Algebraic cycles on degenerate fibers

S. Bloch*, H. Gillet* and C. Soulé

In this paper we extend part of the theory of degeneration of Hodge
structures to algebraic cycles.

The theory of limiting mixed Hodge structures leads to a proof of the local
invariant cycle theorem for proper families of complex manifolds over the unit
disk with semi-stable degeneration at the origin [C] [St] [S] [GN]. In the proof
of this result, a key role is played by the spectral sequence coming from the
weight filtration on the complex of nearby cycles. One can compute the E;
term and the first differential d; of this spectral sequence. One finds that
(E1,dy) is isomorphic to a complex (K, d) where K is a sum of cohomology
groups of the different strata of the special fiber, and the differential d is
defined by means of the corestriction and Gysin morphisms relating these
cohomology groups [St] [GN]. Since the weight spectral sequence degenerates
from FE5 on, one can prove properties of the limit Hodge structure on the
cohomology of the general fiber from this computation of (Fq,d;) and the
fact that each stratum is a compact Kahler manifold ([GN], sections 3, 4, 5).

Our basic remark is that the complex (K, d) makes sense in a more general
set up, for most cohomology theories and also for algebraic cycles modulo any
adequate equivalence relation, given any principal reduced Cartier divisor on a
scheme instead of a family of complex manifolds, even though, in general, the
abutment of the weight spectral sequence needs not be defined. Furthermore,
one can reproduce the proof of the local invariant cycle theorem in this more
general setting, as soon as each stratum of the special fiber satisfies both the
hard Lefschetz theorem and the Hodge index theorem.

Note that the second and third authors found recently another mani-
festation of the motivic nature of the weight spectral sequence [GS]: for any
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variety X over a field of characteristic zero, the Ei-term of the weight spec-
tral sequence converging to the cohomology with compact supports can be
computed from a complex of pure Chow motives canonically attached to X
(up to homotopy). It would be of interest to express the results in the present
paper in terms of these complexes of motives.

The main motivation for our study came from our attempt to develop a
non archimedean analog of Arakelov theory [BGS]. If X’ is a regular proper
scheme over a discrete valuation ring with special fiber Y a reduced divisor
with normal crossings, we may consider Chow homology groups CH,(Y) and
Fulton’s Chow cohomology groups CHP(Y), p > 0. The inclusion i : ¥ — X
induces a group morphism i* 4, from CH,(Y) to CH¥™*)~P(Y), and it was
shown in [BGS] that, when resolution of singularities holds, both the kernel
and the cokernel of i* ¢, depend only on the generic fiber X — Y and not on
the model X. In the analogy proposed in op.cit., these groups are analogs of
00-cohomology groups of a complex manifold. We then raised the question of
whether ker(i* 7, ) and coker(i* i, ) could be isomorphic in appropriate degrees,
the same way 00-cohomology groups of Kihler manifolds coincide with the
usual cohomology. Here, we prove that it is indeed the case when all strata
satisfy the hard Lefschetz and Hodge index theorem (Theorem 5; see 4.4. for
cases when the hypotheses hold true).

The paper is organized as follows. In section one, under general assump-
tions, we define a bigraded group K~ with two differentials d’ and d” and a
“monodromy” operator N, which is zero or the identity map on direct sum-
mands of K. In section two, we define using K~ several cohomology groups.
These are analogs of the graded quotients of the weight filtration on cohomo-
logy in the case of limits of Hodge structures. In section 3, we assume that
all strata satisfy the hard Lefschetz and Hodge index theorems, and, follo-
wing [GN], we deduce that the cohomology of (K", d) has the structure of a
bigraded polarized Hodge-Lefschetz module in the sense of Deligne and Saito
(Theorem 1). This implies analogs of the fact that weight and monodromy fil-
trations coincide (Theorem 2), of the local invariant cycle theorem (Theorem
3) and of the Clemens-Schmidt exact sequence (Theorem 4). As a conse-
quence, we prove in Theorems 5 and 6 that the kernel and cokernel of #* 7,
coincide and enjoy properties similar to the cohomology of compact Kahler
manifolds. Finally, we discuss in section 5 possible relations of our work with
motivic cohomology.

We thank K.Kiinnemann and A.Mokrane for helpful discussions.
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1. A bigraded complex with monodromy.

1.1. Let X be a regular ncetherian scheme of Krull dimension n + 1 and Y
a principal Cartier divisor with normal crossings on X'. Let Y7,Ys,...,Y; be
the irreducible components of Y. We shall assume that Y is reduced, i.e. each
component has multiplicity one.

For any subset I C ¥ = {1,...,t}, we let Y7 :,QI Y, if I #0,and Yy = X.
We assume that each stratum Y7, I # (), is a regular scheme.

