ENTROPY PRODUCTION IN NONEQUILIBRIUM STATISTICAL MECHANICS.

by David Ruelle.

Abstract. We consider systems of nonequilibrium statistical mechanics, driven by
nonconservative forces and in contact with an ideal thermostat. These are smooth
dynamical systems for which one can define natural stationary states p (SRB in
the simplest case) and entropy production e(x) (minus the sum of the Lyapunov
exponents in the simplest case). We give exact and explicit definitions of the
entropy production e(u) for the various situations of physical interest. We prove
that e(x) > 0 and indicate cases where e(y) > 0. The novelty of the approach is
that we do not try to compute entropy production directly, but make it depend
on the identification of a natural stationary state for the system.

Memories.

My first contact with Roland L. Dobrushin consisted in the exchange of scientific
papers. I did not know (or care) that he was perhaps the greatest active probabilist of the
time. But I had been working on a problem of statistical mechanics with Oscar Lanford
[15], and Jean Lascoux pointed out to us that Dobrushin [7], [8] had published something
on the same problem. As it turned out, our results complemented his in showing that
translationally invariant Gibbs states are identical with equilibrium states (in present day
terminology). Then Yasha Sinai [22], [23] obtained his great results on the use of Gibbs
states in hyperbolic dynamical systems, complemented later by Rufus Bowen [2]. All these
results are now well known, and used without reference (as they will be in the present

paper), but participating in the discovery was a great experience.

I first met Dobrushin in Moscow (the Soviet authorities did not allow him to travel to
the West). He was quite outspoken about the regime, with the usual precaution of taking
a little stroll in a park before saying anything compromising (not indoors!) I remember
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Roland Dobrushin as smiling and fearless. When I brought him a copy of a novel by
Solzhenitsyn, he thanked me by saying it was ”a gift for a king”, and not a word about
the danger of accepting such a gift. He told me about the ”extraordinary stability” of
the Soviet system, expressing the belief that it would take five hundred years before it
went down. There he was wrong: he lived to see the collapse of Soviet Socialism. But
Nomenklaturism is not dead, and anywhere in the world we may yet have to see the people
crushed in the name of the People, and freedom and democracy destroyed in the name of
Freedom and Democracy. Anywhere in the world we may yet have to take a little stroll in

the park to express opinions that do not conform with the official Truth.

Introduction.

A revival of nonequilibrium statistical mechanics is currently taking place, using the
ideas and methods of the ergodic theory of smooth dynamical systems (see in particular
Chernov et al. [4], Bunimovich and Spohn [3], Gallavotti and Cohen [11], Gallavotti
[10]). In the present note we adopt this dynamical systems point of view and give (for
various cases of physical interest) explicit formulae for the entropy production in terms of
nonequilibrium stationary states. We check that the entropy production is nonnegative,

and we sometimes can prove that it is strictly positive.

One way to approach nonequilibrium statistical mechanics is to try to define stationary
states which might replace the Gibbs ensembles of equilibrium statistical mechanics. The
definition of nonequilibrium stationary states of a system will involve some amount of
idealization because the forces keeping the system outside of equilibrium normally produce
heat, which has to be evacuated by a thermostat. We want in fact an ideal thermostat,
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such that its state is not altered by the heat it absorbs from the system.

In what follows we want to study entropy production by a system in contact with
an ideal thermostat and subjected to forces that maintain it outside of equilibrium. We
shall propose various expressions (depending on the type of thermostat) for the entropy
production associated with a nonequilibrium stationary state, and show that for a natural

stationary state the entropy production is positive.
Time evolution.

From now on we shall discretize the time, so that it takes integer values. (One may
for instance consider a system with continuous time at integral multiples of some arbitrary
time unit, or use a Poincaré map). Time evolution is thus given by a diffeomorphism f
of a smooth compact manifold M. The so-called Gaussian thermostat (see Hoover [13]),
which constrains time evolution to some energy shell gives just such a pair (M, f) (after
discretization). The symplectic structure is lost because we use nonconservative forces.
We shall need a volume element dz to define entropy, but any choice will give the same
result for the entropy production. Note that the map f incorporates both the effect of the
nonconservative forces and of the thermostat. Physically, f does not put energy into the

system but may be thought of as pumping entropy out of it.

We now list several types of time evolutions corresponding to different ideal ther-
mostats. (These are discussed in more details in Ruelle [20], [21]; for a physically oriented

introduction to dynamical systems see Eckmann and Ruelle [9]).

(i) Diffeomorphism f of manifold M. This has been discussed above; f has an inverse
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(ii) Map f of M; f is not assumed to have an inverse, and the folding of M by f will
contribute to entropy production. (Example: f describes a shock of a particle in a gas
with the container (=thermostat) and distinct initial states may give the same final state,

see Chernov and Lebowitz [6]).

(iit) Map f restricted to a neighborhood N of a compact invariant set X C M. As
discussed by Gaspard and Nicolis [12], one can express diffusion coefficients in terms of the

study of orbits spending a long time near X (see also [9]).

(iv) Random dynamics. Let (2, 7) be a dynamical system with invariant probability
measure P, and (f,),co a family of diffeomorphisms of M. The time k map is frx-1, 0
-+ 0 fry 0 fo (with w distributed according to P). Since the action of a real thermostat is
stochastic at the microscopic level, it is natural to describe it by random dynamics. A case
of particular interest is when the f x, are independent. (For this case see in particular
Kifer [14], Ledrappier and Young [18], Liu and Qian [19], the recent paper by Bahnmiiller

and Liu [1], and references quoted there).
Natural stationary states.

