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0 Dynamical zeta functions

Let (M, f) be a dynamical system, i.e., M is a space and f : M — M a map. Let also
g : M — C be a function and consider the formal power series
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where Fix f™ is the set of fixed points of f™ = f o---0 f. The dynaemical zeta function
¢((z) is a natural object from a combinatorial point of view, as is the corresponding zeta
function for a flow (f*).*)Under suitable conditions, the sum over Fix f™ in the definition
of ¢ converges, and {(z) is a meromorphic function in a certain domain. In this talk we shall
discuss dynamical zeta functions in a relatively informal way. We shall try to explain where
they come from and what they are good for. We shall not try to show how their properties
are proved, but note that some properties of zeta functions are notoriously hard to prove !
In a sense the study of dynamical zeta functions is part of the theory of dynamical systems,
but we shall see that it is also intimately related to statistical mechanics.

1 Where do they come from 7
1.1 Riemann zeta function

At the beginning there is the Riemann zeta function:

(e o]

((s)=) n~*

n=1
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p prime

The representation as a product over primes reflects the unique factorization of integers
into primes, and is due to Euler. Of course Euler is earlier than Riemann, but the function
is associated with Riemann rather than Euler because of Riemann’s detailed work on the
analytic properties of (. In particular, writing

£(s) = n~*/2 T(s/2)((s)

we have the functional equation £(s) = £(1 — s). The Riemann zeta function has been
used by Hadamard and de la Vallée-Poussin to prove the prime number theorem (if m(z)
is the number of primes < z, then n(z) ~ z/log ). In view of other arithmetic appli-
cations, various other number-theoretic zeta functions have been introduced after that of
Riemann. For a survey of this fascinating field we refer to the article Zeta functions in the
Encyclopedic Dictionary of Mathematics [15]. This brings us somehow to the next item.

*) At this level of generality, these objects were first introduced in Ruelle [21], [22], [23].
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1.2 Weil conjectures

Let V' be a nonsingular projective algebraic variety of dimension n over a finite field &
with ¢ elements. The variety V is thus defined by homogenous polynomial equations with

coeflicients in k for n+1 variables zy, ..., z,. These variables are in the algebraic closure k
of k, and constitute the homogeneous coordinates of a point of V. The variety V is invariant
under the Frobenius map F : (zo,...,25) — (zf,...,2%). Arithmetic considerations lead

one to introduce a zeta function which counts the points of V' with coordinates in the
different finite extensions of the field k, or equivalently points of ¥V which are fixed under
F™ for some m > 1:

(e o] zm
Z(z, V) =-exp E = card Fix F™ .
7
m=1

Conjectures made by Weil [34] about this function led to a lot of work by many people
including A. Weil himself, B. Dwork, A. Grothendieck and finally P. Deligne [5] who
concluded the proof of the conjectures. Here are (roughly) the results.

The function Z is rational:

2n
Z = H Pe(z)(_l)l+1 ;

=0

The zeros of the polynomial P, have absolute value ¢=%/2. The P, have a cohomological
interpretation: P is roughly the characteristic polynomial associated with the action of F

on ¢-dimensional cohomology.

1.3 Selberg zeta function

Given a compact surface of curvature —1, the Selberg zeta function (see [30]) is related

(@)=II (1-e7)" )
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where P is the set of closed geodesics and T'(7) is the length of 4. Preferably we interpret
P as the set of (minimal) periodic orbits « for the geodesic flow, and T'(v) is the period of
-

& -1
In fact the Selberg zeta function is Z(s) = [ II ¢(s+mn)| . Itis an entire analytic

n=0
function, and satisfies a functional equation. Furthermore its zeros can be analysed, and

the "nontrivial zeros” are related to the eigenvalues of the Laplace-Beltrami operator on
the compact surface of curvature —1 from which we started. (This yields a relation between
the "classical mechanics” of the geodesic flow and the ”quantum mechanics” of the Laplace
operator). The localization of the "nontrivial zeros” corresponds to the Riemann hypothesis
which asserts that the nontrivial zeros of the Riemann zeta function are located on the
line Res = -;— (this, of course, remains unproved).
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1.4 Dynamical zeta functions

Inspired by the zeta function of an algebraic variety over a finite field, Artin and
Mazur [1] defined

((z) = exp Z % card Fix f™ . (2)
m=1

for a C! diffeomorphism f of a compact manifold, and proved that, for a dense set of such
diffeomorphisms, ¢ has nonvanishing radius of convergence.

