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1. Introduction.

Given a time evolution (z,t) — f'z, with x € manifold M, t € R, it is often possible
to find a set S C M and an invariant probability measure p on M such that lebesgue(S) > 0
(i.e., S has positive Lebesgue measure), and

lim 1 /T A(ftz)dt = p(A) ifresS (1)
0

whenever A : M — R is continuous. Such measures p are called SRB measures or SRB
states. (In the case of a discrete time dynamical system, the integral in (1) is replaced by
a sum).

SRB measures were defined and studied by Ya. Sinai, D. Ruelle and R. Bowen for
uniformly hyperbolic* systems [31], [24], [8]. Then the concept was extended to general
smooth dynamical system by F. Ledrappier, J.-M. Strelcyn and L.-S. Young [18], [19].
Later it was found that, in a number of situations where specific geometric information is
available, one can prove detailed properties of SRB measures (see in particular L.-S. Young
[33], and the monograph by C. Bonatti, L. Diaz and M. Viana [3]).

The SRB measures describe the statistical properties of physical systems, in particular
in nonequilibrium statistical mechanics [28]. It is therefore desirable to study how these
measures depend on parameters (i.e., on the dynamical system (f*)). For the large systems
of statistical mechanics, a linear response is often observed experimentally when parameters
are varied. This means that the expectation value p(A) of an observable A should depend
differentiably on parameters. It is not clear at present how to reconcile the concept of
linear response with the fact that typical dynamical systems depend very discontinuously
on parameters (and may exhibit a dense set of bifurcations). The uniformly hyperbolic case
is however amenable to discussion (in physical situations, this amounts to accepting the
chaotic hypothesis of G. Gallavotti and E.G.D. Cohen [16]). A formula for the derivative
of SRB states with respect to parameters has been obtained in the case of Axiom A
diffeomorphisms in [27]. Here we shall study Axiom A flows.

A precise statement of our results is given as Theorem A and Theorem B below. The
general idea of the proofs is to use the symbolic dynamics for hyperbolic flows to study
their SRB states, also applying methods of the thermodynamic formalism™**.

* We call uniformly hyperbolic the Anosov systems [1] and the more general Axiom A
systems introduced by Smale [32] (see also Bowen [7]).

** Ya. Sinai introduced Markov partitions, symbolic dynamics, and studied the ergodic
theory for Anosov diffeomorphisms [29], [30], [31]. A partial generalization to flows was
given by M. Ratner [23]. Then R. Bowen gave a general definition of Markov partitions
for Axiom A diffeomorphisms [4] and flows [5]. The ergodic theory for Axiom A flows was
studied by R. Bowen and D. Ruelle [8], introducing what are here called SRB states on
attractors for Axiom A flows. Some abstract results applicable to SRB states originate
from equilibrium statistical mechanics and are subsumed in the so-called thermodynamic
formalism [6], [25].



It will be convenient to use the following notation for the derivative at x of a function
A on the manifold M in the direction of the vector field X:

X(x) V,A=(D,A)X(x)
If f is a diffeomorphism of M we have thus

X(l‘) ’ Vm(Ao f) = (DfmA)(Tmf)X(x)

Note.

Since this paper was written in 2004, the following relevant reference has appeared:

O. Butterley and C. Liverani. ”Smooth Anosov flows: correlation spectra and stabil-
ity.” The Journal of Modern Dynamics 1,301-322(2007).
Also, the old monograph of Parry and Pollicott still deserves to be cited:

W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic
dynamics. Astérisque 187-188, Soc. Math. de France, Paris, 1990.

2. Differentiability of SRB states for hyperbolic systems.

Let r > 3, and (f!) be a C" hyperbolic dynamical system (diffeomorphism or flow)
depending smoothly on a parameter a, with an SRB measure p,. There are a number
of results on the smoothness of a — p, as a distribution, i.e., of a — p,(A) when A is
smooth. See [21], [17], [10], [11], [2].

For applications to statistical physics it is desirable to have an explicit expression for
dpa(A)/da. In the case of an Axiom A diffeomorphism f,, writing X, = (£ f,) o f.'!, we
obtain by a formal calculation

d%p“(A) — Z/pa(dx) Xo(z) - Va(Ao f)
k=0

If f, is mixing, this result holds with an exponentially convergent sum over k, as shown
in [27]. The proof is more difficult than one might anticipate. (For other differentiability
results see [14]).

In the present paper we tackle the case of an Axiom A flow (f!) defined by a vector
field X + aX. Here a formal calculation yields

d o0
pa()= [t [ pulde) X(a) - V40 52)
da 0
What we shall show is that the Fourier transform
| et [ pufdo) X (@) Valdo £
0

(defined as a distribution) extends to a holomorphic function of w near w = 0 such that
its value at 0 is d%pa(A).



While the proofs presented here are relatively straightforward, they make detailed use
of the references [5], [8], [25], [26], and lead to somewhat heavy formulas. (The author has
tried without success to find simpler and more direct arguments).

