known for some time [10] that dynamical systems may have time correlation
functions which decay “abnormally”, even when they are very chaotic. As an example,
there are mixing Axiom-A flows, for which the time correlation functions do not decay
exponentially.* In the case of mixing Axiom-A diffeomorphisms, the decay rate is always

exponential, but the correlation function itself may be strongly modulated, see Fig. 1.
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Fig. 1: The time correlation function Cj for the map fe of Eq.(3.1) with ¢ = 0.001, for k =0,...,512.

An adequate description of these modulations can be obtained by considering the
Fourier transform C(w) of the correlation function C. C(w) is called the power spec-
trum. Clearly, if, for example, C) = exp(—A|k|) cos(a|k|), then C(w) has complex poles
at w = +a + ). Such poles have been studied in a sequence of papers [11, 12, 8], in
which it was shown that for Axiom-A diffeomorphisms, the Fourier transform of C(%) is
meromorphic in a region [Imw| < e, i.e., the singularities in this region can at worst

be poles. If the poles stay at a finite distance from the real axis, the correlation function

* So far, however, no example of this phenomenon with an Axiom-A attractor is known.
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decays exponentially, and it is modulated if the poles are not purely imaginary. If the
poles come arbitrarily close to the real axis (which is possible in the case of Axiom-A

flows [10]), then the decay will not be exponential.

In this paper we discuss a dynamical mechanism which is responsible for the modu-
lations of the correlation functions and predicts them in terms of orbits. This mechanism
occurs in systems for which one can define consecutive time intervals (“laps”) with ap-
proximately independent behavior. The positions of the complex poles of the power
spectrum — also called resonances — are given in terms of the probabilistic distribution
A of the duration of these laps. If A is Gaussian, very simple scaling relations are

obtained.

This formalism is especially suited for discrete time dynamical systems with Type I
intermittency in the sense of Pomeau and Manneville [9] (this is intermittency caused
by the “collision” of a stable and an unstable periodic orbit, as a parameter is varied,
i.e., by a saddle-node bifurcation, cf. Fig. 1). The laps are separated by the end of a
laminar period. We show how A can be calculated from a few dynamical parameters,
which therefore suffice to predict the poles of the correlation function. There will be
two basic modulation frequencies associated with an intermittent orbit: The first (fast)
frequency is the period onto which one almost locks, and the second (slow) frequency
is given through the mean return time. Thus, modulated correlation functions occur
for intermittent systems. Of course, in a complicated dynamical system, a number of
different periodic orbits may be visited intermittently by the physical orbit; in that case,
the signal will be a superposition of several of the simple phenomena we are describing

and may be hard to disentangle.

The present work is closely related to papers by Mori et al. [6, 7] which are
also concerned with the question of modulated correlation functions. Our discussion
is, however, centered on complex poles in frequency space and their relation with the
distribution A, whereas in [6, 7] the authors consider in particular the typical shapes of

the real power spectrum for various types of intermittency.

One may ask what relevance the results of the present papers have for the rigorous
study of differentiable dynamical systems. Since our results depend on the assumption
of statistical independence of successive laps, they cannot give any proof of analyticity

for the power spectrum. On the other hand, they give a strong indication of the presence
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of certain singularities and how close these are to the real axis. Consider for instance
the maps z — az(1 — z) of the interval [0,1]; since saddle-node bifurcations and inter-
mittency occur frequently in the chaotic parameter region, we expect that arbitrarily

slow mixing rate will also occur frequently.

In Section 2, we describe the general mechanism of how an intermittent recurrence
can lead to poles in the Fourier transform of C;. We apply this method in Section
3 for the case of intermittency of Type I. We describe how the pole(s) move in the
complex plane as a function of the bifurcation parameter and compare our theoretical
predictions with numerical experiments. Finally, in Section 4, we illustrate these ideas

on a saddle-node bifurcation from a period 3.

Acknowledgements. This work was supported in part by the Fonds National Suisse.