The codimension of Y7 in X is the cardinality » = |I| of I. We define also
y(0) — X,

Y<7‘):]_[ Y; if 1<r<n,
I|=r

and Y = if r > n.

1.2. For every I C X we assume given a commutative graded ring with

unit @ AP(Y7), where AP(Y7) = 0 if p > dim(Y7), and for every inclusion
P2

u=uyy:Yr — Yy, corresponding to J C I, group morphisms
u* AP(YJ) — Ap(Y[)

and
Uy : Ap(YI) — Ap—HIl_'Jl (YJ) .

The following properties are assumed to hold:

Al. When I = J, u* = u, = id.
When K C J CI,let u:Y; — Y;and v : Y; — Yi be the corresponding
inclusions. Then

vou)* =u*ov*® and (vou)y = v.o0uy.
(vou) .

A2. Let I and J be two subsets in .. Consider the diagram of inclusions

Y1 -5 Ying

o] To

Yiug — Yy.



Then b* o v, = u, o a*.

A3. The morphisms a* are ring homomorphisms and the following pro-
jection formula holds:

U (u*(2) y) = T ua(y) -

In particular

(1) e u*(x) = T u(l).
Furthermore
(2) u* Ul () = zu u.(l).

A4. Let u; : Y; = X, 1 € X, be the inclusions of the components of Y
into X =Y. Then

(3) Zui*(l) =0.

1.3. Examples.

1.3.1. An example of the situation described in 1.1 and 1.2 is when X is
a smooth projective complex manifold and AP(Y;) = HPP(Y7,R) is the real
cohomology of Y7 of type (p,p). If u* is the corestriction and u, the Gysin
map, all properties A1 — A4 are easy to check. Property A2 is a consequence
of the transversality of the strata.

Formula (2) holds, and u* u,(1) is the Euler class of the normal bundle of Y;
in Y;. Property (3) follows from the fact that Y is a principal divisor, hence
t
its fundamental class [Y] = Y u; (1) in H2(X) vanishes.
i=1

This case was studied in [St], [D], [GN] by means of Hodge theory. In
fact, these papers consider the full cohomology and not only the subspace of
type (p,p), but we are mainly interested in classes of algebraic cycles, which
are of such type (this restriction will simplify the signs coming in 3.2 below;
compare [GN] §3).

1.3.2. Cohomology theories with Gysin maps, as in [BO] say, give other
examples of the situation in 1.2. In [M], Mokrane studied the case of cristalline
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cohomology. One can also take for AP(Y7) the Chow group CHP(Y7) of codi-
mension p algebraic cycles on Y7 modulo linear equivalence. If all Y;’s are
defined over a field or if one neglects torsion, a ring structure is known to
exist on Chow groups.

Finally AP(Y7) may also denote codimension p algebraic cycles on Yj
modulo algebraic, homological or numerical equivalence and one may replace
AP(Yr) with its tensor product over Z with any ring (in 3.2 below we shall
assume that AP(Y7) is a real vector space).

1.4. With the notation of 1.2 we put

Ap(y(r)) = @ AP(YJ),
|I|=r

and for all p > 0 and k£ with 1 < k < r, we define as follows group morphisms
5%+ AP(Y(M)) o AP(Y (r+D))

and
O : AP(Y 1)) 5 APty ()

Let I C ¥ be such that [I| = r + 1. Write I = {i1,... 441} with i1 < iy <
... <ipq1 and let J = I — {ix}. Then the restriction of dg. to AP(Y7) is uy .
and the component of 6; in APT(Y) is u};.

We then define morphisms
p: AP(Y() 5 AP(Y D)

and
~ Ap(y(TJrl)) N Ap+1(y(r))

by the formulae

r+1
p=> (-5
k=1
and
r+1
¥ =Y (1) G
k=1

Now let ¢, j, k € Z be three integers. We introduce the following notation:

Kljk _ Ai+j*22k+n (Y(2k—7‘+1))
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when £ >0, k> i and i +j +n =0 (mod 2), and
K% — (0 otherwise.

We also let K% = @ KUk,
k>0
k>i

We now define three morphisms

. prijk i+1,5+1,k+1
d : KWk 5 grtbithetl

", ik i+1,54+1,k

d' . Kk — githitlhk
and

. ik i+2,5,k+1

N : KWk 5 K120 +,

by d'(a) = p(a), d’(a) = —y(a) and N(a) = «, whenever the domain and
target of these maps do not vanish, and d'(a) = 0, d’'(a) = 0 or N(a) = 0
otherwise. (All these definitions are inspired from [GN], especially sections
2.6 and 2.7.)

1.5. .

Here are some properties of d’, d”” and N:

Lemma 1.

i) d?2=d?=dd" +d"d =0.

ii) The operator N commutes with d and d'.
iii) For any i >0 and j € Z, the map

Ni=K % — K%

18 an isomorphism.

iv) For anyi>0 and j € Z,

ker(NHl) NK 4 = 830 — A# (Y(z’—i—l)).