3. Theorem A.

Let X and X be C" vector fields (r > 3) on the compact manifold M, and let (f!) be
the flow defined by X + aX. We assume that for small a the flow (f!) has a nontrivial*
Axiom A attractor A, (depending continuously on a) with SRB measure p,.

If A € C"Y(M), the function a — pa(A) is C"=2 and - p,(A)|ezo is the value at
w = 0 of the function defined for Imw > 0 by

W /OOO ei“’tdt/po(da:) X(x)-Vu(Ao ff)

which extends meromorphically to {w : Imw > —d} for some ¢ > 0, without pole at w = 0.

Note that the theorem does not assume the flow (f%) to be mixing. If [;* dt |po((A o
18)-C)| < oo, where C' = div"(X°¢+ X") is defined in Section 7 below, we have

Tere@loco= [ at [ () X(@) - 9.0 5

[There are a number of results on decay of correlations for hyperbolic flows, see in particular
Chernov [9], Dolgopyat [12], [13], Liverani [20], Fields, Melbourne and Térék [15]. Since
C' is Holder but not smooth in general, only [20] applies directly in the present situation)].

A proof of Theorem A will be obtained from Theorem B below.
4. Corollary.

Suppose that the vector field X; is constant in t and equal to X when t < ty for some
time to, but that X; may depend (smoothly) on t for t > to. Write f(gt’t())xo = x(t) where
La(t) = X(z(t)) + aXe(z(t)) and z(ty) = z9. One can then define a time dependent
SRB state p! = fét’tO)pa so that it reduces to p, for t < to. With this definition, if
Ji< dt|oo( (Ao £)C)]| < oo,

d%pZ(AMa:o:/_ dT/PO(dx) Xo(x) - Va(Ao fg77)

The Corollary follows directly from Theorem A when t < ty. To obtain the general
case differentiate both sides with respect to t.
Before we formulate Theorem B, we need some facts and definitions.

5. Correlation functions.

* The attractor A, is nontrivial if it is not a fixed point or a periodic orbit.
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If B, B" are smooth functions on a neighborhood of Ag in M, their correlation function
ist— ppp (t) = po((Bo f§).B") — po(B)po(B’). Multiplying by the characteristic function
x* of [0, +0c) we obtain p} 5 (t) = ppp: (t)x(t), and taking the Fourier transform

Php (W) = /OOO e dt[po((B o f5).B') = po(B)po(B')]

This is a distribution, boundary value of a holomorphic function in the upper half complex
plane, which furthermore extends to a meromorphic function in {w : Imw > —¢§’} for some
§’ > 0, with no pole at w = 0, as discussed in [22], [26]. Actually, the discussion in [26]
uses a symbolic representation of A: points have a description (,t) where £ belongs to a
Cantor set ¥, and ¢ to an interval of R. Instead of smooth B, B’ one takes B, B’ € C¥,
where C* is a Banach space of functions ¢ — B(-,t), continuous: interval of R — C®(X).
[To make the connection with the formalism of [26], it is useful to know that if ¢ —
B(-,t),((,t) are continuous: interval — C*(X), and t — B(,t) is C?: interval — bounded
functions on X, then ¢ — B(-,((+,t)) is continuous: interval — C*(X)].

For our purposes the function B’ = C to be introduced below will belong to C* rather
than being smooth.

6. The volume elements v and v.

Let V" denote a strong unstable manifold for the flow (f¢). We have thus V* C
Ap, and V* is u-dimensional. There is a natural volume element © on each such V" so
that, for all ¢, the natural volume element on f{V" is the image by f{ of the measure v,
up to a multiplicative constant. This is seen in the same way as for the existence of a
natural volume element on unstable manifolds contained in an attractor for an Axiom A
diffeomorphism (see [27]). Here again © has C"~! density, and is uniquely defined up to a
multiplicative constant.

If V¥ is a u-dimensional manifold contained in a center-unstable manifold, and trans-
versal to the flow (f¢), we can define a volume element ¢ on V¥ as the image of ¥ on
a strong unstable manifold V* by a Poincaré map. In this manner we obtain a natural
volume element v, defined up to a multiplicative constant and corresponding to Poincaré
maps acting on manifolds V* transversal to (f%).

Let now W€ denote a center-unstable manifold for the flow (f¢). We have thus
Wet C Ag, and W is (u + 1)-dimensional. Take a chart S x I of M such that X is
the unit vector in the last coordinate direction, and [ is an interval of R. Assuming also
V¢ C S we may write locally W = V* x I and define

v = v X Lebesgue

A volume element v is thus given on the center-unstable manifolds WW*, and is unique up
to a multiplicative constant. Note that v has C"~! density and that f¢ sends v to v up
to a multiplicative constant. [We shall see in Section 10 that v is (up to a multiplicative
constant) the conditional probability of the SRB measure py on the (local) center-unstable
manifold W].



