ZEROS OF GRAPH-COUNTING POLYNOMIALS.

by David Ruelle*.

Abstract. Given a finite graph E we define a family A of sub-
graphs F' by restricting the number of edges of F' with endpoint
at any vertex of E. Defining Q4(z) = Y pey 2°*™F, we can in
many cases give precise information on the location of zeros of
Q4(z) (zeros all real negative, all imaginary, etc.). Extensions
of these results to weighted and infinite graphs are given.

1. Introduction and statement of results.

This paper studies the location of zeros of polynomials

Q,A(Z) — Z anrdF‘ (1.1)

FeA

where A is a set of subgraphs of a given finite graph (V, E). The graph (V, E) is defined
by the vertex set V, the edge set E, and the two endpoints j, k € V of each a € F (we
assume j # k, but allow several edges with the same endpoints). A subgraph F' is viewed
as a subset of E. We shall consider sets A of the general form

A= {F C E : (restrictions on the numbers of edges of F' with any endpoint j € V)}

We may write A = A(V, E) to indicate the dependence on the graph (V| F).

Let o = {...} be a set of nonnegative integers (we shall consider the cases o = {0, 1},
{1,2}, {0,1, 2}, {0,2}, {0,2,4}, {even}, {> 1}, and also {< max} as explained below). A
set A= (o) = ({...}) of subgraphs of (V, E) is defined by

A= (o)={F C E: (Vj)card{a € F : j is an endpoint of a} € o} (1.2)
In the case 0 = {< max}, the set o depends on j and is
{< max} = {s>0:s < number of edges of F with endpoint j}

Suppose that the graph (V, E) is oriented by placing an arrow on each edge a € F;

at each vertex j € V there are thus ingoing and outgoing edges. Given two sets o', ¢ of

nonnegative integers we define

A= (¢ = o¢")={F C E: (Vj) card{outgoing edges of F at j} € o’
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and card{ingoing edges of F at j} € 0"} (1.3)

In the cases A= ({...}) and A= ({...} — {...}) as just defined, we impose the same
restrictions at each vertex j € V and each edge a € E. One could consider more general
situations where several classes of vertices and edges are distinguished , and also study
them by the methods of this paper. For simplicity we restrict ourselves to (1.2) and (1.3).

Some of our results on the location of the zeros Z of Q(,/_,1) are summarized in the
following table. For Q(,) we obtain the same results as for Q(,_,,). Much more precise
statements will be made below in Section 6 for (¢) and in Section 7 for (¢’ — ¢”’). Note
also that the table may be completed by symmetry (the entry for (¢/ — o¢”’) is the same
as for (¢” — o).

{0,1} | {0,1,2} | {0,2} {0,2,4} {even} | {< max} {>1}
{0,1} | Z real | ReZ <0 7 imaginary ReZ <0 | (Z=0)

{0,1,2} ReZ <0 ReZ? <0 — _
{0,2}

{0,2,4} — ImZ # 0 -

{even}

{< max} — —
{>1} (cardioid)

The polynomial @ {o,1}) counts dimer subgraphs; the fact that its zeros are real (and
therefore negative) was first proved by Heilmann and Lieb [3]*. The case of Q{1,2}) is
similar (real zeros) and will be discussed in Section 6. The polynomial Q({0,1,2}) counts
unbranched subgraphs; the fact that its zeros have negative real part was proved by Ruelle
[8]. The other results appear to be new, for instance the fact that the zeros of Q (0,13 5{0,2})
(which counts bifurcating subgraphs) are purely imaginary.

Our method of study of the polynomials @ 4 uses the Asano contraction (see [1], [6])
and Grace’s theorem (see below). We are thus close to the ideas used in equilibrium
statistical mechanics to study the zeros of the grand partition function, in particular the
circle theorem of Lee and Yang ([4], [7], and references quoted there). The machinery of
proof of the present paper is developed in Sections 2 to 5. In Section 6 we deal with the
polynomials @ ({...}) and in Section 7 with the polynomials Q{...;¢...})- Finally, Section
8 discusses the easy extension to (possibly infinite) graphs with weights.