Proof. Statements ii), iii) and iv) are direct consequences of the definitions
by checking degrees. In i), the equalities d? =d"? =0 follow from Al). So
we are left with checking that d'd” +d" d' = 0.
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On K%* we have d' "’ = d" d' = 0, while on K“* with k& > i the equality
d' d" +d"d = 0 means that

(4) py+yp=0.

We shall prove that (4) holds on AP(Y(") for any » > 1 and p > 0. By

definition .
pr=2_ 2 (CDF 6 5
=1 k=1
and
r+1 r+1
vo=Y_ ) ()2 6,,065.
=1 k=1

Fix I = {i1,...,%r}, J ={j1,-.-,Jr} two subsets of ¥, with 4; < ... < i, and
Jj1 < ...<Jr, and consider the component

Y AP(Y7) — APTLH(Y)

of the map p~y + 7y p. First assume that I # J, i.e.

~

{ity ooy by e ensin} = LGy er gty ooy Gy =10 T,
and assume that k£ < £. Then
= (—1)FH1 85 G+ (125, 67
Applying A2) to I and J we get
5% Sep1m = 04 0

and therefore ¥ = 0. A similar argument applies when k& > /£.

Now assume that I = J = I. Then we find

r+1

(5) Y= 0Ok + > Ok O
k=1 k=1

Let u : Y7, C X = Yy be the inclusion. From (1) we deduce that, for all
z € AP (Y1),

r

0 Ok (2) = Y wsrgw Wi (@) = > ugr (1)

k=1 JD1Ig JDIg
|J|=r+1 |J|=r+1



Therefore, using A2), we get
r+1

(6) Z Ok+ 07 () = T U (Z uz*(1)> .
k=1 igI

On the other hand, using (2), we get

T
D Gidk(@) = ) ufgunus(@) =z Y uf g unss(l).
k=1 J J

Clg ClIg
|J|=r—1 |J|=r—1

Applying A2) again, we deduce that
(7) Z 0% 0w () = T U (Z uz*(l)) .
k=1 i€l

From (5), (6), (7) and A4 we conclude that

Y(z) =zu* (Z uz*(1)> =0.

This ends the proof of (4) and of Lemma 1.
q.e.d.

1.6. For any integer p with 0 < p < n, we define
AP(Y) = ker (p L AP(Y (D) o AP(Y@)))

and
A, (V) = coker (7 L AP (Y @) A"‘p(Y(l))> .

For instance, when AP(Y7) = CHP(Y7), it is known that A,(Y") is the group of
p-dimensional cycles on Y modulo linear equivalence, when AP(Y') is Fulton’s
operational Chow group of codimension p on Y (see [K] and [BGS] Appendix).

Notice that the maps
p=205: AP(X) = AP(Y (D)

and
v =gy : APTH (YD) 5 AP(X)
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are such that pdj = po«y = 0. Therefore p and v induce morphisms
it AP(X) — AP(Y)

and
ix t Anp1-p(Y) = AP(X),

where 7 : Y — X is the inclusion.

Lemma 2. The composite map

Sk -

APTH(YD) 5 Ay (V) 5 AP(Y) — AP(Y (D)
coincides with —v p.

Proof. According to equation (4), the morphism v p + p~ vanishes on
AP(Y(). But the map

py = 6% 8oy : AP~HY (D) 5 AP(Y D)

is, by definition, the composite of the sequence of morphisms

PYORs

APTHY ) 5 A (V) 'S AP(Y) — AP(YW).

q.e.d.

2. Cohomology groups.

2.1. From Lemma 1 we know that d = d' +d" : K% — K1+l gatisfies
d?> = 0 and commutes with the operator N : K% — K®*t2J_ In particular d
gives a differential on the bigraded groups

ker(N)" = ker(K" 5 K'2)

and
COkeI'(N)" = Coker(K" ]_V> K'+2a') ,

as well as on the mapping cone of N

Cone(N)" = Cone(K" LS K27,



For any ¢ > 0 and r € Z, we define

ker(d : K—5a™" — K-rla-ntl)

w vk
HY(X*) =
gr(H'r ( ) 1m(d - K-r—1,g-n-1 _4 K—r,q—n) )

ker(d : Cone(N)*tha—n=1 _ Cone(N)r+24n)

W *
HY(X*) =
Brqs HY(XT) im(d : Cone(N)~r4-2=2 — Cone(N)—r+l,a—n-1) ~’
ker(d : ker(N)~ 59" — ker(N)—r+ha—n+1
gr}ﬁ‘r Hq(Y) = ( . ( )—r—l —n—1 ( ) —r —n) ’
im(d : ker(N) a — ker(N)—ra-n)
and
ker(d : coker(N)™™972=2 _ coker(N)rtla—n—1)
gro Hy (X) =

im(d : coker(N)—r—La—n=3 — coker(N)—ra—n-2)