7. The function C = divy"“(X°+ X").

For x € Ay, let T, M = E{ + E$ + E¥, where ES is 1-dimensional containing X (x),
and E$, E¥ are the strong stable and unstable subspaces at x for (f}). We write

X(z) = X(z)+ X°(x) + X"“(x)

with X¢(z) € ES, X*(z) € EZ, X"(z) € E¥. If we take again a chart S x I of M such that
X is that unit vector in the last coordinate direction, we see that E¢ is independent of z,
while ES, E¥ depend Holder continuously on z, and are independent of the last coordinate
of . In particular X¢(z), X*(z), X“(x) have C" dependence on the last coordinate of x
(while depending Holder continuously on ).

The divergence of X¢ 4+ X* with respect to the volume element v on the manifold
We is denoted by divy,“(X¢+ X*). It is, a priori, a distribution, but we shall show that
it is actually a Hélder continuous function on Ay (note that this is a local question).

Let flz € W with z € SNW = Vi, We may write X¢ + X% = X'© 4 X'
where X'¢(f¢z) € ES and X" (flx) € T,SN (ES + EY). We have then divy"(X¢+ X¥) =
0X'*+divy X" where 0 X'¢ denotes the derivative of X’¢ with respect to the last coordinate
(i.e., (0X)(flx) = 0, X (ftx)). Since OX is C"~1, X' is Holder continuous. Note that we
may also write X = X"+ X"54+ X" where X"(ftz) € ES and X"*(flx) € T,SN(ES+ES).
The definition of divg in W“N.S is now very similar to that of div" for the case of hyperbolic
diffeomorphisms in [27], provided we replace the diffeomorphism f by Poincaré maps of
(f8). In fact, using a Markov partition for (f}) we see that we need only a finite number
of Poincaré maps fg * between sections Sk, Sy. The stable and unstable directions for the
system of Poincaré maps are 7,5 N (ES + E2), T,S N (ES + EY). One uses in [27] the
absolute continuity result that the projection along stable manifolds from one transverse
section to another one has Holder continuous Jacobian, and one obtains that divy X' is
Holder. Therefore divy,"(X¢ 4 X*) is a Holder C' function on Ag. [Integration by parts
will show (in Section 10) that po(C) = 0 because boundary terms cancel out]. Instead of
X we may use 0X in the above argument, and find that

for = 0,C(fox) = divy" (90X + 0X")(fx)
is Holder continuous on Ag. From this results that ¢ — (z +— C(f}x)) defines a C! function
to C*(9).
8. Theorem B.

Under the conditions of Theorem A we have
d > _ R
ool = [ podn) (Do) [ e (T J)X 5 te) = 50(0)
[If [° dt |po((Ao f§).C)| < oo, we have ph(0) = [ po((Ao f§).0)]

The proof of Theorem B will occupy most of the rest of this paper. It is based on
the study of SRB states with help of a Markov partition. We start with the unperturbed
dynamics (i.e., a = 0, the index a will be omitted until Section 11).
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Let thus, for 7 > 3, A be an Axiom A attractor for the flow (f*) defined on the
manifold M by the C” vector field X

dftx

L= x(ft) @)

with f%2 = x. There is a unique SRB measure p with support A for the flow (f?). A
perturbation 60X of the vector field X causes a change dp of the SRB state p and we have
formally

5p(A) = / s [ plas(a)- (a5 3)

for smooth A : M — R. The main purpose of the present paper is to provide a proof of a
modified version of (3), as described in Theorem A and Theorem B above.

9. Markov partition for the flow (f?).

We introduce a Markov partition with data as follows (see [5]). A finite index set J
is given, and an J x J matrix 7 with entries O or 1 such that all entries of some power of
7 are > 0. We denote by (X%, 0) the mixing subshift of finite type defined by J, 7, and let

Se=A{(&)jez o=kt ,  Zw={()jez b=k & =10}

The construction of the Markov partition uses small pieces Si of manifolds transversal to
the flow (f*) for k € J (the Sy are open codimension 1 smooth submanifolds of M). When
Tke = 1, an open subset Siy of Si and a C” real function Tyy > 0 on Sy, are given such
that fT¢ Sy, C S,. Finally, for some standard metric on ¥, there is a a-Hélder continuous
map 7 : % — U (SE N A) such that

She — Yy

L= I=

FTRe
Ske = Sy

is commutative. A positive a-Holder continuous function 1 : ¥ — R is defined by

@D(f) = Tkg(ﬂ‘§> when f € Ekg
Also, if A is Holder continuous on A we define a y-Holder continuous function A on ¥ by

~ P (&)
A(e) = / dt A(f'ne) (4)

(here v = v if A €CY(M), otherwise we have to choose some v < a).

