DIFFERENTIATION OF SRB STATES: CORRECTION AND COMPLEMENTS.
by David Ruelle*

Abstract. Taking into account criticism by D. Dolgopyat and M. Jiang, we present here
an improved derivation of the formula for the derivative of an SRB measure with respect
to parameters.

The SRB measure py on a mixing Axiom A attractor K depends smoothly on the
diffeomorphism f, and a formula for the derivative was given in [3], namely

5ps(®) =Y psgrad(®o f"), X)

=Y psl((grad®) o f*, (T f™)X®) — (® o f™)div* X"] (1)

n=0

where X = 6fo f~! has components X* and X ™ in the stable and unstable directions. The
divergence div" is taken along an unstable manifold with respect to the natural measure
induced by p; on unstable manifolds, and div*X™ is a Holder continuous function on K.
This last fact, as pointed out by Dolgopyat, is not obvious, and was not clearly stated or
proved in [3] (the problem is that X* need not be smooth). Furthermore, as pointed out
by Jiang, one term was omitted in the proof of the above formula (this term, see below,
vanishes however in the present circumstances).

The purpose of the present note is to correct and complement the proof of the “first
step” in section 3 of [3]. From this one obtains formula (1) for §ps, without extra term,
and with Holder continuous div* X" as needed for applications to statistical mechanics.

The following proposition is stated for an attractor K, but an extension to general
Axiom A basic sets is discussed in Remark 4 below.

1. Proposition.
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Let f be a C" diffeomorphism (r > 3) of a compact manifold M and K a mixing Axiom
A attractor. Alsolet J¢ : K — R be the unstable Jacobian computed with respect to some
smooth volume element w on the unstable manifolds (say the volume element associated
with a Riemann metric). A change §f of f corresponds to a vector field X = §f o f~1
M. Let 6J" be the corresponding first order change of J¥. We shall prove the formula

% ~ div® X* @)

where we have used the following notation. The equivalence ~ means that the integrals
of both sides with respect to every f-invariant measure on K coincide. We have written
X?® 4+ X" the decomposition of X restricted to K along the stable and unstable direc-
tions. Finally, the divergence div}, is computed on unstable manifolds with respect to the
canonical volume element o defined up to a multiplicative constant by o(z) = s(z)w(x)
where

s(z) °°}*)
s5(y) 1:[}‘

We claim that div, X* makes sense as a Holder continuous function on K.

The proof of the proposition will use the absolute continuity of the projection along
stable directions: let 7 : 31 — X5 be the projection along local stable manifolds between
two u-dimensional manifolds 31, X transversal to stable directions (u is the unstable
dimension) then 7 is absolutely continuous with respect to the Riemann u-volume on ¥y,
Y9. The corresponding Jacobian J, is Holder, but if one of the u-dimensional manifolds
is moved, the Jacobian varies smoothly along stable manifolds (see Lemma 2 below).

We shall denote by V7, V. the stable and unstable subspaces of T, M at z € K.

Remember that, by structural stability, changing f to f yields a map j : K — M such
that fj = jf. Furthermore j depends smoothly on f (and similarly for other quantities

hke V;“;, etc.). Our proposition is a first order calculation, where we write f =f4+4f,

=6fo f71, and jz = = + dz. We also want to take §J% = j}f oj— Jy. In order to
define the unstable Jacobian J “, we have to choose an unstable volume element & for f.
Note that changing & amounts to changing log j}f by a “coboundary” term Ao f — A. This
changes (5J“/J}‘ by Aofoj—Aoj=Aojof— Aoj~ 0. Any choice of & corresponding
to a continuous function A on K is thus allowed.

The calculation of §J* involves unstable manifolds V}, Ve V;‘w, it for f and f , and

there are maps 7 : V" — Vy, yu e Via defined by projection along the stable manifolds
for f. By absolute contlnulty, 7 also deﬁnes maps (T;. M )N — (V)" and we shall use
the volume element @ = wom on V;‘gc, oy s fou . (note that & has continuous rather than
smooth density).