These definitions are again inspired from the theory of variations of Hodge
structures [St],[S], [GN]. But, in our general set up, the symbols X * and X* do
not denote any variety, and these are purely formal definitions. However, as we
shall see, the groups that we have just introduced enjoy the same properties as
the graded quotients of the weight filtration on the corresponding cohomology
groups in op. cit.. For instance, in the following lemma, we prove analogs
of the Wang exact sequence and the standard exact sequence for cohomology
with supports (see [St] (4.25)—(4.29); notice that, in loc.cit., the cohomology
of Y and X coincide).

Lemma 3. For all i € Z, there are exact sequences

(8)

coo grVHIXY) - grlV HI(XF) S gV, HI(X*) — grl¥ HOH(X) -
and
9)
coo = grlV HYY) — gV HY(X*) — gr¥ HYTH(X) — grfV HIPH(Y) — -
Proof. By definition the differential on

COHG(N)_r+1’q_n_1 — K—ra-n oy K—r+1,q—n—1

maps (z,y) to (—dz, Nx + dy) € Cone(N)~*+2972_ In particular there are
exact sequences

0 — K "tha=n=l _ Cone(N)*than-1 , g—na—n
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and, when ¢ = ¢ + r is fixed, these give rise to a short exact sequence of
complexes. Its associated long exact sequence of cohomology groups is (8).

Similarly there are inclusions
ker(N)~"9~" <y K~™4"" <y Cone(N) "+ha—n-1
and projections
Cone(N)~r+ha-n-1 _, g-r+la-n-1 _ Goker(N) T+la-n-1

which induce maps of complexes for any fixed value of ¢ = ¢ + r. The total
complex of the double complex
0 — (ker(N)™™9"" d) — (Cone(N) "tha—n=1 q)
— (Coker(N)~rtha==1 _q) -0,
q+r = i, is acyclic, and (9) is the associated long exact sequence of cohomology

groups.
q.e.d.

2.2. Now we give formulae for some of the groups defined in 2.1.

Lemma 4.

i) The group grg‘_’H HY(Y) is zero unless r < 0 and q + r is even, in which
case

ker (p CAS (YD) 5 A% (Y(_r+2)))

gron, HAY) =

im (p LA (YD) 5 A (Y(—r+1)))

when r < 0 and
grayy H?P(Y) = AP(Y).

ii) The group gr¥. . HY(X) is zero unless r > 0 and q + r is even, in which
g q+r Y

case

q—r—2

ker('y:A 5 (YO+H)) o A% (Y<r>))

W —
grq+r H%(X) - q—r—2

im (73 ATE (Y(42)) 5 A (YD)

when r > 0 and
g% H2P(X) = A1 (V).
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iii) The map gr)¥ HY(X) — gr\¥ HY(X) in the ezact sequence (9) is zero
unless q is even and i = q. On gry’ H%(p(X) this map coincides with the

P
morphism
—1% 0 Apy1—p (Y) = AP(Y).
Proof.
i) The map

N : Kk _y git2.5k+1
is the identity unless k = i > 0, in which case N = 0. Therefore
(ker N)™™4™" = g—ma—m—T = A% (YD)

where r < 0 and g + r is even, and (ker N)~"9™™ = 0 otherwise. The diffe-
rential
d' K—rdmnoT K—r+1,q—n+1,—7" =0

vanishes, therefore d = d’ on ker(N)". The formula for gry,, HI(Y) follows

from this. In particular
gry! HP(Y) = ker (AP (YD) & AP (Y<2>)) = AP(Y)

by definition (see 1.6).

ii) The full group K“* lies in the image of N unless k = 0. Therefore
the composite map

K a0, gmman coker(IN)~"a4™"

is an isomorphism when 7 > 0 and coker(N)~™%"" = (0 when r < 0. Further-
more im(d') N K~"T1,47n+10 = {0} therefore we get a commutative diagram

K_'rvq_nao — K—T+1,q—n+1,0

l l

coker(N)~4—m %, coker(IN)~TtLa—n+1

where the vertical maps are isomorphisms.
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Since d’ =y on K970 = A% (Y1) if + > 0 and ¢ — r is even, our
W HY

formula for grg',, Hy (X) follows. In particular
gry! H2P(X) = coker (AP—2(Y<2>) 2 Ap—l(Y<1>)) = Ant1-p(Y)
(see 1.6).
iii) The vanishing of the map
gror Hy (X) — grat, HY(Y)
when r # 0 is clear, since, by i) and ii), one of these groups is zero.