10. Equilibrium states.



We use here the formalism of [8], calling equilibrium states the invariant probability
measures described elsewhere as Gibbs states. The pressure of a Holder continuous function
¢ : A — R with respect to the flow (f) is

c = sup

where the sup is over o-invariant probability measures v on 3, h, denotes the entropy with
respect to the shift o, and ¢ is defined according to (4). Let vy be the unique equilibrium
state for ¢ — c1) on X. Then the unique equilibrium state u, of ¢ for the flow (f*) on A is
given by

()

We shall be interested in the case when ¢ = ¢ is minus the time derivative of the
unstable Jacobian:

u d d
¢ = ¢( ) = —%)\ﬂtzo = T 10g>\f|t:0
with
M (x) = [[(TofH) D |volume element of We|| = [|(T, f*)*|volume element of V||

Notice that we have

H(7'a) = o AT (2)
dt

For ¢(*) one can show that the pressure vanishes (¢ = 0) and P is the SRB measure
p on A for (f!). Details and proofs of the above construction of the SRB measure p are
given in [8]. Note that the function ¢ corresponding to ¢ = #™ is — up to a minus sign and
composition with = — the unstable Jacobian ()\}'M) of (fT*¢) acting on (S¢). This reduces
the study of vy to the situation discussed in [27] for an Axiom A diffeomorphism f, with
the replacement of f by (f7+¢). In particular (5) shows that the conditional measures of p
on W are of the form v = vxLebesgue. We obtain thus p(C) = p(divy," (X + X*)) =0
because the integral with respect to v of the divergence divy" yields a sum of boundary
terms (for each element of the Markov partition); those terms cancel in the flow direction
and then also in the unstable directions.

Let us summarize the situation. The “central” flow direction plays a trivial role, and
we face here basically the same problems as for diffeomorphisms. The SRB measure p is
smooth along unstable directions, i.e., p has smooth conditional measures v (defined up to
a multiplicative constant) on center-unstable manifolds, and the corresponding divergence
divy" therefore makes sense. The fact that divy"(X°+ X"), obtained by differentiating the
Holder continuous vector field X ¢+ X", is actually a Holder function C' results from abso-
lute continuity of the map along stable manifolds from one transverse section to another.
Finally, p(C) = 0 follows by integration by part and cancellation of boundary terms.

11. Flows depending on a parameter a.
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If we replace X' in (2) by X +aX for a € (—¢, €) we may leave X, o, S, Sk¢ unchanged
but replace (ft), A, Tre, 7, 1, ¢, A by (f1), Aay Tares Ta, Va, Pas Aq. Call 7, the map
introduced in Section 9. A hyperbolic fixed point argument shows that for suitable a > 0
there is a a-Holder 7, : X — US, such that

T, -1 _
fotomgoo " =m, on Ny

and a — 7, is C"71 1 (—¢,€) — C(X — USy), reducing to m, for a = 0.
Here are details. Define W, = (V,x¢) where

W, T = faT““ omoo ! on OXkr
for (a, ) close to (0, 7). Then ¥, maps a neighborhood of 7, in the Holder space C*(X —
UkeSke) to C*(X — UkeSke). We assume that we have charts identifying the Sk, with
open subsets of RUMM—1 o that C*(X — UpeSke) C C*(X — RYIMM—1) " Note that
(a, ) — W, is C"~! hence C' from a neighborhood of (0, 7,) in R x C%(X — RYMM—1) £
CH(X — RIMM-1) Taking a = 0 we see that 7, is a fixed point of ¥ (see the commutative

diagram in Section 9 above). The derivative D, Wq is a bounded linear operator on

CX — RIMM=1) Let V2 e Ve C R4mMM=1 denote the stable and unstable subspaces
at m.§. (When §{ € ¥, these are the intersections with T ¢S¢ of the center-stable and
center-unstable spaces at m.& for (f{), or the stable and unstable spaces for the fg Okt acting
on U;Sp). We have chosen o > 0 such that m, is a-Hdélder, and we may assume that also
£ V.7 is a-Holder. The spaces V., defined to consist of the a-Hélder maps £ — V",

are closed linear subspaces of C%(X — RYIMM—1) and C¥(L — RIWMM-1) = Vs g V1,

We show now that D, W, is a hyperbolic operator with respect to the direct sum
decomposition V.2 & V.*, provided a has been chosen small enough, i.e., if « is replaced
by a suitable 8 (with 0 < 8 < «) which we shall now determine. It suffices to prove that
D, ¥, induces a contraction on V., where D, Vg is the map

w (Tfg™ ) (woo™)
Using an “adapted metric” on M we may assume for the uniform norm
||T for¢|stable direction|lp < A < 1

In the definition of the C# norm

= max ( su su M
1] = max ( £p|<1>(§)|,#11§7> A& )P )

we take the second sup only over pairs (£, ) such that d(&,71)”) < e, where the constant ¢
will be fixed later (small but > 0).

Write Ty = Ty, e fa0%, 6 = d(&,n). Given u € V; (with C” norm ||u||) we may for each
pair (§,7) with small § choose v € V? . with |v — u(n)| < [[u]|O(5*). We have

Teu(§) — Thu(n) = Te(u(§) —v) + Tev — Thyv + Ty (v — u(n))

9



Te(u(€) = )| < Alu(€) = v] < Au(€) —u(n)] + [[u]|O()
[Tev = Tyo| < [Jul|O(5%)
Ty (v = u(n))] < [[ul|O(5%)

hence
| Teu(€) — Tyu(n)| < [lull(A67 + O(6%))

Since d(c&,on) > Cd we have

| Teu(§) — Tyu(n)|
d(c€,on)b

For small 3 we have A/ CP < 1, and we may take e such that

A% + O(6%) i+0(5a—ﬂ))

< Il 22 = llull( G5

NCP L0 Py<1 if 0<d<e

This concludes the proof that D, W, is hyperbolic for suitable 3, i.e., when « is chosen
small enough. We may thus apply the implicit function theorem to obtain the existence
of m, with the properties indicated above.