2. Polynomials and their zeros.

2.1 Subsets of C.

* For a generalisation see Wagner [9], which contains further results and references on
graph-counting polynomials with real zeros.



We define closed subsets of C as follows
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Note that  is the branch of the hyperbola {z = z+1y : x2—y? = 1} in {2 = z+iy : x > 0};
P is a parabola with focus at 0.

2.2 Symmetric polynomials.

We shall use symmetric polynomials p, of the form

DPo(21y -y 2n) = ap + a1 E Zj + ag E Zjzk + a3 g ZizR2 + -
J i<k j<k<l

where o is a set of integers > 0, and a; = 1 for j € 0, a; = 0 for j ¢ 0. We consider the
cases 0 = {0,1}, {1,2}, {0,1,2}, {0,2}, {0,2,4}, {even}, {< max}, {> 1} as in Section
1, but other choices might be interesting®. We use the same symbol p, independently of
the number of variables of the polynomial. This is a mild abuse of notation in the case of
P{<max} (because {< max} = {0,1,...,n — 1} depends on the number n of variables).

2.3 Proposition.

To a symmetric polynomial p, as above, with ag # 0, we may associate a closed set
G C C such that G # 0 and p(21,-..,2n) 0 if 21,...,2, ¢ G, as follows:

(a) pro,13(21,-- -y 2n) =1+ Z?zl zj; G = —n"le " cos A for any 0 € (—r/2,7/2).

(b) pro1,23(21, -+ s 2n) =1+ Z?Zl zj+ D i<k %%k, Withn > 2; G is any closed region
—n+v2n—n?
n(n—1)
X the intersection of all these G and note that R\ X = (—2/n,0)), in particular we may

take

2 0,bounded by a circle or straight line, and containing (4 = and oo (we call

1 92 . .
n—l\/;e_w cos 260 A for any 96(—3%)

* Possibly interesting choices are {1, 3}, {odd}. The choices {1}, {2}, {all} however are
not useful for our intended applications.

G=-




(c) We lump together several cases:

P02} (2155 20) =1+ szzk (c1)
i<k
P{o,2,4}(zl, s Zp) =1+ szzk + Z RjRERIZm (c2)
i<k j<k<l<m
1 n n
Pleveny (21, -+ 2n) = 5 [[ [ (14 29) H (1=2)] (c3)
=1 j=1

G = CI' where I' = I'U(outside of T'), I is any circle of finite radius through +i and
C > 0 is given by C =, /m (c1), or C' is the smallest positive root of 1 — ”(”2_1)02 +

n(n— 1)gn3 2)(n=38) 4 = ( (¢2), or C = tan 7= (c3).

(d) p{<max}(z1a SRR Zn) = H?:l(l + Zj) - H?:l g G = _%A

Interesting limiting cases, where ag = 0, are the following

(a’) pr1,23(21, - - zn) = Z’; 12§+ D j<k %2k (consider pry oy + 6, with 0 < 6 — 0,
and take G = —6n~'e~" cos OA for any 0 € (—r/2,7/2); note that this is similar to (a)).

(d’) p>13 (21,00 s2n) = Hj=1(1+zj)—1 (consider py>13+1—(1-6)", with0 < § — 0,
and take G = {z:|z+ 1| <1 - 6}.

The proposition results from Lemma 2.4 below (don’t forget the zeros at infinity). For
(a) we use the fact that the closed half planes through —1/n not containing 0 are of the
form

{z:Re(e®(z+n"1)) <0} =—n"te P cosh A
with —7/2 < 0 < 7 /2. For (b) notice that the circle through 0, {1 has diameter [-2/n, 0],

from which one gets R\ X = (—2/n,+00). Also, the left-hand branch ——\/5 H of the

hyperbola {z = z + 1y : 2 — y?> = 2/n(n — 1)?} goes through (4 and since H has tangents
{z : Re(z—e" /v/cos 20)e?® = 0} = e~¥+/cos 20 A, one can take G as stated. We obtain (c)
by direct calculation of the roots of the relevant polynomials. For (d) we use the fact that
the roots of (1+ 2)™ — z™ have real part -1/2. For (a’) we note that nz + W 246 = O
has real roots in (—oo, —6n1). For (d’) we use the fact that (1+2)"—1)+1—(1-4)" =
implies [1 4+ 2| =1—4. []

Notice also that for (c3) one can take

1—
G={z:]|arg Z|>

v
1+ 2 —E}

as is seen by a simple calculation.