The map
ngp H2p (X) — ngp H2p (Y)

can be described explicitly as follows. Let z € coker(NN)%2P~"~2 he a closed
representative of [z] € gryy H2P(X). Denote by

= K0,2p—n—2,0 — Ap—l(y(l))
the element mapping to z by the isomorphism
K0,2p—n—2,0 — COkeI'(N)O’2p_n_2’O )
Since d”’(z) = 0 in K12P7"~1 we get
dz) =d'(7) = p(z) € KL~
Therefore d(z) = N(y) for a unique element
= K—l 2p—n—1,0 — AP~ l(Y(2))

The pair (—y,7) € K- 12771 ¢ K022~n=2 — Cone(N)%2P~2~2 maps to
z € coker(N)%?P~"~1 by the canonical projection. Its boundary in Cone(N)"

is equal to
and dy lies in the kernel of N:
Nd(y)=dN(y)=dod(z)=0.

By construction of the exact sequence (9), the class of d(y) in gry) H*(Y) is
the image of [x] we are looking for. But

d(y) = d"(y) € KO0

is nothing but
d"(y) = —(y) = —vp(@) € AP (V).
By Lemma 2, its image in A?(Y') = gry) H?"(Y) coincides with —i* 4, ([z]).
q.e.d.
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3. A result by Saito and Deligne.

3.1. Fix an element L in A}(Y). For any nonempty subset I C ¥ and any
integer p > 0, we get a Lefschetz operator

0: AP(Y]) — APTL(YY)

by mapping any element z to its product by the image of L in A'(Y7). Simi-
larly, there are morphisms

£: AP(Y (M) o AP+L(y (r+1))

and
: K% — KO3k

Lemma 5.
i) The following identities hold
[4,N]=[¢t,d]|=[¢,d"]=0.
ii) For any integers i and j, the group
K577 nker(#7!) Nker(N’T1)
coincides with the set

—i—j+n

ker (£7+1: AT (1)) o AT (v (1))

(primitive cycles).

Proof. The identities in i) are easy consequences of the definitions and of the
projection formula in A3). Statement ii) follows from Lemma 1 iv).
q.e.d.

We shall say all strata satisfy the hard Lefschetz theorem (HLT) when,
given any nonempty subset I C ¥ and p > 0 an integer with n > 2p +r — 1,
where r = |I|, the map

En—2p—r—1 . Ap(Y'I) — An—r-l—l—p(YI)
is an isomorphism. This means that
(10) ¢ KY o K
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is an isomorphism for all 2 € Z and 7 > 0. For cases where this hypothesis is
known to hold, see 4.4 below.

3.2. From now on, we assume that all rings @& AP(Y7), I C X, are graded
p>0

R-algebras, that the maps u* and u, in 1.2 are R-linear and that, for any
nonempty I C 3., there exists a trace map

tr: A" (v;) - R

such that tr(u.(z)) = tr(z) for any v : Y7 — Y7 as in 1.2 (in the examples of
1.3, when Y is proper, such a trace map is given by the degree of 0-dimensional
cycles). We can then define a pairing

b K00k @ Kbikti R

by the formula
itj—n

Yy =(-1)"7 tr(zy)

where o
r € Kb—ik — g7 (Y(2k+i+1))

and
y € Kidk+i — Ai—"”;?’”" (Y(2k+i+1))'

We extend 1) by zero to get a pairing
Yv: K"K =R
(which vanishes on K% @ K%3'¥ unless i’ +i=j'+j=k'+i—k=0).
Lemma 6. The following identities hold
Py, z) = (=1)" Y(z,y),

Y(Nz,y) +¢(z, Ny) =0,
Y(lx,y) +¥(z,ly) =0,
Y(d'z,y) =p(x,d"y),

and
Y(d"z,y) =Y(z,dy).
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Proof. The first three equalities are direct consequences of the definitions.
To check the fourth one, let z € K—*~Lb=I=Lk=1 and y € K%F+% Then we
get

Y(dz,y) = (1) tr(p(z)y) = (~1) T 3 (~1)F L 4 (85 (2)y) -

k>1

But for all &
tr(0x (2)y) = tr(0k« (65 (2)y)) = tr(z s (y))

(by the projection formula A3)). Therefore
i+j—n itj—mn
p(dz,y) = (-1) 7" tr(@p(y) = —(-1) 7" (@ d'(y) = v(w,d"y).

The last identity in Lemma 6 follows from this by using the first one.
q.e.d.

We shall say that all strata satisfy the Hodge index theorem (HIT) when,
given any nonempty subset I C X, p > 0 with n > 2p + r — 1, where r = |1,
and z € AP(Y7) such that £*"+272P(g) = 0, then

(=1)? tr(z """t () > 0,

with equality if and only if z = 0. By Lemma 5 ii) this means that the bilinear

form

(11) Q(z,y) = 9(z, £ N'y)
is positive definite on the real vector space

K57 nker(#7T1) Nker(N*t1).