12. Smooth dependence of SRB state with respect to a.

Let ¢, = ) be minus the time derivative of the unstable Jacobian for (f) and v,
the unique equilibrium state for ¢, on ¥, where

- Ya(€)
¢a(§) = /0 dt ¢a(fctb7ra§)

Then, according to Section 10, the SRB measure p, for (f!) on A, is given by

_ Va(/la)
Va(Va)

Assuming A € C"(M) we find that a — 1), A, are C"1 : (—¢,€) — C*(X) because we
know that a — 7, is C"~ !, and

pa(4)

Yo (&) = Tare(mal) for € X

_ Ya(§)
Aaazﬁ dt A(f!ma6)

The set A, = E}  of unstable subspaces is an Axiom A attractor for the C"~! action

of (Tf!) on the Grassmannian M — M. Therefore if fa : % — A, makes the diagram



commutative, we see that a + 7, is C""2 : (—¢,¢) — C® (where we may again have to
replace the current value of a by a lower one). Note that

Da (S) = —log /\;};a (¢) (ﬂ-ag)

where A\ (7,€) is the unstable Jacobian ||(Ty,¢ f%)\*|volume element of #,£||. Note that
)‘ZQ(S)(W“@ is a C"~! function of a, 1, (&), o€, hence a — ¢g(-) is C"2 : (—e,€) — C* (T —
R). Therefore a — v, isC" "2 : (—¢,¢) — (C*(X — R))*. [We use here the thermodynamic
formalism to obtain the C* dependence of v, (considered as an element of the Banach

space dual of C*) on ¢, (considered as an element of C*), see [25], Theorem 5.26]. Thus if
A € C" Y (M), the function a — p,(A) = va(As)/ve(a) is CT72.

13. Differentiating a — p,(A4) at a = 0.
Writing B = A — po(A) we have

Va(Ba)
Va(%a)

pa(A) = po(A) + pa(B) = po(A) +

where B, = A, — po(A)1,. Therefore

d 1 d
_aA a=0 —
2 Do

because v(By) = 0 (use the formula po(A) = vo(Ag)/vo(1bo) from Section 12). In view of

the above formula we shall now study v,(B,) to first order in a.
14. Reparametrization: modifying the map 7, to first order in a.

A Markov partition parametrizes points of A in the form fim¢ where £ € ¥ and
0 <t < (). We have taken 7€ in a piece of smooth manifold Sy transversal to the
flow. But we may just as well use a parametrization ftr?¢ of A, where 7#¢ = f7©)r¢ with
continuous 7 : X — R.

We consider a first such reparametrization which consists in replacing S; by a union
of strong unstable manifolds (as is needed for the application of [26] in Section 20). This
reparametrization corresponds to a Holder continuous choice of £ — 7(§), and replaces the
Sk by non-smooth “manifolds” in general.

We return now to smooth S; and write

Ta§ = o€ + a(U(€) + U (§) + U"(€))

to first order in a, with U(§) € Ef, ., U*(§) € E; ., U*(§) € E} ;. We may thus consider
a second reparametrization:

mhe = ol 4+ a(U*(€) + U™(€))
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= Ta€ — aU*(§) = fo " mag

where 6 is defined by U¢(§) = 6(£) X (mo€). Note that the replacement of 7, by m# replaces
also 1 (€) by ¥a(€) + aB(€) — ab(a€), Au(€) by Au(€) + ab(€)A(ma€) — ab(0€) A(ra0t),
and ¢q (&) by ¢a(§) + ab(€)da(maé) — ab(0€)da(maof). Thus, the replacement of m, by 74
changes 1¢,, A4, ¢o by a coboundary. In particular v, and v,(B,) are unchanged.

Let us now perform the first and then the second reparametrization, ¢.e., first replacing
Sk by a union of strong stable manifolds, and second taking

Tl = mo& + a(U(§) + U())
Here we have
mhe = mal — U(a,€) = f " meé
but because of the lack of smoothness of Si, we cannot write U¢(a, &) = aU®(§), 0(a,§) =

af(§) in general. Nevertheless, the replacement of 7, by 7t changes 1, Aq, ¢q by a
coboundary, so that v, and Va(Ba)Nare~unChanged. In view of this we shall from now
on replace 7, by 7% and change 14, A4, ¢q accordingly, but without altering the notation.