Our study of the roots of @ 4 uses the following lemmas.
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2.4 Lemma (Grace’s theorem).

Let Q(z) be a polynomial of degree n with complex coefficients and P(z1,...,z,) the
only polynomial which is symmetric in its arguments, of degree 1 in each, and such that

If the n roots of QQ are contained in a closed circular region M, and z1 ¢ M,...,z, ¢ M,
then P(z1,...,2n) # 0).

A closed circular region is a closed subset of C bounded by a circle or a straight line.
The coefficients of 2", 2"~1, ...in Q(z) are allowed to vanish; we then say that some of
the roots of Q(z) are at oo, and we must then take M noncompact.

See Polya and Szego [5] V, Exercise 145. []
2.5 Lemma (Ruelle).

Let K, L be closed subsets of the complex plane C, which do not contain 0. Suppose
that the complex polynomial

a+ Bzy + 22 + 02120

can vanish only when z; € K or zo € L. Then the polynomial obtained by Asano contrac-
tion, namely
a+ 6z

can vanish only when z € —K * L, where we have written K x L = {z'2" : 2/ € K,2" € L}.
For a proof see [6]. []
2.6 Lemma.

Let the coefficients of the polynomials Qx(z) of order < N tend to the coefficients of
Q(z) when A — 0. If the roots of Q) are in the closed set K C C and if Q does not vanish
identically, then the roots of Q are in K.

(Roots at infinity are ignored here, only finite roots are considered). If Z ¢ K, we
may choose € > 0 such that {z: |z — Z| < e} NK =0 and Q(z) # 0 if |z — Z| = €. Since
Q> tends to @ uniformly on the circle {z : |z — Z| = €}, the number of zeros of @, and Q
inside this circle is the same for small A\, hence Q(Z) does not vanish. []

3. Graphs.

Let a finite graph be defined by the vertex set V', the edge set E, and the incidence
set I C V x E such that (j,a) € I when j is an endpoint of a. [We assume that every
vertex is an endpoint of at least one edge, that the two endpoints of each edge are distinct,
but we allow several edges between the same endpoints.] We denote by I(j) the set of all
(j,a) € I, with fixed j.

3.1 Proposition.



With the above notation, consider the product

H Po((2a5) j.arer(i)) (3.1)
JEV

which is a polynomial in the variables (245)(j a)cr1, linear in each. If for each monomial of
this product we replace each factor zqjz., (where j, k are the endpoints of a) by z,, and
unmatched z4j, 2.1 by 0, we obtain

P(o)((za)aEE Z H 2a

Fe(o)a€F
Each monomial of P, is of the form [] acF Za; Where F' C E. By construction, the
subgraphs F' which occur are precisely those for which
(Vj)card{a € F : j is an endpoint of a} € o

This proves the proposition. []

If the graph (V, E) is oriented, the incidence set I is the disjoint union of I’, I" where
(j,a) € I', (k,a) € I" mean that the edge a is outgoing at j and ingoing at k. Let us write

rgy=rni@g -, 1" =1"nlI{j)

3.2 Proposition.

With the above notation, consider the product

[ o ((2a5) Grayer )P ((255) G myer iy )]

Jjev
= H Do’ ((zaj)(j,a)eI’(j))- H Do ((zak)(k,a)eI”(k)) (32)
JEV kev

which is a polynomial in the variables (z4;)(jq)c1, linear in each. If for each monomial in
this product we replace each factor z,jz.; (where j, k are the endpoints of a) by z,, and
unmatched z4j, 2.1 by 0, we obtain