3.3. From now on we shall assume that all strata satisfy both HLT and HIT.
Then the Lemma 1, 5 and 6 say that K = & K | together with the pairing v

define a differential polarized Hodge—LefsczI,ljetz bigraded module in the sense
of [GN] (4.1)—(4.3); to fit exactly with the situation in [GN], the group K**
is given a real pure Hodge structure entirely of type (p,p) with p = @,
hence the Weil operator C' is the identity map. We further assume that K
is a finite dimensional real vector space, i.e. AP(Y7) is finite dimensional for

every p > 0 and I not empty. We can then apply all the results of [GN] to our
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situation. Namely, by Lemma 1 iii) and (10) the operators N and ¢ induce
an action on K of the Lie algebra sf3(R) x sfa(R), hence of the Lie group

SLy(R) x SLs(R). Consider the matrices w = (_01 é) € SLy(R) and

wy = (w,w) € SLy(R) x SL2(R).

The pairing
Q(z,y) = P(z, wa2y)
is then symmetric and positive definite on K; this follows from (11) as in [GN],

(4.3), Proposition. The differential d : K — K has an adjoint d* = w3 dw,
for @ (this follows from Lemma 6), and we may consider the Laplace operator

[=dd* +d*d.

The main result of [GN], due to Saito [S] 4.2.2., and Deligne (unpublished),
is then the following

Theorem 1.

i) The Laplace operator [] on K commutes with the action of SLa(R) X
SLs(R).

ii) The cohomology H*(K,d) of K, when equipped with N, £, and 1, is a
polarized bigraded Hodge-Lefschetz module in the sense of [GN], (4.1)-
(4.3).

Proof. See [GN] (4.5). Statement ii) follows from i) by identifying H* (K, d)
with the group of harmonic elements ker[]. It means that both operators N
and £ on the bigraded module H*(K, d) satisfy hard Lefschetz theorems (as in
Lemma 1 iii) and (10)), and that the bilinear form ¢ (x, w2 y) on this module
is symmetric and positive definite.

4. Consequences.

4.1. We keep the assumption that all strata satisfy both HLT and HIT and
that K is finite dimensional. One can then deduce from Theorem 1 analogs
of several classical results about limits of Hodge structures.

First, the assertion that the operator N on the cohomology of K satisfies the
hard Lefschetz theorem can be rephrased as follows:
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Theorem 2. For any q > 0 and r > 0, the composition of r copies of the
operator N induces an isomorphism

N": ngYH HY(X*) 5 grgzr HY(X").
From this and Lemma 3, as in [St] (5.12), one gets the following invariant

cycle theorem. Define the specialization map sp to be the composite of the

morphisms
gri’ HY(Y) — gr¥ HI(X*) — gr¥ HY(X")

from (9) and (8) in Lemma 2. Then we have:
Theorem 3. For all ¢ > 0 and @ € Z, the sequence
g HY(Y) % gnl¥ HO(X") 5 grl?, HY(XY)
15 exact.
Finally, let A be the composite of the morphisms
gV, H(X*) — gl HOHL(XY) — gl HEP2(X)

in the sequences (8) and (9). From Lemma 3 and Theorem 2, one gets,
by a diagram chasing described in [Sc] and [GNPP] IV (7.14), the following
Clemens-Schmidt exact sequence:

Theorem 4. For all i € Z there is a long exact sequence
= grl HY (X) — grf’ HY(Y) 3 grf¥ HY(XY)

& gV, HI(XY) 3 gV B (X) — grlV HIP2(Y) B -

4.2. Recall from 1.6 that there is a morphism
it Apy1—p(Y) — AP(Y)

for all p > 0. In [BGS] §2 we considered the kernel and the cokernel of i* i,
which played a role similar to 99-cohomology groups of complex manifolds.
Under the assumption that all strata satisfy HLT and HIT we shall see that
these groups coincide. For any p > 0, denote by

a: AP(Y) = Ap_p(Y)
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the composite of the morphisms

AP(Y) = AP(YD) = 4, (V).