15. Calculation of B, — BO.
We have

B _ Ya(§) Yo ()
Ba(€) — Bol€) = / dr B(S (mof -+ al*(€) + U (€)) — / dt B(firof)

Write X¢(x) = n(x)X(x), where 7 is Holder continuous on Ay (and n(fime) is a smooth
function of ¢t). We can then define a map [0,1,(£)] — [0, %0(§)] by 7 — ¢t such that

dt
ar 1+ an(fgmos)
Writing also f7 = f!, we obtain (to first order in a)

B o (&)
B,(§) — Bo(§) = /0 dt[(1 — an(fimo&)) B(fL.(mo€ + aU* (&) + aU"(€)) — B(fimof)]

_ a(Z' _ Z”)
with
o (§)
aZ = /O dt[B(fL, (mo& + aU®(&) + aU"(&)) — B(fimo&)]

Yo (&)
7" = / dt n(fémo&) B(fimof)
0

The contributions of Z’ and Z” are evaluated in the Appendix.
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From now on we shall write 7, f, v, v instead of mq, fo, Yo, 9. Forn >0, £ € X, we
define

U(—n,&) = —p(c7") — ... — (o7 1¢)
U(n, &) =€)+ ...+ (a1

so that U(—n,o™¢) = —W(n,£), U(0,£) =0, U(1,€) = (), and fEEOré = nok€. With
this notation, the evaluation of Z’, Z” in the Appendix yields the following result.

16. Lemma. We have

d -
V(%Baﬂa:o =v(Z' - Z")

—1 P (&) W(k+1,8)
o . ) t—0 s/ r0
=S / v(de) /0 0t (D;ore B) A e T X

k=—o0

P(§) t
[t [ atDpecB) [ (Tpones "X (1"76)

—1 e3) T (k+1,€)
_ d d B t d9 d cuXc 0
> [vtae [ arnme [ asivexe)sng

W(k,£)

k=—o00

P (§) t
- d dt B(ftr d (dive X ) (FOr
/V(é“)/o ¢ B(f 5)/0 (diven X7 (f0re)
P (€) P (&)
— [vtde) [ atDseneB) [ (T X1 w)

e ¥ (&) U(k+1,8)
- d dt (D sineB dO (Tpo e f1O)XH(f0
S [vtae) [ atren) [ 0T X )

[The meaning of divy" has been discussed in Section 7. The sums over k converge expo-
nentially, by hyperbolicity (directly) for the X® and X" parts, and by exponential decay
of correlations for the X ¢ part: see the Appendix for details].

17. Evaluation of gz;a — qgo.

We have seen in Section 10 that the function ¢ corresponding to ¢ = ¢(*) is — up
to a minus sign and composition with = — the unstable Jacobian ()\Jfke) of (fTx¢) acting
on (S¢). This reduces the study of v to the situation discussed in [27] for an Axiom A
diffeomorphism f, with the replacement of f by ( kai ). This remark remains true in the
a-dependent situation, and reduces the evaluation of ¢, — ¢y to the situation discussed in
[27] for Axiom A diffeomorphisms. We shall thus simply quote Proposition 1 of [27]II,which
takes here the form ~ ~

_%a = %o a(diviX®) o

bo
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In this formula the left-hand side is evaluated to first order in a, and we have used the
following notation. The equivalence ~ means that the integrals of both sides with respect
to every o-invariant measure on X coincide. We have written

The(x) -
[ Tty = K4
0

Finally, the divergence divy is computed, on the intersection V* with Sy, of a center unstable
manifold W, with respect to a natural volume element ¢ defined earlier. (Note that, by
our choice of Sy, V* is a strong unstable manifold). As in [27], and as in Section 7, div X"
is a Holder continuous function on Si N A.

The relation between X*, X% and ,v also gives (see Section 7)

B Tre(x)
(dive X (fTee0) (2)) = / dt (dive X" (f'z)

Therefore we may write

d R ¥(§) et s ot
o8 du(©lomo~ = [ dH@VEX(f7) = (0

The right-hand side is a Holder continuous function of § and, since v, is the equilibrium
state for ¢, the thermodynamic formalism (see [25] Chapter 5, Exercise 5(b)) yields

@ Buco= 3 MBro0b) -~ w(B)

k=—oc0
where the sum converges exponentially and, since v(B) = 0, we find
By »(o"E)
(B0 = k_zoo Jrasbe) [ st
This yields the following result
18. Lemma. We have

U(k+1,£)
I [raoBe [ do(aivire s

(k)

k=—o0

00 (€) W (k+1,8)
_ t7T yEU XU Gﬂ_
P [ty [ arnitne [ ds i g

W(k¢)

where the sum over k converges exponentially.
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The right-hand side above may be written as the sum of a part Z_ where 6 < t and
a part Z where 6 > t. In fact we claim that

d

%Va(éﬂa:o =Z_+7Z;

—1 ne) U (k+1,€)
7 =— d dt B(ftm do (v X ™) (FOr
3 futae [ | (A X (f6)

V(k,¢)