P(UI%U")((Za)aEE) = Z H Za

Fe(o'—o')acF
Each monomial of P/, is of the form [], . 24, where F' C E. By construction,
the subgraphs F' which occur are precisely those for which
(V4) card{outgoing edges of F at j} € o’
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(Vk) card{ingoing edges of F at k} € o
This proves the proposition. []

Propositions 3.1 and 3.2 express that the polynomials Q 4 introduced in Section 1 can
be obtained from a product (3.1) or (3.2) of polynomials p, by repeated Asano contractions
Zajy Zak — %q (@s described in Lemma 2.5), yielding P4((2q)qck), then taking

Qa(z) = Py(z,...,2)

One could in a similar way deal with more general situations than A = (¢) or A = (¢/ —
OJI).

4. Geometric results.

We collect here some facts involving A, A, H, 7:1, and P, P as defined in Section 2.1.
Because — logcos# is convex on (—7/2,7/2) we have

HsH=H+H=A (4.1)

AxA=AxA=P (4.2)

(We shall not use (4.1)). Since e_if cos@ A is, for 0 € (—n/2,7/2), any line through +1
except the real axis, and e =% cos @ A is the corresponding closed half plane not containing
0, we have

Nee™ cos A = [1, +00) (4.3)

Using (4.2) and simple geometry, it is also clear that
No(e" cos O A) x (e cos O A) = Nge™ 2 cos? P = [1, 4+00) (4.4)

4.1 Proposition.

Let G = {re*® : r > p(a)} where p(-) is smooth, defined on R(mod 27), or on a
closed interval of R(mod 27), or an open interval such that p(a) — oo when a tends to
the endpoints of the interval. We assume that p(-) > 0, and p(-) + p”(-) > 0. (The limit
case p(a) + p"(a) = 0 arises when the osculating cercle to the curve a — p(a)e'® passes
through 0). Then

ﬂge(_ﬂ/z’wﬂ)e_w cosOAxG =G

Note that G is closed F 0, and that C\A *x G is the open convex region around 0
bounded by the envelope F of the lines
t e (14 4t)p(a)e™
parametrized by a. Expressing that the two real linear equations
idt p(a)e’® 4 (1 +it) (ip(a) + p'(a))e!* da =0
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or

: A CIN
zdt-l—(l-l—zt)(z-l—p(a))da—o

have a vanishing determinant yields

0 A)/p0)—t | _,
1 1+1p(a)/p(a)

i.e., t = p'(a)/p(ca). The envelope E is thus given parametrically by the map a +—
E(a) = (p(a) +ip'(c))e'™ with derivative E'(a) = i(p(a) + p"(a))e!® # 0. In particular
p(-) + p"(-) > 0 implies that E(8) — E(a) # 0if 0 < 8 — a < 7, i.e., E has no self-
intersection.

The tangent to E at E(a) passes through the point p(a)ei"‘. and is orthogonal to the
vector p(a)e'®. In other words, the orthogonal projection on {re*® : r > 0} of (C\A*G)N
{z:|argz — a| < w/2} is {re'® : r > 0} N (C\G). Therefore

Uge(_ﬂ-/g,ﬂ-/Q)e_w cos(C\A x G) = C\G
or . )
ﬂge(_ﬂ/z,ﬂ.p)e_w cosAxG =G
as announced. []
4.2 Applications.

Proposition 4.1 applies to G = A, H. If T is a circle containing 0 in its inside, the
proposition also applies to G = I'U(outside of I'). If I is a circle which does not contain 0
in its inside, and G = I'U(inside of I'), the proposition applies to [1, +00) * G:

ﬂgE(_ﬂ/zﬂr/g)e_w cosOAxG = [1,4+00) * G

4.3 Proposition.

Let the family (') consist of the circles (of finite radius) through =+i, and I' =
I'U(outside of I'). Then o
NAxT'={z=x+1y: |yl >1}

Taking I' = {A + Reif :0 € (—m, n]} with A real, |[A| < R, we find (as in the proof of
Proposition 4.1) that C\A x I is the region inside the envelope E of the lines
t (1+it)(A+ Re®)
parametrized by 6. Direct calculation shows that E is the ellipse

r— A2 Y 2
R ) +(m) =1}

E={z=z+1y: (



Here vV R? — A% = 1, and the union of the insides of the allowed ellipses is {z = z + iy :
ly| < 1}, proving the proposition. []