Let now F(:) € (V)N F(.) € (V)™ be defined by (w, F) =1, (w, 7F) = 1. Write
Az) = (w, (T, f)"F(z)) Az) = (w, 7(Tjo f) " F(jz))



and 6A(z) = A(z) — A(z), then
A@)|=Jf(@=@) ,  OMx)/A(z) =6J"(2)/TF(x)
We may write
SM@) = (W, T(Toso(f + 6)\“F (2 + bz)) — (w, (T f)""F(z))
= (0, T(Tps0.f) " F (2 + 6z)) = (w, (To )" F (x))
Hw, T[(Tr (@42 (id + X)) = 1)(Typ50f) " F (2 + b))

If we let 6z = &%z + 6%z with 6%z € V%, §°z € V¥, we have

T(Tots0f)"F (@ + 62) = (Totsua f) N F (2 + 5“)
so that

(W, T(Toy 50 f)NF(z + 62)) — (w, (Tof)“F(2)) = Az + §*z) — ()

(this is the term forgotten in [3], as pointed out by Jiang). Also, to first order,

(W, T[(Tf w50y (id + X)) = 1(Tgps0) ) F (2 + 82))
= (w, 7[(Tyo(id + X)) = 1|(To /)" F(2)) = (w, 7[(Tra(id + X)) = A(z) F(fz))
= Az)®(fz)

where
®(z) = (w, 7[(T-(id + X)) — 1]F(z))

We claim that
O(z) =div, X*“ (3)

The formula (3) will be obtained in this setup as a consequence of Lemma 2 below.
Using (3) we have

IA(z) = Mz + 6%x) — M) + A(z) divy, X“(fz)

Let us now define o,, = f"w, so that
n
on() = sp(z)w(x) with Sn(x H H f*2)]

and replace w by o,,. This replaces J¥(x) by J¥(f~"z) so that, as n — oo, the derlvatlve
in the unstable direction of log J}‘(a:j‘ tends to 0. In pa,rtlcular Az + 6z) — ANz) —
Note also the identity

doy
div® X* — div X" = X* - grad log di
" o



with the Radon-Nikodym derivative do, /do = s, /s, and

X" - gradlog n _ E X" -grad(J} o =5
s
k=n-+1

When n — oo (for fixed Holder X*) the above expression tends to zero in a space of Holder
continuous functions on K. Therefore, if we know that div), X" is a Holder continuous
function, so are all div; X* and also their limit divy; X*. (That div,, X* is Holder will
result from 2. and 3. below). Using also ®o f ~ @, this concludes the proof of Proposition
1 (modulo the proof of (3) in the next two Sections). []

2. Lemma.

Identify R*, R*® with subspaces of R* + R® = R“T*, and choose a chart identifying
an open set of M with the sum B* + B?® of unit balls around 0 in R* and R®. We assume
that the stable manifolds for f are (uniformly) transversal to the affine spaces y+R"™. Also
let 0 # e € R°. If x € RY, let V? be the local stable manifold through x, and let &(z, s)
be the point of intersection of V3 and se + R*. Thus s — &(z, s) is smooth, &(z,0) = z,
and if &(x) = 2L&(x, 5)|s=0, we may write &(z) = e + j(z) where j(z) € R™.

S

We claim that x — &(z, s), d%ﬁ(x, s) are Hoélder, and that the same is true for
= (Tpé(-,8) M er A... Ney = w(x,8)er A ... Aey

where ey, . ..,e, are the canonical basis vectors of R*. (We write here (T,§)* somewhat
abusively, since & is not differentiable in general, to indicate the well defined action on
u-volume elements). Furthermore, s — w(z,s) is smooth, T — @'(z,s) = Lw(z,s) is

Hélder and, writing §(z) = Y 4_, §"(x)ex, we have

: ~ 9 _
@' (z,0) = Z wgk(fc)
k=1

in the sense of distributions (the left-hand side is a Hélder continuous function, canonically
identified with a distribution on R™).

It is well known that & — &(z, s), 2£(x, s) are Hélder. To prove the “absolute conti-
nuity” result that z — w(z, s) is Holder we use the formula

li [(Tef™) M er Ao Aey| _
1m o =1
n—00 |[(Te(a,s) f1) (2, s)er A ... Aey]|

(where the norm ||-|| is based, say, on a Riemann metric on M). If we write Fy = ejA.. . Aey,
70 = 1, and
Fk(a:, S) = (Tfk—1§(x,s)f)Aqu_1(:U, S)/Tk_l(a’:, S)

Tk(xvs) = HFk(xa S)H
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we find
log w(z, s) Z[logrk(x s) — log 7 (z, 0)]

where the sum converges exponentially fast (by hyperbolicity and the fact that £(z, s) is in

the stable direction and the Fj tend to the unstable direction) and is a Holder continuous

function by the usual argument. Also, @’(x,s) = 4 w(z, s) is given by a convergent series

and is a Holder continuous function of z.