2. A Model for Correlation Functions of Intermittent Dynamical
Systems

We consider a dynamical system with continuous time* and we denote by fiz = z, the
phase point reached after time ¢, if at time 0 we were at z. We also denote by A and B
some observables, i.e., functions from phase space to R (or, more generally RY), and

by (F) the ergodic average

e o .
(F) = lim T/o drF(f =)«

T—o00

The correlation function is then defined by

T

pan(®) = Jim 7 [ drA(f72) B(F7*) ~ (4)(B) .1

= (A(Bo f)) — (4)(B) .
To simplify matters we will suppose that (4) and (B) vanish.

We now make the main working assumption:

* For simplicity, we shall use interchangeably discrete and continuous time systems.
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A) There is a sequence of times t, < ...<t, <...such that

a) The differences t, — t,_, form a sequence of independent, identically dis-
tributed random variables (with distribution A(t)dt ).

b) The orbit before and after t,, is distributed independently of n. More precisely,
the functions t — z, __ ., defined on [0,1, — t,._,| are independent, identically
distributed objects.*

A sequence of z, satisfying Assumption A is also known as a regenerative process.
We define I, = [t,_,,t,]. Let us hasten to explain the meaning of this construction
— an even more concrete determination of the I, will be given in the next section. A
typical way to define the time intervals I, is to say that they end at the time when
something “special” happens in phase space. E.g., I, may end when the orbit leaves

a given region of phase space; in the case of intermittency this will be the end of the

“laminar” period (defined in some arbitrary way). When I, ends, I, starts.

Assumption A of course contradicts the determinism of the time evolution, but
one should note that the assumption is a reasonable approximation for what happens
for “intermittent” systems in which chaotic behavior alternates with laminar intervals.
Namely, the length of one laminar interval is in some sense independent of how long the
preceding laminar interval was. In the same way, the times spent on each side of the
Lorenz attractor [5] are well approximated by a probability distribution of independent

random variables.

By Assumption A, the length ¢ of the time interval I, is a random variable; we
denote by A(t) its probability density. We next relate A to the poles of the Fourier
transform j 45 of pag. If we let pd5(t) = p4p(2)8(2), with

i _{1 ift>0
(t) = 0 ift<o,

and p,(t) = phg(—t), we have

pap(t) = pip(t) +pha(—1) = pip(t) +rpa(t)

* In particular, if the length ¢, — t,—1 of the interval is fixed and t € [0,¢n — tn—1), then @¢, _,4¢

has a distribution Ay, _s, _,,¢(2)dz.
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so that it will suffice to study pi5. We may write

PjB(tz —t) = Z ij,m(tZ —t),

where ij,m is the correlation pJ; conditioned by “if ¢, € I, then t, € I, ,”. Given
Assumption A it will be quite easy to compute PIB,m- We denote by P,(X,u) the
probability density that A(ftz) = X and that the interval I, in which ¢ lies is being
exited at time ¢+ u. This probability does not depend on n by Assumption A. Similarly,
Qp(Y,v) denotes the probability density that B(f*z) = Y and that the interval I, in
which ¢ lies was entered at time ¢ — v. For m > 1, the orbit has to “traverse” m — 1

intervals, and this leads to

oo o0
ij,m =/0 du/; dv A*Mm (¢ — u —v)

x /dXXPA(X,u)/dY YQu(Y,v)
= (I » Gual*™ 1)) |

(2.2)

where

Fys) = [dXXPy(X,9),

Gpg(s) = /dY YQu(Y,s),

and where we denote by A*k the k-fold convolution product A % ---% A (and A*0(t) =
§(%)). Finally, if m = 0, we have

Pl oty —t) < max|A(z)| max|B(y)| x Prob{t, and t, lie in the same I, }.
) z y

To proceed, we assume that
A(t) < const.e™, (2.3)

with A > 0. Then p} B0 Fa,and G also decay exponentially. By constructlon, they
vanish for negative arguments. It follows that their Fourier transforms, pt AB,0) F "4, and
G g extend holomorphically to Im w < A, (we have written f (w) = [dte—tf(t)), and

pAB ZPABm(w) ij,o(w) Ej;—(f__ﬁ(;d_)
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Therefore, $} 5 is meromorphic for Im w < A and holomorphic for Im w < 0. Similarly,
pp.a(w) is meromorphic for Im w > —A, and holomorphic for Im w > 0. Thus, we have

shown

Lemma 2.1. Under the Assumption A, and if (2.3) holds, p,p(w) is meromorphic for
|Im w| < A and its poles in Im w > 0 are those of i p(w) and are roots of

1=A). (2.4)

It is instructive to consider the case of a Gaussian distribution A(t), although this
gives a non-zero probability for negative times. If we assume that A is Gaussian, with

mean T and variance o2, then its Fourier transform is

Aw) = e
Therefore, A(w) = 1 means

a? , . .