5. Calculations of —G' x G".

Each Asano contraction z,j, 2¢x — 2, which occurs in Proposition 3.1 or 3.2 in-
volves a variable z,; of a polynomial p/(n’ variables) and a variable z,; of a polynomial
p”(n” variables). If G’, G” are closed sets associated with p’, p” in accordance with Propo-
sition 2.3, we are led by Lemma 2.5 to computing —G’*G"” (and then taking an intersection
over the possible choices of G’ and G”'). We proceed by examining various possible cases,
without striving for optimal results.

Case (a)-(a).
We have G' = —n'~le ™ cos@'A, G’ = —n""te " cos”A, where we allow ¢,
0" € (—m/2,m/2). Therefore, using Proposmon 4.1 and then (4.3),
N—G *G" =—n'n")""Nggr (e cos'A) * (e7*" cos”A)

(n/ //) —30" COSQ”A— (n/n//) 1[1,00) ( (n/ //) ]

if @', 0" are allowed to vary independently. If we impose 6’ = #” the same result is obtained
since, using (4.4),

N—G *G"=—('n")"'Ne 2 cos? A x A = —(n'n")7[1, +o0) = (—o0, —(n'n") 7}

Case (a)-(-).
Here G' = —n'~le~® cos@’A with ¢’ € (—r/2,7/2). In our applications, the G” or
[1,00) x G" satisfy the conditions of Proposition 4.1, and we have thus

N—G +G" =n'" Ngn ([1,+00) + G”)

Example.
Suppose that we may take G” = CT for all the circles T' (of finite radius) through .
This situation occurs in case (c) of Proposition 2.3, and we have then

N[1,+00) * G" = NG" = iC((—o0, —1] U [1, +0))

so that N — G’ * G” is the imaginary axis minus the interval i n'~'[—C, +C].
Case (a’)-(a’).

We have G/ = —6n'"le=® cos@’A and G = —6n"""te " cos§"A, with 0', 9" €
(—m/2,7/2) and 0 < § — 0. These are the same expressions as in case (a) — (a), with an
extra factor §. Therefore

N—G' *G" = (00, —82(n'n") "1 C (~o0,0]
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Case (a’)-(-).

We have the same expressions for N — G’ * G” as in case (a)-(-), but with an extra
factor §. For example in the case (a’)-(b) we have

N—-G+G"c{z=x+iy: <0,y <z}

In case (a’)-(c), we have
N — G’ x G" C imaginary axis
Case (b)-(b).
We may take

]. 2 -n! -nll ~ ~
—-G'+xG"=— - D 1) \/We_w e~ \/cos 20"V cos 20" A x A

with 0, 0" € (—n/4,7/4). Using Proposition 4.1, we find

~

Ne=® e="V/cos 20'v/cos 20" A x A ﬂ¢e(—w/2,7r/2)e_i¢ cospAx A=A

so that
1 2 A
(’I’LI — 1)(TL” — 1) vn'n"

If n” = n'" = n, we recover the result of []:

N—-G*«G" c —

2 A

N-GG"=-——=
n(n —1)2

This result could be somewhat improved, using circular regions for G', G”.

Case (b)-(c).

We may take G’ = ——2=1/2e "% /cos 20’ A and G” = C"'T where I is any circle (of

- n'—1 n

finite radius) through 44. Thus, using Proposition 4.3 and the fact that the e®+/cos 20 A
are the tangents to H, we find

CII

N—-G*G" = —
n —1

2 g A A
— m0’€(—7r/4,7l'/4) 6_19 Vv cos 26’ Nr AxT
n

Cl/ 2 » ‘
=1\ Noe(—n/4,m/4) € 9\/cos 26 {z=z+1iy: |yl >1}

ic" 2 y o
= ﬁ ﬂge(_n/4’w/4) e 6\/ cos 260 ((—A) U A)

n —1

yal/l 2 " " 1" 2
= < — (-H)UH) = ¢ \/W{Z=w+iy:y2—m221}

n'—1Vn n' —1
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This result could be improved using for G’ all closed half-planes 5 ¢/, and Z 0.
Case (b)-(d).