Let F(© be a smooth foliation of a neighborhood of K, which is transversal to the
stable manifolds C K. Let F(™ = f="F( (restricted to a neighborhood of K). Then

F™) tends to the “Holder foliation” by stable manifolds: QE") — V7 in C", uniformly
in z. Define £ (z,s), &™) (z), w(™(z,s) in the same way as &(z,s), &(z), w(z,s), but
with stable manifolds replaced by leaves of F("). Then, there is a € (0,1) such that
¢ (z,-) = &(z,-) in C"((—a, ) uniformly for z € aB™.

A 3¢ argument also shows that @™ (z, s) — w(z, s), @™ (z,s) — @'(x, s) uniformly
in aB® x (—a, a), but since F™ is a smooth foliation

n nk
()'xs Zax’“dsg()xs)

where we have written £ = D ¢(Mke, . Taking n — oo, then s = 0 we obtain

0= i)
k=1

where the left-hand side is a Holder continuous function of x, and the right-hand side a
sum of distributional derivatives, as announced. []

3. Proof of (3).

Note that both sides of (3) are defined independently of a coordinate system. We
choose coordinates x!, ..., z%, x%t1 ... %% such that V¥ satisfies z%T! = ... = z4T% =0,
and w=dz' A ... Adz%, and X is constant = e. We then see that

i&(x, 8)|s=0) " —1ler A ... Aey)

®(x) = (w, Tl(To(id + X )™ = 1]F (@) = {w, [(Tu(id —

= Z 8a:k = divp X"

(the second equality is geometrically clear, and the last follows from X* = —g). []
4. Remark.

If the mixing Axiom A basic set K is not an attractor the local stable manifolds do
not cover a neighborhood of K. The proof of Proposition 1 carries over to this situation,
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except that @’(z,0) cannot in a straightforward manner be interpreted as a divergence.
We do not pursue this topic here in spite of its interest (it is related to “escape from
quasi-attractors”).

5. Calculation of dpy.

The fact that the attractor K and the SRB measure p; depend smoothly on f have
been noted by various authors at various levels of generality. To the references in [3] one
should add Bakhtin [1]. For recent results see also [2]. The specific formula (1) goes
however beyond the proof of differentiability. As indicated in [3], dpys is a sum of two
terms: 6(Yp; which takes into account the change (2) in log J¥, and 6 p; which takes
into account the change x — x + dx associated with structural stability of K. One has
(with ® € C%(M))

§Dpp(@) = [ps((® o fF).(~diveX™)) — ps(®).ps(—diveX™)]
keZ

5(2),0 (®) = Pf[z grad(® o f), X°) Z grad(®o f7"), X")]

n=0

But since p; has conditional measure o on the unstable manifolds, the integral of divj
vanishes: py(—divyX") =0 and also

prl{grad(®o f™"), X“) + (P o f7").divy X“] =0

[To see this it is convenient to use a Markov partition { R}. We may disintegrate p; in each
rectangle R with respect to the partition into local unstable manifolds, writing p¢|R as an
integral of measures o. The integral of div, X* with respect to o on a piece of unstable
manifold reduces to boundary terms. And the the boundary terms of different rectangles
cancel when we sum over R. Therefore ps(divy-) = 0].

In conclusion

o0

Spy(® Z [{grad(® o f), X*) + (® o f™).(=div: X")]

as announced.
6. Calculation of §(ps(—logJ¥)).

The expression §(ps(—log J})) cannot be directly evaluated from (1) (indeed J§ = [A|

depends on f, and is defined on K, not on M). Remembering that 6\ = A — X\ where |}|
is the unstable Jacobian for f(z) estimated at = + dx, we see that in fact

5(ps(—logA)) = (6Wps)(~logA) — pr(A~16N)

= [os((log Ao f5).dive X*) — ps(N).ps(dive X™)] - ps(divsX* o f)
kEZ



= ps((log Ao f*).diviX™)
keZ

Therefore

5(ps(—log J})) = Y ps((log J} o f*).divy X*)
keZ

If the unstable volume element w can be chosen such that the function J}‘ 1s constant on
K, then §(ps(—log J¥)) = 0 (but this is not the case in general).
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