T +iTw—2mik = 0,
and this has the solutions

T . / 4miko?
w=(—’7(—z:l: -1+ Tz )

We are mainly interested in the roots which are close to the real axis. If 02/T2 < 1,

then we can expand the above solutions. We find that the poles of the correlation

function near zero with positive imaginary part are located at

T 4miko?

1T 2miko?  2m212k20% 2.5
- L (et 2R L o 17Y)) 29
2rk  .2m%k%0? $..4 jrib
= & ti—m + O (k*c*/T°) .

Note that, to leading order, the real part of the resonance does not depend on o2,

and that the imaginary part, i.e., the decay rate of the correlation function, is of order
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o2 /T3. Thus, the correlation function is modulated with period T', and decays at a rate

2m2o2T -3,

Remark. The division of the time axis into the I, is arbitrary, but the resulting poles
are independent of this division. E.g., if we lump together 2 consecutive intervals to

make a new one, then (2.4) is replaced by
1 =AWw)?,

which has the same roots as (2.4) (and some additional roots with residue 0).

3. An Intermittent Fixed Point

We consider in detail a specific example and calculate explicitly several of the relevant
quantities which we then compare with numerical experiments. We work with the one-

parameter family of maps f, : [-1,1] — [—1,1] defined by

f(z) = {ge(w), if |g.(z)] <1 (3.1)

a ge(m) = 2, if |ge(m)| >1

and
9.(z) = z+rx’*+e k=175

We view f. as a discrete time dynamical system. For ¢ = 0 the graph of f, is illustrated

in Fig. 2.

We derive now an expression for A by analyzing f,.. This will lead to an expression
for C, which we work out in part. Along the way, we check the validity of several working
assumptions by comparing them with numerical experiments. When e is positive (but
small), the fixed point at zero disappears (into the complex) and the iterated map f,
leads to a very slow motion near z = 0. It is well known that this motion can be

accurately described in terms of a differential equation [9]: From

Tpiy — Ty = KTL + €, (3.2)
2

we conclude that
dz 2
-— = Kz, t+ €,

dn



0
b, b.=2a - 0 a b. b_b
i) . 3 5 4
Fig. 2: Graph of fe and the various intervals discussed in the paper.
or
dn ik
dz kT2 +€
Integrating, we find
1
n(z) = ny + (m—)]/z-arctan((n/e)l/zm) (3.3)

and finally
B = (3)1/2 tan((ex)*/?(n — n,)) . (3.4)

K

Equation(3.4) is a good approximation as long as z, ; — z,, is small, which is true as
long as (kz2 +¢€)~1 > 1. To get simpler expressions, we shall use (3.4) even for the few
time steps where the above inequality does not hold. (In the limit when € tends to 0,

this results in errors which are seen to be negligible with respect to the leading order.)
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We define, somewhat arbitrarily, the intervals I, by the exits from the “laminar”
region z € [—4/7,2/7]. More precisely, the time interval I, begins one time step after
I

n

the orbit enters the interval [—a’,a], where a = 2/7 and —a' = —4/7.* Thereafter, the
orbit is called laminar, and I, ends when the orbit is laminar and is about to cross the
boundary of [—a',a] at a = 2/7. We shall say that the orbit is reinjected into [—a', a]

at time r_, cf. Fig. 2. These concepts are similar to those described in [1].