For some ¢ > 0 we may take G’ = —ee™® A, any 0 € (—n/4,7/4), and G”
Thus, using (4.2), we get

-G xG" cC\{z= pe? i p>0,0¢ <_%a g)}

Case (b)-(d’).

1
2

For some € > 0 we may take G’ = —ee~® A any 0 € (—x/4,7/4) , and G = —0A,

0<é§d—0. Thus
, , i0 T T
N—G +G" =C\{z = pe :p>0,9€(——4,1)}

Case (c)-(c).

If G’ = C'T, G" = C"T" with circles I' (of finite radius) through =i varying indepen-

dently for G’, G”, one finds
N—G+«G"=C'C"{z:|z| > 1}
This result can be only slightly improved when one has

1-—=z ™

> =}

Gl:GII: .
{z |arg1+z n

Case (c)-(d).

Taking G’ = C'T" where T is any circle (of finite radius) through +i and G”
we have, using Proposition 4.3,

' L . C
N—G+xG@"=-——nNTxA=—{z=x+1y: |y >1}

Case (d)-(d).
Taking G' = G" = —%A we have, using (4.2),

1. ~ 1 -
Nal ”:——A A:——
G xG 1 * 4’P

Case (d’)-(d’).

N[

>

Taking G' =G" ={z:|z+ 1] <1-6}, with0 < § — 0, we have G' = G" C —{z =

pet® i p<2cosh,0 € (—m/2,7/2)}, hence
—G' xG" ={z=pe? : p<2(1—cosh),d € (—m,7]}
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(This region is bounded by a cardioid).
6. Zeros of graph-counting polynomials.

In this section we consider the polynomial

Q.A(z) — Z zcardF

FeA

with A = (o), and make assertions on the location of its zeros for various choices of o.
Following Propositions 3.1, 2.3, 2.5 we have to compute sets —G * G. The computations
have mostly been done in Section 5, and we can here simply read off the results. In what
follows, n will denote the maximum number of edges with endpoints at any vertex (degree
of the graph F).

A= ({0,1})

Here A consists of dimer subgraphs F': each vertex is an endpoint of at most one edge
of F'. All the zeros of Q4o,1}) are real (hence < 0), as first proved by Heilmann and Lieb
[3]. Indeed by case (a)-(a) of Section 5 we find that Q10,1})(2) can vanish only for

z € (—oo, —n"?]

A= ({1,2})

The subgraphs F' occurring in ({1,2}) are those unbranched subgraphs which fill E.
Here all the zeros are real < 0. Indeed, by case (a’)-(a’) of Section 5 and Lemma 2.6 we
see that (Q({1,2})(2) can vanish only for

z € (—00,0]

A=({0,1,2})

Here A consists of the unbranched subgraphs F' of E and the zeros of Q4 = Q{0,1,2})
have negative real part (Ruelle [8]). Indeed by case (b)-(b) of Section 5, Q({0,1,2}) can
vanish only if Rez < —2/n(n — 1)2, where we have assumed n > 2.

A = ({even})

Let E be a piece of square lattice in the plane, and A consist of those subgraphs F
such that each vertex j € V is an endpoint of exactly 0, 2, or 4 edges € F' (boundary
subgraphs). Fisher [2] has presented evidence that in the limit where F is large (as a piece
of square lattice), the zeros of @ 4 lie asymptotically on the two circles

{z:]zx1] =2}

This conjecture of Fisher, together with the results presented here, raises the hope that
the zeros of graph-counting polynomials tend to be localized on curves under fairly general
circumstances.
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A = ({< max})

For each vertex j € V, the subgraphs F which occur in ({< max}) have strictly less
edges with endpoint j than F has. By case (d)-(d) of Section 5, Q({<max})(2) can vanish

only for z € —%lf’.
A=({=1})

The zeros of QQ({>1}) are the inverses of those of Q) ({<max}) and therefore lie in
—{z=pe?® : p < 2(1 +cosb),8 € (—m,m)}

i.e., in a region bounded by a cardioid. This also follows from case (d’)-(d’) of Section 5.
7. Oriented graphs.