The Artin-Mazur zeta function counts periodic points for a diffeomorphism, and the
same definition was adopted later by Milnor and Thurston to count periodic points for a
piecewise monotone map of the interval.

Instead of the discrete dynamical system generated by a map f, let us consider a flow
(f*). Denoting by T(v) the minimal period of a periodic orbit v, it is natural to define a
zeta function by (1). This form corresponds in fact closely to the Euler product formula
for the Riemann zeta function.

Following Artin-Mazur and Selberg we have thus obtained natural definitions (2) and
(1) for dynamical zeta functions associated with maps or flows. Knowledge of equilibrium
statistical mechanics induces one however to make more general definitions, as follows.

A. Map case
Given amap f : M — M and a function g : M — matrices, we let

m-—=1

C(z):expz il Z TrH g (fFz) .
k=0

m
=1 z€Fix fm
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In the particular case where g = e, A: M — C, we have

m

()=exp 3, — Y ey A(ff7).
m=1 k=0

z€eFix fm

We have, in these formulae, replaced simple counting by counting with weights, which is
the essence of equilibrium statistical mechanics.

B. Flow case
Given a flow (f*): M — M and a function B: M — R or C, we let

T(7y) =3
)= 1] [l—exp (-/0 (s—B(f‘au,))dt)] : (3)

YEP

There are extensions of this formula, which we shall not consider here.

The zeta functions for maps and flows look different, but the zeta function for a special
flow (suspension) reduces to the form given for a map. In fact, starting from (1) one arrives
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not at (2) but at the more general form given above, which makes such a generalization
more or less unavoidable.

The above generalizations were introduced in [21], [22], based on the ideas of statistical
mechanics. Let me indicate another natural way of obtaining the general expression for

the dynamical zeta function of a map.

Let S be the set of functions X : M — Z such that X = Xof and | X| = ¥ X(@)<
M

z€
oo (i.e., X is f-invariant and vanishes except at finitely many points). Each X € S has a
unique decomposition

X=) n,X,
Y

where X, is the characteristic function of the f-periodic orbit +, and the n. are integers
2 0 (only a finite number being > 0 ). This unique (additive) decomposition is analogous
to the unique (multiplicative) decomposition of an integer into primes, and the analogy
with the Riemann zeta function suggests to define

(=Y =T (1-27)"

XEeS ~EP

(where —log z replaces s, and e!X| replaces n), which is precisely the definition (2). But
number theory suggest to consider more generally zeta functions of the form

(2)=) g(x)X

Xes

where g(X +Y) = g(X).g(Y), at least when X and Y are "relatively prime” (i.e., X —
g(X) is a "multiplicative function”). This allows to represent ( as a Euler product over
prime periodic orbits. Given ¢ : M — matrices, define

\ k
g(X) = [T T [] 9 (f*=,)
B k
where X = )" n., X, z. is an arbitrary point of 4 and the product over k extends from 0 to
B!

ny |Xy|—1; then X — g(X) is indeed multiplicative. In particular, if g = e?, 4: M — C,

we have
> o) =T (1-gx,)2M) "

XeS ~EP



2 What are they good for?

As the case of the Selberg zeta function shows, there are some dynamical zeta func-
tions which have number-theoretic interest. This is an active area of research, which we
can only mention in passing, see Sarnak (28], [29], Fried [6], Series [31], Pollicott [19],
Cartier and Voros [4], Mayer [12], [13], [14], etc). In general, however, the dynamical zeta
functions are different from those having number-theoretic interest, and are for instance
not known to satisfy a functional equation. This is compensated by the fact that dynamical
zeta functions have relations with statistical mechanics (entropy, pressure, Gibbs states,
equilibrium states) while such relations are not known for number-theoretic zeta functions.

I shall now discuss some selected examples, the selection corresponding of course to my
own interests. As a background reference to much of the material below, see the excellent

monograph of Parry and Pollicott [17].