_, ends; we call ,, the entry time of I,,. The motion is then called non-laminar until

We analyze this situation in the case of very small, but positive, € in which we
again neglect higher order terms. Note that the time needed to cross the interval
[—a',a] is of order O(e~1/2), which grows without bounds as € — 0, while the time
of non-laminarity, i.e., the time between entering I, and entering [—a’, a] grows more
slowly, and is on average bounded, by O(1), see below. The time interval [¢,,%,,,) can
be viewed as a sum of two pieces, [t,,7,), and [r,,?,.,). We now analyze these time

intervals, the first being the “chaotic phase” and the second being the “laminar phase”.

The first time interval is the time of chaotic behavior. We denote by G(s) the
probability that this interval has length equal to s. Our probabilistic assumptions say
that G(s) does not depend on the position at which the chaotic phase started. We want

to argue that for large s,
G(s) = 0((1-p)°), (3.5)

where p is a “dying probability” which we model now. In the absence of special reso-
nances, and we will assume this henceforth, the following happens. The orbit starts at
some point to the right of a = 2/7 and is then governed by the action of the expanding
map f€|[—1,1]\[—a',a]’ until it is reinjected into [—a',a]. Therefore, with good approxi-
mation, we may assume that there is a corresponding absolutely continuous invariant
measure, so that the reinjection takes place with probability p per unit of time.** Note
that because of the deterministic nature of the map, the first return to [—a', a] cannot
take place before the point has moved from a to the rightmost branch of the graph of
f., and therefore G(s) does not start out to be a power law like in (3.5). The discrete
conditions one encounters for small s make it hard to give a general theory for G for

small s. In any case, we expect G to be zero for small s and behave then like a decaying

* Note that 8 fe(—a) = 0 and when € = 0, then fe(—a') = 0.
** If we further assume that the invariant measure is constant, then p is given as the quotient u/v,
where v is the length of the intervals [-1,1]\ [=a’, a], and u is the length of the preimage of [—a’, a] in
[-1,1]\ [~a’, a]. This quotient is readily computed in our concrete case, cf. (3.1), we find p ~ 0.385.
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exponential function. An experimental distribution of return times is shown in Fig. 3,
together with an exponential fit of the form of (3.5) (with p = 0.385).

0 10 20 30

Fig. 3: The distribution of return times for € = 0.012, and theoretical prediction.

Now that we have a handle over the reinjection time, i.e., over the duration of the
chaotic phase, we analyze the duration of the laminar phase. During the laminar phase
the motion is simply a monotone increase of z, in the interval [—a',a] as n increases.
The duration of the laminar motion depends only on the reinjection point in [—a',a].
Thus, in order estimate the distribution A, we have to study the distribution of this
reinjection point. This reinjection density is induced by the distribution p of the points
in [-1,1] \ [~a', a]. The probability k,(z)dz to be injected into [z, z + dz] C [—d',a] is
then

m@ds = Y ue) (3.6)

y:fe(y)=2
To find h,, we consider the five points b,,...,b; defined as follows (cf. Fig. 2): b, is the
negative preimage of a, and b, = —a’. Denote by b, the largest preimage of a and by

b, the positive preimage of a’. Finally, by is the zero of f, which lies between b, and
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b,. Using (3.6) and assuming for simplicity that p(dz) is proportional to the Lebesgue
measure dz, and that f! is constant over the intervals [b,,b,] and [by,b,], we estimate

the probability k,(z)dz to land in the interval [z,z + dz] as

3(ba—b1)+(bs—b
}: 3(;4—;3-4-5,;_53) , when z € [0, al.

1 2(bs—b3)
S L when z € [—a',0
hy(z) = { SCE B ) a0,

The model we have just described is correct in principle, but the various approximations
and assumptions lead to a result which is not the best possible fit.* We therefore

continue with a slightly different Ansatz for h,:

h; =1/(2a'), when z € [-a',0],

hi(z) = {h ey (3:7)
r =1/(2a), whenz € [0,q].

Since (3.4) holds only in [—a, a], we need to compute the injection density in [—a,a]

which is induced by the density h, in [—a',a]. This is easy since those points which land

in [-a', —a] are one step later in the set [f(—a),0] = [~1/7 + ¢,0], which is in [—a,al.