The dynamical systems (M, f) here considered typically only have singular invariant
measures (no smooth invariant measure of the form p(z)dz). If we start with a smooth
measure p(dz) = p(x)dz, apply time evolution to obtain f kp, and let somehow k — oo, we
obtain candidates for describing natural nonequilibrium states. Consider for definiteness

the case (i) of a diffeomorphism f of M. Any limit p* when m — oo of

[ay

m—

f*p (with p(dz) = p(z)dz)
k=0
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is a natural nonequilibrium stationary state.
Another class of natural states are the SRB measures (named after Sinai, Ruelle,
Bowen, see Ledrappier and Young [17]). The SRB states are invariant measures u satisfying

hy(p) = Z positive Lyapunov exponents

where hy(p) is the time entropy associated with f (see [9],[17] for details).
Entropy production.

Define the entropy of a smooth probability measure p(dz) = p(x)dx) to be

S(0) = - [ dep(a) log (o)

From this, and taking limits, one obtains expressions for the entropy production per time
step es(u) associated with a natural stationary state p in the above cases (i)-(iv). (We

shall indicate how in case (1)).

(i) Let J(z) be the absolute value of the Jacobian of f with respect to some Riemann
metric on M. If p has density p and fp density p, = (po f~)/(J o f~1), the entropy

production is
c(p) = ~[(p,) = S(0) = = [ ple)da log (@) =~ [ pldo)l0g I (2)
Therefore we write for a general probability measure
es(w) =~ [ ulde)p(a)log J(2)

When p is ergodic, this is also minus the sum of all Lyapunov exponents.
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(ii) We may write (disintegration of the f-invariant probability measure u with respect
to f)
(da) = [ (dy)vy (do)
where v, is a probability measure carried by f~'{y}. If v, has mass c,, at z, let H(v,) =

— Yo Cyalogcyq and define the folding entropy

F(u) = /M(dy)H(Vy)
Here

es(w) = F(u) - [ u(de)log s (z)

(ii1) In this case we use the rate of escape from X under f, which is (up to a change
of sign)

P = sup{h(p) — Z positive Lyapunov exponents for (p, f)} <0
p

where the sup is taken over f-ergodic measures p with support in A. We have then the

following formula for the entropy production:

exslu) =P~ [ u(da)log J @)

The term — P corresponds to a renormalization of the probability to compensate for leakage
out of a neighborhood of X. In the present situation it is natural to assume that the time

evolution is Hamiltonian, so that J = 1, and the entropy production reduces to —P.

(iv) A natural nonequilibrium measure is here a measure p on Q x M such that its
image by the projection 2 x M — Q is P. Let J, denote the absolute value of the Jacobian

of f,, then
es(w) =~ [ nldwdo)log (@)
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Positivity of entropy production.

We consider for definiteness the case (i) of a diffeomorphism f of M. For every

f-ergodic measure u we have

h(p) < Z positive Lyapunov exponents
Replacing f by f~!, this gives also

h(p) < — Z negative Lyapunov exponents

For a SRB state p we have

h(p) = Z positive Lyapunov exponents
and subtracting the above inequality gives

0> Z all Lyapunov exponents

hence e (u) > 0.

Consider now the probability measure p(dr) = p(z)dr with density p, and assume

S(p) finite. If p* is a limit of p(™) = (1/m) ZZL_Ol pr (with pp = f*p) we have
ef(p*) = limes(p™) = —lim/dxg(m)(a:) log J(z)

= —lim% ,;_1 /dasgk(az) log J(z) = —lim% ;[S(gk_l) - S(p,)]

= lim —~[5(p) - (g,

which is > 0 because S(p ) is bounded above (by log volM).
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While the above arguments are very simple, the corresponding problems are more
difficult in cases (i), (i), (iv) and rigorous proofs exist only under specific assumptions

(for which see [20], [21]).
Strict positivity of entropy production.
When can one assert that ef(u) > 07

In case (i), if p is singular with respect to the Riemann volume and has no zero

Lyapunov exponent, then ef(u) > 0. This follows from a result of Ledrappier [16], see [20].

In case (ii) note that we may have ef(u) = 0 even if F((u) > 0. (If f :  — 2z (mod1)

and p is Lebesgue measure, then ef(u) =log2-log2=0).

In case (iii) suppose that f satisfies Smale’s Axiom A, and X is a basic set. The

natural measure y then satisfies
h(p) — Zpositive Lyapunov exponents = P

This is compatible with ef(u) = 0 only if X is an attractor for f~! and p is the corre-

sponding SRB measure on X (see [16]).

Finally, consider the i.i.d. subcase of case (iv), i.e., (2, P) = (A%, p%) and we have
maps fo : M — M independently distributed according to p(da). Assume furthermore
that there is a steady state with density m with respect to Riemann volume. The image
of m(z)dz by f, has the density m,(z) = m(f;')/J(f;') and the entropy production
vanishes only if m,(z) = m(x) a.e. with respect to p(da)m(z)dz. This follows from a
remark by Kifer [14] (see also Ledrappier and Young [18], Ruelle [21]).
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Further problems.

(a) In case (4i) we know that for every f-ergodic measure p
h(p) < Z positive Lyapunov exponents
Under what condition is the following true?
h(p) < F(p) + Z |negative Lyapunov exponents|

(The case where f is piecewise smooth and 1/J bounded is dealt with in [20] ).

(b) The results known in case (iii) assume that f is an Axiom A diffeomorphism and

X a basic set. One can prove that the natural measure u for this case satisfies
h(p) — Zpositive Lyapunov exponents = P

(See [20], and also the special case treated by Chernov and Markarian [5]). There remains

the problem to treat more general situations.
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