2.1 Expanding/contracting maps (See Tangerman [33], Haydn [9], Ruelle [25], [26])

Let f :m — M be of class C” (M a compact Riemann manifold, 7 > 0 not necessarily
integer), and assume that f is expanding by a factor > ! (for some 6 € (0, 1)). Consider
the transfer operator Ly such that

Lo®(z)= Y 9(y)®(y)

y:fy=rz

with g of class C". Then one can define a Fredholm determinant det (1 — 2L,) analytic
for |2| < 877 exp(—P(log l9])), where the pressure P(A) is the max of h(p) 4 p(A) taken
over ergodic measures p, h(p) being the entropy. There is a similar Fredhclm determinant
associated with transfer operators Ly acting on k-forms. The zeta function (2) is of the
form o

¢(z) = [] (det (1 = 2£4)) ™"

k>0

and meromorphic for |2| < 67" exp(—P(log ]ql)) The Holder version of this result is due
to Haydn, the C* version (in somewhat weaker form) to Tangerman. These results can be
extended in various ways, in particular to the definition of Fredholm determinants for a
linear class of operators [26]. This extension of the theory of Fredholm (and Grothendieck
[7]) to kernels with é-singularities may be expected to have applications in physics. For a
different type of applications see [2] and references given there.

2.2 Hyperbolic maps

We discuss here an Axiom A diffeomorphism f in the sense of Smale [32], restricted to
a basic set K. We assume that the contraction (expansion) in the contracting (expanding)
direction is by a factor < (> §7') with 0 < § < 1. The ”counting” zeta function

% m
((z) ='exp Z % card Fiz f™
T
m=1
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is rational, as conjectured by Smale [32], and proved by Guckenheimer [8] and Manning
[11], but no general cohomological interpretation is known.

If A 1is a real a-Holder continuous function, the inverse

i o ol .
R0 :exp-Z peon Z expz A(fFz)
& m=1 zE€Fix fm k=0

has a zero at e~P(4) and converges for

2] < e PAg==/2

This extends earlier results of Ruelle [24] and Pollicott [18], and can be proved by a method
due to Haydn [9].

2.3 Hyperbolic flows

We consider an Axiom A flow in the sense of Smale [32], restrict it to a basic set,
and assume mixing. (An example is the geodesic flow on a compact Riemann manifold
with sectional curvature < 0 everywhere, non constant in general). Given a real a-Hélder
function B, we have defined the zeta function ((s) by (3). One can show that this function
is analytic for Re s > P(B), where P(B) is the "pressure of the function B with respect
to the flow”, ((s) has a simple pole at P(B), no other pole or zero with Re s = P(B),
and is meromorphic for Re s > P(B) — 3 log 6. (This is an extension of earlier results of
Ruelle, and Pollicott [20]).

Parry and Pollicott [16], considering the case B = 0, realized that they could apply
to the study of the distribution of the periods T(+) the same method that is used with the
Riemann zeta function to prove the prime number theorem. (This method is based on the
Wiener-Ikehara Tauberian theorem, see for instance [10]). The result is

7(z) = (# closed orbits of minimal period < )

ehm

Y —

hz

where h is the topological entropy P(0) of the flow. In the special case of the geodesic
flow on a manifold of negative curvature one recovers an earlier result of Margulis on the
distribution of the lengths of closed geodesics.

2.4 Piecewise monotone maps of the interval

Baladi and Keller [3] have obtained for the zeta function of these maps a result in the
same spirit as for hyperbolic maps.



2.5 Open problems

One also expects analyticity results for zeta functions associated with rational maps
of the Riemann sphere, see [27].

A fascinating possibility, which is probably a red hering, is that the Lee-Yang circle
theorem may be somehow connected with zeta functions (see [23], the idea has later also
been hit upon by B. Julia).

An unexplored topic is braids. Let N(n) be the number of inequivalent braids (on k
pieces of string) for which the minimal number of crossings is n. It is easily seen that

H = lim % log N(n)

exists, and is > 0 if ¥ > 3. This suggests doing statistical mechanics with braids (the
idcas of quantum groups provide interactions) and one can also study zeta functions. I
do for instance not know if one can replace N(n) by a "number of crossings with periodic
boundary conditions” and retain the limit /.
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