Using (3.6), we see that the probability P(z,s)dz to be injected into the interval
[z, z + dz] C [—a, a] from the outside of [—a,a] at time s, s > 0, is given by

P(z,s) = P,(z,8) + Py(=,s),

where
P,(,s) = G(s)hy(2) ,
and
Py(s,8) = G(s — Dhy(2) ,
with

el = Wz € F{l=dl=al)}) |(8zfe)?£‘1(w))| |

If we use the asymptotic behavior of G, as described in (3.5), then we see that for large
fixed s the reinjection density is proportional to hy(z) 4+ (1 — p)~1h,(z). Therefore, to
some approximation, the same distribution can be expected for the injection density

integrated over arbitrary return times. This density is compared with an experimental

run in Fig. 4.

* The error is about 30%.
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Wt |

L !
-a 0 a

Fig. 4: The reinjection density into [—a,a] for € = 0.0003. There were 3 - 10® iterations, leading to
39469 returns. The highest point represents 892 returns. Superposed is the theoretical curve.

From the laminar nature of the motion it is now easy to compute a model function
for A(t). Expressed in continuous variables, the time needed to get from z € [—a, a] to
ais

Ha) = (e_ls;l—/? (arcta.n((n/e)l/za,) - a.rcta,n((fc/e)l/za:)> ‘

Thus, we find
At) = dz P(z,t — t(z))x(t > t(z)) .

—a

To have a better computational handle, we proceed as follows. Denote by X,
X,,... the successive preimages of a in [0,a], X; = f; J(a). From Equation(3.2), we

have X; , = X, + chJ?, and X, = a. A straightforward calculation shows that

a
X, ——
J akj +1"°
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Fig. 5: The distribution A(m) as a function of m. The graph was obtained from 3 - 108 iterations of
fe with € = 0.0003. We superpose the theoretical curve for p = 0.385, Eq.(3.9).

0 150

and

2
X, =kX?mk|—m) .
i ”(a~j+1>

The probability to find a return time of m after reinjection to the right of 0 is approxi-

mately equal to

m—1
Ag(m) = Z Prob(injection time = s) x Prob(injection into (X, _ , X, . . _,])-

s=0

If we denote by n,,, the total time to move from —a to a, then, for small ¢, this leads
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to
m—1
AR(m) o Z G(s)le—a - Xm—a—l Ihl(Xm—a)
s=max(0,m—ntot/2)
= Ka a
~ Z G(s)(an(m—s)+1)2 hl(an(m——s) +1)

s=max(0,m—n¢ot/2)

= ka2 a

~ fm(o,m-n.o.,z) et e ey e e

The situation on the Lh.s. of 0 is similar. By Equation(3.3), we have

1 1/2\ ~ L
Ny = ZWarctan(a(n/f) / ) o~ (m)l/z :

We define Y, = —q¢,and¥, _.= fi(—a). For small ¢, and 7, /2 < k < n,,,, the

n

Y, are approximations to f¢ *(a) and we have, for k sufficiently near to n,,,

—a

~ a'K‘(ntot - k) + 1

2
a
YVeor =Y = % (a"(ntot - k)+ 1> ’

A point in the interval [f-*(a), f-*(a)) —~where the preimages are taken in [-a,a]-will

cross a after k steps. It follows that

m—nm./2—1
AL(m) ~ Z G(S)IYm—a - Ym—a—l |h3(Ym—s)
s=max(0,m—not)
m—n.og/z—l 2

R e e Ll o R

s=max(0,m—nyot)

Q

m—TnNtot /2
Ka? —a )
7

h
) (ak(nyo, —m+ ) +1)2 ° (a"‘(ntot —m+s)+1

Q

ds G(

max(0,m—n¢ot)

where hy = h; + (1 — p)~1h,. Finally,

A(m) = Ag(m) + Ag(m) . (3-8)
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Replacing h4(z) by h,(z) and G(s) by the approximation G(s) = p(1 — p)* for s > 0
(although this is not such a good approximation for small s), we find a function

m—1
Ka?