Interesting families of subgraphs can be defined when (V, E) is oriented. Remember
that the incidence set I is the disjoint union of I’, I"', where (j,a) € I, (k,a) € I"" mean
that the edge a begins at j and ends at k. We define

n' = maxcard{a € E : (j,a) € I'}
j

n' = m]?,xcard{a €FE:(ka)el"}

We are here concerned with families A = (¢’ — ¢”’) of subgraphs such that the number
of edges of F' originating at a vertex and the number of edges ending at a vertex take
restricted sets of values ¢’ and o”. The following proposition gives a variety of results on
the location of zeros of polynomials of the form @, ,), without exhausting possibilities,
or giving necessarily best possible results (for improvements the reader is referred to the
easy proofs in Section 5).

7.1 Proposition.

Let again

Q.A(Z) — Z zcardF

FeA

We shall write C', C" for the quantity obtained by the replacement n — n’, n” in the
definition of C in Proposition 2.3(c). Then

Q({0,1}—{0,1}) has real zeros, located on (—o0, —(n'n")~1. Also Q({1,2}—{1,2}) has
real zeros, located on (—o0,0].

Q({0,1}—{0,1,2}) has zeros with real part < —1/n'(n" — 1) (we assume n" > 2). More
precisely, the zeros are in n’~' X", where X" is obtained by the replacement n — n' in
the definition of X in Proposition 2.3(b), real zeros are thus < —2/n/n". In particular
Q({0,13—{0,1,2}) has its zeros in {z =z +iy : x <0, [y| < |z|}. Also Q{1,2)-{0,1,2}) has its
zeros in {z =z + 1y : 2 <0,y <|z|}.
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Q({0,13-{0.2}): Q({0,1}5{0,2,4}): Q{(0,1}>{even}) have purely imaginary zeros, located
on {z =iy : y*> > n/72C"}. Also Q(1,2){0,2}), Q({1,2}-{0,2,4})s Q{1,2}—{even}) have
purely imaginary zeros.

Q({0,1}—{<max}) has zeros with real part < —n'~'/2. Also Q ({12} {<max});
Q({1,2}—{>1}) have zeros with real part < 0.

2
n'n'’ °

Q({0,1,2}—{0,1,2)) has zeros with real part < — (n,_l)in,,_l) 7
Q({0,1,2}1{0,2}), Q({0,1,2—{0,2,4})s Q({0,1,2}—{even}) have no real zeros; these polyno-
mials are of the form F(z%) where the zeros of F have real part < — 20"

Q0121+ (<) has its zeros in C\{z = e p > 0,0 € [, 31} Qonayor(nn
has its zeros in C\{z = pe'® : p > 0,0 € (-Z,Z)}

Q({0,2} > {<max})s Q({0,2,4}—{<max}), @ ({even}—{<max}) have their zeros in {z = r+1y :
ly| > C"/2}, these zeros are thus never real.

Q ({<max}—{<max}) has its zeros in {z=x+1y:1+ 4z > 4y?}.

Q({>1}—{>1}) has its zeros in the region —{z = pe*? : p < 2(1+ cos0),0 € (—m,7)}
(bounded by a cardioid).

Reversing the direction of the arrows produces more polynomials for which one has
information on the location of the zeros.

The proposition results from the calculations of Section 5. []

We have omitted some trivial cases from the discussion. Note for instance that
Q0.13—{>11) = const. 2°44Vwhich can vanish only at z = 0.
({0,1}={>1})

8. Graphs with weights and infinite graphs.
Suppose that a weight W, > 0 is given to each a € F and replace Q4(z) by the
weighted polynomial
QY ()= X (I way==”
FcA a€cF

We note that Q% (z) is obtained from P4((z,)qcr) by taking z, = W,z. In the cases which
we considered we had P4((24)eecr) # 0 when 2z, ¢ N — G’ x G". We have thus Q% (z) = 0
only when z € Uys0A N =G’ * G”. This gives a number of easy results as follows:

8.1 Proposition.

QE{/%J}) and ng,1}—>{o,1}) have real zeros < 0; QE/I{/Lz}) and Q&/Lz}—)u,z}) have real
zeros < 0.

