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When Floris Takens and myself proposed that hydrodynamic turbulence
is described by what we called strange attractors, we expected neither the
opposition that this idea would at first encounter, nor the importance it
would later achieve in the development of chaos theory. At the occasion
of this joint work [1] (and later) I noted the ability of Floris to combine
the focussed rigorous thinking appropriate for mathematical work, and the
openmindedness necessary to study physical applications. Some openmind-
edness will also be required from the reader of the present note, because
I raise some questions about smooth dynamical systems, which I am quite
unable to attack in a proper mathematical way. But, by necessity, one
must ask questions before they can be answered, and smooth dynamics is a
particularly daunting subject in view of the many questions which one has
absolutely no idea how to answer.

A question of great interest for physical applications is that of the long
time behavior of smooth dynamical systems. To fix ideas, let f be a dif-
feomorphism of a compact manifold M, and let € M. What can one
say about f"x for n — oo? To make the problem somewhat manageable
we have to put restrictions on f and x. A natural restriction is that we
may assume = ¢ N where N is some subset of zero Lebesgue measure of
M. (By Lebesgue measure we mean a measure with smooth density w.r.t.
Lebesgue, in charts of M. The concept of zero measure is then independent
of choices). As far as f is concerned, one is happy if one can handle some
nonempty open set in some topological space of diffeomorphisms.

The problem just outlined has been heavily researched, from Hadamard
to Poincaré, through Kolmogorov and the Russian school, to Smale and his
friends, to Jacob Palis and the Brasilian school, in which we may include



Floris Takens. (There are many books, among which we may quote [6], [4],
[3], [5], [2])- In the simplest examples, for f in some open set (Morse-Smale
diffeomorphisms), f"z tends to an attracting periodic orbit for Lebesgue
almost all x € M. This is what we would call predictable behavior. In more
general situations, for f in some open set (Axiom A + No Cycles), and for
Lebesgue almost all z € M, f"x tends for n — oo to an attractor A (there
are finitely many such attractors in M). In this situation, and again for
Lebesgue almost x, the measure

1 n—1
SO (*)
k=0

tends weekly to a limiting measure y when n — oco. For each attractor A
there is a unique p, which is ergodic, and called SRB measure (see [7], [8],
[9])-

In another situation (which is the object of KAM theory, see for instance
[16], citeMo2) for f in an open set of volume preserving diffeomorphisms and
z in a set of positive Lebesgue measure, f"z is confined to an m-torus, and
() tends to an ergodic measure p on this torus, so that the dynamical
system (u, f) is quasiperiodic.

In all these examples we have recurrent behavior, described by a measure
. If this measure has positive entropy we say that we have chaos. Computer
studies have shown that chaotic behavior is quite common, but its study
remains difficult in spite of the work of Pesin, Viana, L.-S. Young, and
many others (see in particular [11], [12], [13], [14], [15]).

But what about nonrecurrent behavior? Is it possible that for a large
set of diffeomorphisms f, and a set of positive measure of points x € M,
the measure (*) has no limit? This absence of limit is what we want to call
historical behavior. This means that, as the time n tends to oo, the point
f™x keeps having new ideas about what it wants to do. Can such historical,
nonrecurrent behavior occur in a stable manner? (It is easy enough to
concoct an example in two dimensions where f™z oscillates ever more slowly
between two fixed points, so that () does not have a limit, but this example
disappears after perturbation).

It is apparently not known if historical behavior, as described above,
can occur in a persistent manner. (I am indebted to Michel Herman for
confirming that). Making a conjecture would involve choosing a topological
space of diffeomorphisms, etc. Rather than going into such premature details
let me explore the possibility that historical behavior could be persistent.
Here are a few arguments in favor of this possibility.



1. As discussed earlier in the text we have a two-dimensional example
of historical behavior, easily killed by perturbation. But features (like non-
hyperbolic behavior) which are nongeneric in low dimension, often become
generic in higher dimension. This might happen for historical behavior.

2. Computer studies of all but the simplest dynamical systems show that
the limit of (x) when n — oo is often extraordinarily slow, if it takes place
at all. (In this respect see for example Gr).

3. there are physical systems which are believed to have historical behav-
ior, and which somewhat resemble smooth dynamical systems. Specifically,
spin glasses (see [10]) are infinite systems of spin with historical behavior,
and Markov partitions give a representation of hyperbolic systems as infi-
nite systems of spins. (The resemblance is not close: hyperbolic systems
correspond to one-dimensional chains of spins, while one would like to con-
sider spin glasses in higher dimension. Also, the time evolutions are totally
different). Note the following intuitive view of why one expects historical
behavior for spin glasses. Their evolution is pictured as a random walk in
a random potential. At a given time one is trapped in a valley of the po-
tential. Eventually one crosses a barrier to another valley. As time goes on,
deeper and deeper valleys are explored where one stays trapped for longer
and longer. (For a rigorous study of this situation in one dimension, see
[19]. Can a smooth dynamical system emulate a random walk in a random
potential (and this in a persistent manner?)

We know that there are simple dynamical systems with very inventive
time evolution. In particular among cellular automata (think of Conway’s
Game of Life, [20]). The question here is whether or not, for smooth dynam-
ical systems, it is possible to get rid of “historical” behavior by eliminating
“negligeable sets” of diffeomorphisms and of initial conditions.
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