A,.(m) = t. 1—19p)° h
w(m) = cons (mx(o%wz)p( P Gantm s T I R
m—ngog/z—l 2 (3'9)
Ka
1—9p)° i
D AR ey )

s=max(0,m—mn¢ot)

We compare this function with an experimental run in Fig. 5 (the translation of the

peaks is caused by the approximation for G).

In Fig. 6 below, we fix ¢ = 0.012 and we compare the resonances for f, with the
prediction of the theory we have developed. In order to obtain the resonances, we
compute the correlation function from 180000 iterates of f, and we proceed in the same
way as Isola [4] to find the poles of this experimental correlation function, using the
method of interpolating exponentials [2]: We sample the correlation function at points

C,, k=0,...,40. and write the (20,20) Padé approximant

40

chzk = O Q:(2) + 0z,

20 Q,(2)
where Q, and Q, are polynomials of degree 20. (We normalize Q,(0) = 0, @,(0) =1.)
We then find the complex roots of Q,(z) = 0, using a program of Hoffmann [3], and we
compute the residues of the poles of Q,/Q,. These are shown in Fig. 6 as discs centered
at the poles, with area equal to the modulus of the residue and a line segment showing its
phase. (This is done because two closeby residues with opposite phase could “cancel”.)
It is reassuring that whenever there are poles on the “wrong” side of the real axis then
they have very small residues (remember that we only consider C; with k£ > 0). We
next consider the experimental distribution D, which approximates A, and find that

D(k) = 0 for k > 43. We use Hoffmann’s program to compute the roots w of

43
> Dikjel*= 1. (3.10)
k=0
By the same method we find the poles for the theoretical distribution A,y of Eq.(3.9).
The determination of roots becomes somewhat unreliable when there are too many.

Therefore, in Fig. 6 we have chosen e relatively large. On the other hand, the asymptotics

of (3.9) is better for smaller e.
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— 0.6
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x X X X X x
+
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3
0O

Fig. 6: The discs are centered at the poles of the correlation function for fe with € = 0.012, with area
and angle representing the residue (cf text). The X correspond to the prediction obtained through
Lemma 2.1 and (3.9) for A, and the + are the roots of (3.10) for the experimental D.

It is tempting to perform an asymptotic analysis in powers of € similar to that of
(2.5). Unfortunately, this analysis does not lead to simple expressions in terms of the
bifurcation parameter and of k, and hence we only sketch some of the essential steps in
such a calculation. It is easy to see that Az(m) tends to a limiting distribution fp(m)
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as € — 0. Similarly, A;(m + n,,,) tends to a distribution fy(m) which is given by

fr(m) =~ / ds G(s)(an(s ) 117 hs(an(s e 1) ” (3.11)

max(0,m)

This is corroborated in Fig. 7 where we show the approximants to fr(m) obtained

experimentally for several values of e.

| 20

Fig. T: Shown is an experimental superposition of A(t + ntot) (With nier = x/(ex)t/?, for € =
2.10-%.5% k=0,...,4, and 5- 10° iterations.

However, the decay of f; for negative m is quadratic and is seen to be a direct
consequence of the spacing of orbit points near z = 0. Consequently, fr, and similarly
fr have moments which diverge as € — 0. A perturbative analysis which we sketch in

the Appendix shows that

Lemma 3.1. For small € the mean of f; scales like log(¢) and the moments of order
p > 2 scale like e~ (p~1)/2,
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Given this information, we can now perform an analysis which is similar to the
study of the Gaussian distribution in Section 2. By Lemma 3.1, the Fourier transforms

of Ap and A, have asymptotic expansions of the form
Ap(w) = ag + O(loge)w + O(/?)w? (1 4+ O(w)) ,

and

Ay (w) = e iwme (a,L + O(loge)w + O(e 1 /?)w? (1 + O(w))) ;

from which one can deduce an expansion for the poles

27k
Wy, == s + ieF(k,€) ,
ot
for k = 0,+1,.... However, the function F(k,€) has no simple expansion in terms of k

and € and depends on the details of Ap and Aj.