QE’I{IO,IJ}), ng’l}_)Kmax}), Q?{/O’m}_){o,m})have zeros with real part < 0;
Q&ll,Z}—){<max})7 Q?‘{ll,z}%{zu) have zeros with real part < 0.

Qz/l{fo,l}a{og})f QE/I{IO,I}—){O,ZA})’ Q?{/O,l}—){even})’ Qz/l{fm}—){o,z})’ QE/E[/1,2}—>{0,2,4})’
Q&/m} s {even}) have purely imaginary zeros.
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Q({o 1}{0,1,2)) has its zeros in {z =z + iy : <0, |y| < |z[}; Q({1 9}-+{0,1,2}) has its
zeros in {z =x+iy:x <0,|y| < |z|}

Q01211021 Q0121510241 Q({0.1.2) > eveny) have their zeros in {z =z +1y :
ly| > |z|} (they are polynomials of the form F(z%) where the zeros of F' have real part
<0).

QE/I{/0,1,2}—>{<ma,x}) has its zeros in C\{z = pe?® : p > 0,0 € —%. %1} Qg0,1,2}—>{21})
has its zeros in C\{z = pe®® : p > 0,0 € (-%,%)}.

Qg{o,Z}—>{<max})’ QE/I{/0,2,4}—>{<ma,x})’ Q({even}—>{<max}) have no real zeros.

Reversing the direction of the arrows does not change the information given here on
the zeros.

The proofs are the same as for Proposition 7.1. []

We have defined a family A = (...) (resp. A= (... — ...)) of subgraphs F' of any
finite graph FE by restricting the number v of allowed edges with a given endpoint (resp.
the number v/ of ingoing edges and " of outgoing edges). Suppose that 0 is an allowed
value of v (resp. of v/ and v"). Then we can in a natural manner define the corresponding
family A of subgraphs of a (countable) infinite graph E. Giving weights W, > 0 to the
edges a € F, and assuming

Z W, < +0o0
we define
Q.A Z H W CardF
FeA a€eF
We have

QA () < [+ Walz))

a€ckE
and therefore QI’X is an entire analytic function.

Let V* be a finite subset of the infinite set V of vertices associated with E, and
= {a € E :both endpoints of a are € V*}. Also let A(V*, E*) consist of the subgraphs
of E* which are in A. Then

Q*(z) — Z (H Wa)zcardF

FeA(V*,E*) a€F

satisfies

Q" (=) < [T+ Walz))

a€E

and the coefficients of Q* tend to those of QE’X when V* tends to E. Therefore Q* tends
to QYX uniformly on compacts, and the zeros of QE’X must be limits of zeros of Q*. This
yields the following result.
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8.2 Proposition.
For infinite E, the zeros of Q" are localized as follows

QF{/OJ}) and QE}E[IO,l}e{O,l}) have real zeros < 0.
le{lo,l,z}y Qg0,1}—>{<max})’ Qz/‘{/o,1,2}_){0,1’2}) have zeros with real part < 0.
QE’I{IOJ}_}{O’Z}), Q?{o,1}—>{o,2,4})7 Q&/O,l}—){even}) have purely imaginary zeros.

Q{0.1}-{0,1,2y) has zeros in {z =z + iy : 2 <0, |y| < z}.

Q{o.1.23{0.2p Q{0,125 10.2,43) Q{0,123 {even)) have zeros in {z = & + iy : Jy| >
|z|} (they are of the form F(z%) where the zeros of F' have real part < 0).

2’1{10’1’2}_}{<max}) has its zeros in C\{z = pe*® : p > 0,0 € (—%, %)}
Reversing the direction of the arrows does not change the information given here on

the zeros.
In view of what was said above, this is a direct consequence of Proposition 8.1. []
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