P (&) t
- / (de) /0 dt B(f'r¢) /0 48 (dive X )(f7r€)

o »(€) W(k+1,8)
Z, = d dt (D sineB dO (Tpo e fEO) XU (fO
4 ;/V(ﬁ)/o t(fs)[m@ (Tporef7) X (f77E)

P () P (&)
+ / (de) /O 0t (Djine B) / 46 (Tyoe ') X" (f0)

For the calculation of the term Z., notice that if we write 7¢ = x, the integral
over v(d)dt reduces on the manifolds W to integration over o(dx)dt = v(dxdt) =
dxy ...dz, dt for a suitable choice of coordinates. Then, writing X* =Y,

B(f'x)(divy" X ") (fz) = B(xz,t) Y _ 0xY"*(x,0)

k=1

An integration by parts transforms this to

=D B(a,)Y*(x,0) = —(Dyip B)(Tyo, /) X" (f 2)
k=1

plus boundary terms involving B(x,t)(Te, f~%) X% (f%2) with exponentially convergent
integral over 6. The boundaries of pieces of W are compact with zero measure, and it is
readily seen that the boundary terms cancel.

Putting Lemma 16 and Lemma 18 together yields:
19. Proposition.
We have

d ~ —1 P (&) V(k+1,6) o 0
Bl = Y0 [vld) [ dt(DpneB) [ a8 (Tpore X (17¢)
a koo 0 U (k)

¥(€) t
+ / v(dE) /O dt (DyireB) /0 df (Tyore 1) X5 (fOm€)
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—1 »(E) U(k+1,8)
— d dt B(ftr doC(fon
Z/v<£>/0 1B(f 5)/ ('xt)

W(k¢)

k=—00

— [ v(dE) w(@dtB(ftWS) td@C(f‘)?rﬁ)
fre ] 0

where we have written C' = divy"“(X° 4+ X™).
20. Proof of Theorem A and Theorem B.

We may write

¥ () U(k+1,£)
> [vtde) [ DBy [ a0 Ty )X R

W(k,¢)

—o(w) [ plde) (D,B) [ dr(Tyoaf )X 72) (0
0
This gives the first term occuring in theorem B. In view of the exponential convergence of

the integral over 7 (and using the notation at the end of Section 1) this term is also the
value at 0 of the expression

o / p(dz) (D, B) /0 T (T X ()

N / emdt/ p(dz) X*(x) - Vi (Bo f')
0
which is holomorphic in w for Imw > —§, for some § > 0, as required for Theorem A.

As to the series

—1 P (&) U (k+1,£)
_ t 0
k_§_joo / v(de) / dt B(f'xc) / 48 C(f'x¢)

W(k,¢)

P(§) t
- / (de) / dt B(f'r¢) / 46 C/( 1) (7)

its sum is formally

W) / "t [ olao) Boyc(s )
16



To obtain a rigorous estimate of (7) we consider the Fourier transform, as temperate
distribution, of p}-(-) = ppc(-)xT(-) where ppc is the correlation function and x* the
characteristic function of [0, 00). This Fourier transform, i.e.,

phet) = [ et [ o) Bay(s o

is the boundary value on the real axis of a function of w holomorphic for Imw > 0.
Furthermore, this function continues meromorphically to {w : Imw > —§*} for some §* > 0,
and is regular at w = 0 (see [22], [26]). Our ambition is to prove that its value at 0 is, up
to the factor —v(v), equal to (7). To do this we follow the calculation in [26] Section 4
which expresses the Fourier transform as a series converging in the sense of distributions.
Note that, in order to use [26], we need the reparametrization of Section 14 which replaces
Sk by a union of stable manifolds. Up to an additive term holomorphic in w near w = 0,
one finds that 5. (w) is

- y<1¢>ﬁ[éw > (57 LomiwwS)"Cou] (8)
n=0

In this formula 7 is the image of v by the projection ¥ — ¥_ where X _ is the semi-infinite
subshift defined by ¥_ = {({; )j<0 : 7.~ - = 1}, and B, C_,, are Holder continuous
§-15;

functions on »_ depending holomorphically on w. The wnteractions ® and ¥ are related
to ¢(*) and 1, and the transfer operator Lo_w acting on Holder continuous functions on
Y. depends holomorphically on w. Specifically, one may write

$(§) = —®o(%0) Z‘Pze e85 (§) = —Yo(&o) — Z‘I’ze e &)

where |®opl, [Uos| < const x af.