Theorem 5. The following long sequence is exact
o App(Y) S AP(Y) S A, (V) S APTL(Y) o
In other words, a induces an isomorphism
7t coker (i iy : Apy1_p(Y) = AP(Y)) S ker (1% iy 1 A, (Y) — APT(Y)) .
Proof. (Compare [BGS] (6.4).) According to Lemma 4 iii) we can identify
—i* i, on Apy1-p(Y) with the map
8T2p H2p (X) — grap 5 H?P(Y)

in the exact sequence (9). By the Clemens-Schmidt exact sequence (Theorem
4) this means that the group

H? = coker (i* iy : Apy1-p(Y) = AP(Y))
coincides with
ker (N gry! HP(X*) — grlV_, H? (5&*)) ,
and the group
HY? = ker (1% iy : Ap_p(Y) = APTH(Y))
coincides with
coker (N : gr;’g+2 H?P(X*) — 85 W H?P(X* )) .
Now, by Theorem 2, the map
N?:gryl o, H?(X*) — gryy_, H?(X")

is an isomorphism, therefore HY? is canonically isomorphic to HY”. The
isomorphism is induced by the composite of the maps

AP(Y) = grap HP(Y) — gryp HP(X*) = gryy, . HPH (X*)
= gy 2 HY 7 (X) = Anp ()
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in Lemma 3. This composite comes from the projection
ker(N)2~" = AP(Y(1)) — coker(N)%2P~" = AP(Y(D)

hence it coincides with «.

g.e.d.

4.3. Let M = X —Y and p > 0 an integer. We shall denote by HPP(M)
the group ker(i* i, : Ap_p,(Y) — APTY(Y)) considered in Theorem 5. This
notation is justified by [BGS| Theorem 2.3.1 iii), where it is proved that this
group depends only on M and not on X when resolution of singularities holds
(conditions M1) and M2) in op.cit. (1.1)) and when AP of a blow up can be
computed in a standard fashion (Remark (6.2.7) in [BGS]).

We shall now describe HPP(M) as a subspace of AP(Y(})). The operator
(d")* = wy ' d"ws is an adjoint to d’ for the scalar product Q, as follows from
Lemma 6, and similarly (d”)* = wy ' d'w; is an adjoint to d”. In particular
the map

D Ap(y(l)) — K0:2p—n0 _, AP(Y(2))

has an adjoint p* and the map
v: AP(Y®) = K — AP(Y ()

has an adjoint v*. These adjoint morphisms are unique since, by assumption,
Q is positive definite. On the other hand, we let

£: HPP(M) — HPTHPHL(M)
be the map induced by the product by the class of L € A?(Y (1)) and
Y HPP(M)®@ H" P""P(M) - R
be the pairing induced by

tr

AP(YD) @ AnP(Y(D) -5 A»(Y D) B R,
Theorem 6.
i) The Lefschetz operator induces isomorphisms
T gPP(M) — H PP (M)
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whenever n > p.

ii) If x € HPP(M) is such that £"~?PT1(z) = 0, then
(1P 9p(x£"~2P(z)) > 0,

with equality if and only if x = 0.
iii) HPP(M) is isomorphic to the kernel of pp* +~vv* acting on AP(Y ().

Proof. From the proof of Theorem 5 we know that HPP(M) = H¥? is cano-

nically isomorphic to the kernel of
N : gryy H?P(X*) — gryl _, H?(X*).

By Theorem 1, [] commutes with N, so HPP(M) is isomorphic to the group
of harmonic elements

HPP(M) = ker[ N ker(N)%?P—"

in ker(N)%2r—" c K02P~"_ In particular, since @ is positive definite on K
(by HIT), we get ii), i.e. HPP(M) satisfies the Hodge index theorem. Since
¢ and N commute it is also clear that £"~?P is injective on HPP(M) when
n > 2p. Conversely, if z = £"=?P(y) lies in H"~P"~P(M) with y in K", we
have

P ([Oy) =0

and
"?P(Ny) =0,

therefore [ ]y = Ny = 0 and y lies in HPP(M). This shows that £*~2P is
surjective, and that HPP(M) satisfies the hard Lefschetz theorem (property

i)).
To prove iii), notice that d” = (d')* = 0 on ker(N)%??~" for degree
reasons. Therefore, on this group we have
l:‘: (dl +d”)(d’* +d”*) + (d’* +d”*)(dl+d”)
— dll(dll)* + (dl)* dl + dl(dll)* + (d”)* dl .
The map d'(d")* + (d")* d’' sends AP(Y(1)) into AP(Y®)). But [] preserves
bidegrees in K~ and it commutes with N, therefore [] maps AP(Y (1)) =
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ker(N)%2P—" into itself. It follows that d’(d")* + (d")*d’ = 0 on AP(Y(V),
and []=d'(d")* + (d")*d" = pp* + vv* on this group. This proves i).
q.e.d.

4.4. Recall that our proof of Theorems 1 to 6 depends on the assumption
that all strata satisfy both HLT and HIT. In [BGS], Theorem 6.3.1 and 6.4.1,
Theorem 5 is shown to hold unconditionally for ¢-adic cohomology and Betti
cohomology of complex manifolds (using the Weil conjectures and Hodge
theory respectively).