4. An Example with Period Three

We present here a few diagrams showing the situation which occurs after a period
3 saddle-node bifurcation and which illustrate the presence of two basic frequencies
mentioned in Section 1. The example is taken to be the one-parameter family of maps
p— f,, where f (z) =1— pz?. Forp € [0,2], the function f, maps the interval [—1,1]
to itself, and it is easy to check that for g = p, = 1.75, this map has a periodic point
z, of period 3, and 0, f”;o(zo) = 1. As p is lowered from this value, the period three
disappears and intermittency is observed in much the same way as in the example of

Section 3.

The correlation function has now two basic frequencies. One comes from the period
three itself, and is already present for parameter values when the period is stable. In
fact, in that case the orbit visits asymptotically three points y;, y,, y3 in periodic order,
and the correlation function equals

c . - Yituity
0+3k 3 )

Y1Ys + Y2Ys + YsYy
Cl+3k = Cz+3k = 3 ’
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Fig. 8: The first 320 values of the correlation function for p = 1.75 — 0.0003. Note the two basic
periods.

for all k, and this is in general a periodic function of period 3. The other period is
the mean return time, as in the example of Section 3. This leads then to a correlation

function which is typically of the form shown in Fig. 8.

One can repeat the experiments from Section 3 and one is led to the same conclu-

sions, replacing on occasion the function f, by the third iterate e

For example, we define the intervals I, as follows: Denote by z, the fixed point
of f3, which is closest to the origin. We have f3,(zy) = 2o and 8, f} (zo) = 1, and
numerical estimates show z, =~ 0.032. We say that I, ends if the orbit “crosses” a
point to the right of z,, e.g. z; = 0.05 from left to right, more precisely, if, for some
k, f¥(z) € [zg,%,] and f¥+3(2) > z,. The interval I, starts one time step after I,

ends. The results of a corresponding experiment are shown in Fig. 9.



M

Fig. 9: The distribution A(m) as a function of m for m = 0, ..., 900. The graph was obtained from
5.10° iterations of f, with p = 1.75 -1 10~5. The maximal height is 269, the exit point z; from
laminarity is at 0.05.

Appendix. The Moments of A

We sketch the main steps in establishing the behavior of A and A as e — 0. We fix our
attention on A, only, the case of Ap being slightly easier. For m > n,, the function
Ay (m) is easily seen to have an exponential tail, and therefore the contributions to the
moments coming from the region of integration m > n,, stay finite as ¢ — 0. Since the
contributions from m < n,,, will be seen to diverge as e — 0 it will suffice to consider

only those contributions. By (3.11), we find that for n,,,/2 < z < ny,

A = dse ™’
M@~ fE) = [ dee
where N = n,_,, « = —log(1l — p), and where, for simplicity, we have set @ = 1 and

x = 1. By definition, the function f has support in N/2 <z < N. We claim that

N
(A) / dz f(z) = const.(1+ o(N))

N/2+1
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fII\;J/2+1 dz (N —z)f(z)

(B = const. log(N)(1 + o(N
) [ de F2) g(N)(1 + o(N))
fll\;,/2+1 dz (N — z)?f(z) _
C = const. N?"}(1 + o(N)) ,p=2,3,... .
(©) e 1) (1+0o(N)),p

From this, and the exponential decay of A, for m > n,,,, Lemma 3.1 follows readily.

Proof. Equations (A)—(C) are obtained more easily by looking at the function

h(y) = e *f(—y+N)

N/2—y
= e_“/ dse *(y+s+1)72
0

N/2—y+1
= / dse ™ (y+s)7?%,
1

with support in 0 < y < N/2. Note that we can exchange integrals,

N/2 N/2—y+1 N/241 N/2—s+1
/ dy / ds = / ds / dy .
0 1 1 0

The expressions (A)—(C) lead to analogous integrals over h and we are led to estimate

N/2+41 N/2—s+1
/ dse™** / dyyP(y+s)2.
1 0

for p=0,1,2,.... E.g., for p = 1, this integral equals

N/241 N/2—s+1 ( .

- y+s)—s
[ee [T wty
1 0 Yy

N N/2+1 s
— /1 dse [log(——s—)—1+(m )

which shows that the leading contribution is const. log(N), and this is (B). The other
cases are handled similarly.
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