Holder function A5 on X_ by

From the interaction ® = (®2/)s>0 one defines a al/2

— Z @25(5:25_17 crey EO_>
£=0

and an operator Lg (transfer operator) on 6“1/2(2_ — C) by

(LaU)(E7) =Dt lexp Ag (€™ VU(E™ V)

neJ

where we have written £~ Vi = (...,§21,&,,n) € X_. Similarly one defines Lo_,v;
for small |w| this operator is quasicompact: it has a simple eigenvalue A\(w) with A(0) =
1, X(0) # 0, and the rest of the spectrum is contained in a disc of radius < 1. The
eigenfunction S of L4 to the eigenvalue 1 is > 0, and we have denoted by S or S~! the
multiplication or division by that function. The derivation of the above formula is presented

17



in [26] with slightly different notation, and one can also see that 7(By) = #(Cy) = 0.
We can, in the expression (8), evaluate the part corresponding to the eigenvalue A(w) of
Lo _ip. This part is of the form (1 — A(w)) ™! times two factors, one corresponding to B,
and the other to C_,,. Both of these factors vanish at w = 0 as can be seen from [26]. Since
(1 — A(w))~! has a simple pole at w = 0, the above product vanishes there. The Fourier
transform of ppc(-) is thus a distribution in w which reduces to an analytic function of
w for |w| small, and this analytic function is given by a convergent series corresponding
to the part of the spectrum of L¢_;,¢ strictly inside the unit circle. One can thus take
w = 0 and obtain a convergent expression for the Fourier transform of p5.(-) at w = 0.
Manipulations as described in [26] then show that the Fourier transform of p5(-) at w =0
is, up to a factor —v (%), equal to (7). From Proposition 19, (6) and (7) we obtain thus
Theorem B since D, B = D, A, and pgc = pac-.

Note now that

pac(t) =p((Ao f').C) = /p(dw) A(fro)(divy" (X€ + X))()

=~ [ pldo) (x“(a) + X*(2) - Valdo )

where we have used the fact that v is the conditional measure of p on center-unstable
manifolds, and performed an integration by parts. Theorem A follows then readily from
Theorem B.
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APPENDIX
1. Calculation of 7.

We have
to=flo+aRL (X5 4+ XY

where we have defined, for a vector field Y,

mr - 8 (T OV
0

Therefore e
Z' = / dt (D yene B)[(Tre f')(U* + U") + REA(X® + X))
0
Notice also that

(Trom1efPC U (071 + R, DX = U (¢)

o—1¢
Defining
(RY)(€) = RE, Dy
(TV)(E) = Trg1e fPO OV(07Y) |, (TV)(E) = Troef YOV (06)
we find

Us = (1 N T)—IRXS _ ZTTLRXS
0

Ut = —T (1 -T)'RX" = -3 T"RX"
1

where the series on the right-hand side converge exponentially, and

—n—1

-n 0-—1 o s
(Tre fYT"RX® = (Tppne fP O 90 O+ R U 9 x

ro—n—1¢

1/)(0’7"71.5)
— / db (Tfeﬂg_n_lgfw(o-*nflg)_i_...+w(o'*1£)+t—0)Xs(feﬂ_o__n_1§>
0

_w(aing))_’”_w(o'ilf) / t—6’ o’
/ A0 (Tyor e f777 ) X(f 7€)
—p(oTn ) =t (07 1E)

Similarly
n— n—1
(Tue/ YTV RX" = (Tpgnef 4" O 0O TRV )

(o) -
- / dg (Tf@wo-nflgf_w(o— 25)__w(g)"_t_e)Xu(feﬂ.o_n—lg)
0
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Yo" T+ (€) , o ”
- / 06/ (Tyor e 10 )X (S0 )
Yo" 2E) 4+ (€)

We have thus
(Tﬂgft)US + RfrgXS

00 U (—n,&) t
= Z/ do (Tf%eft_e)Xs(feﬁﬁ)Jr/O df (Tyore f*0)X*(fmE)

(Tﬂgft)U“ + RfrgX“
- p¥(n,8) t
S [ AT X ) + [ (T X

¥(n—1,¢)

n=1

= [ (&)
_ 0 t—0 u( r0 . 0 t—0 u/ £0
= Z[M_m df (Tyone f7) X" (f'mE) /t d0 (Tyone f1=0) X" (f078)

n=2
We can also write
(Tﬂgft)US + Rfrng
-1

N o (Tomer) x5 (s 40 (Tyorne )X (S
=% [ T XU + [ (T

k=—oc0
(Tee /U™ + RE X
X pU(k+1,8) o o P(§) o )
=3 [ T X — [0 (Tpones )X (1)
ke ¢
These two formulas give the desired evaluation of Z’.
2. Calculation of v(Z").
We have

P (&)
/ (de) /0 dt [ (f1m€) — n(mo )| B(f'n€)

() t
:/y(dg)/o dtB(ftwf)/ de d%n(f‘)vrf)

\Ij(_n7§)

Using charts where X is the unit vector in the last coordinate direction, we see that
d . Cu C
on(fmE) = (dive X ) (f'me)

Since [ v(d&)n(mo="¢) Ow(s) dt B(f'r€) tends to 0 for n — oo (by exponential decay of
correlations for (v,0)) we have

P ()
v(Z") = / (de) /0 dtn(fin€) B(f'né)
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$(© : 9
~ tim [ v(dg) /0 dt B(f'ré) [P WX

n—oo

W(k,)

-1 (&) U (k+1,)
B t’]T iveu X© 97.‘_
-3 Jriae) [ aenine [ e axswe)

P (&) t
t . Ccu e 0
+ / v(de) /O dt B(f'xe) /O 46 (diver X°)(f7re)
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