Apart from the cohomology of complex varieties (as in 1.3.1 above), the
assumption that all strata satisfy both HLT and HIT and that K is finite
dimensional is satisfied when AP(Y;) = CHP(Y1) ® R are Chow groups, all

Z

strata are smooth projective varieties over a field k£ contained in the alge-
braic closure of a finite field, and n < 2. Indeed in that case A°(Y7) = R,
Adm(Y1)(y;) = R, and, by Weil, when Y7 is a surface, the Hodge index the-
orem is known to hold for A'(Y;) = CH(Yy) ® R = NS(Y1) ® R (the hard
Lesfchetz theorem is also known to hold in this context for some varieties
of higher dimension, see [So] Thm. 7). See also [M] for a similar result in
cristalline cohomology. Under these assumptions, one could expect that HLT
and HIT are still true for all strata when n > 3.

5. Relations with Motivic Homology.

One of the potential applications of the ideas above concerns mixed char-
acteristic degenerations and relations with motivic homology. Assume, that
is, that X is regular and flat and proper over the ring of integers in a mixed
characteristic local field. Let X and Y denote the generic and closed fibres
of X. We take AP(Y7) := CHP(Y7) ® Q. Unfortunately there are serious
technical problems dealing with cycles in mixed characteristic. However, if
we make some plausible conjectures about localization in mixed characteristic
(i.e. that it behaves like localization in equal characteritic), and the behavior
of motivic cohomology for smooth proper varieties over finite fields (cf. Con-
jecture below), we obtain an identification between the groups gr¥V HJY(X ) in
2.1 and motivic homology of the closed fibre Y. The ranks of these groups and
of the groups HY = H?? can then be related, assuming standard conjectures
like the Tate conjecture for smooth varieties over finite fields, to orders of ze-
roes of local factors of L-functions at integer values of s. Results concerning
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L-function zeroes are due to Consani [Co]. We sketch here the relation with
motivic homology.

Let T be a smooth, proper variety over a field k. We define motivic
cohomology in terms of higher Chow groups

H3,(T, Z(q)) == CH*(T,2q — p).

The latter groups are defined as follows. Let A™ := Spec(k[to, - - ., tn]/ (> ti —
1)), and let Z%(T,n) be the free abelian group generated by irreducible sub-
varieties V' C T x A™ of codimension ¢ meeting faces (defined by {t;, = ... =
t;, = 0} for {i1...,4,} € {0,...,n}) properly. Restriction to faces (together
with evident degeneracy maps) makes

24T, ") := - - Z9(T, 2) 3 7T, 1) = 79(T, 0)
a simplicial abelian group. By definition
CHY(T,n) := m,(ZYT,-)) = H,(ZYT,-)).
Note CHY(T,0) = CH?(T) is the usual Chow group.
Conjecture. Let T' be smooth and proper over a finite field k. Then

i) Hj,(T,Q(q)) = (0) for p # 2q.
i) Hyy(T,Q(q)) <= HH (T Qe(9))-

Now let Y = UZZ Y; C X be as above. Assume Y is reduced, and the Y;
meet transversally.
Proposition 1

Assume (i) of the above conjecture. Then

q+r—2

gron, HY(X) 2 CH 2 (Y,1)®Q

Proof. Consider the double complex in negative cohomological degrees
A+(q) + Z9HHY D ) S D ZYY D)),

with 7 as in 1.4 and AP7(q) = Z7P(Y(1~P) —r)q. It is easy to check that
the projection Y () — Y induces a quasi-isomorphism

tot A7 (q) = ZYY, )o,
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where tot denotes the simple complex associated to a double complex. On the
other hand, the above conjecture says that the column AP (q) ~ CHPT(Y (1=2))4[0].
It follows easily from Lemma 4 (ii) that

atr—2

groy, HY (X) 2 H" (A~ (q)) X CH™? (Y,1)®Q,

which proves the proposition.

Example. Suppose Y is geometrically connected and n = dimY =1, ie. X
is a degenerating curve. We have

HY° = ker(i*i, : CH1(Y)g — CH®(Y)g) = Q
(negative semi-definiteness for intersection of components Y;) and
HP' = ker(i*i, : CHy(Y)g — CH*(Y)g) 2 Q

(Y is connected). In the arithmetic case, these correspond to the zero of the
L-factor associated to H%(Xg, Q) at s = 0 (resp. H?(Xg, Q) at s =1). In
addition, the group

griVHY (X) = ker(CHY(Y®) — CHY(YD))

can be non-zero, e.g. for an elliptic curve with split multiplicative reduction.
The rank of this group equals the order of zero at s = 0 of the L-factor
associated to the inertia invariants on H*.

Remark A motivic understanding of gry,, H1(Y) (i.e. a construction of mo-
tivic cohomology for singular varieties) and of gry,, H4(X) (motivic “Tate
cohomology”) would be very useful.
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