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1. Let G be a Chevalley group scheme over Z, and F, the finite field with ¢ elements. It has
been noticed for some time that, when ¢ tends to 1, the cardinality of the group of points of G in
F, behaves as follows:

card G(Fq)q ~ (g—1)" x card W,

where r is the rank of G and W is its Weyl group. In 1957, Tits [1] proposed to think of W as
the group of points of G in ”the field of characteristic one”:

1) G(F,):=W.

He also argued that the finite geometries attached to each group G have a limit when ¢ goes to 1,
namely the finite geometry attached to the Coxeter group W.

In 1993, Manin [2] wrote some lectures on zeta functions where he mentions the field with one
element. He proposes to develop algebraic geometry over F;, and predicts that varieties over that
field have simple zeta functions. For instance

(2) Cpy () =s(s = 1)(s=2)-- (s = N).

He also notes that the equation (1) for G = SLy leads to the fact that the higher K-theory
of F; must be the homotopy groups of spheres. Indeed, by the Barratt-Priddy-Quillen theorem,
we get

(3) K. (F1) = 71y BGL(F1)" := 1, BS} = 75,.

Later on Smirnov and Kapranov-Smirnov (unpublished preprints) studied the question further.
Among other things, they developped linear algebra over F; (a vector space being a pointed finite
set), and obtained in this way a description of the Gauss reciprocity law similar to the description
given earlier by Arbarello, De Concini and Kac of the Weil reciprocity law on curves by means of
determinants of vector spaces.

2. The analogy between number fields and function fields finds a basic limitation with the lack
of a ground field. One says that Spec(Z) (with a point at infinity added, as is familiar in Arakelov
theory) is like a (complete) curve; but over which field? In particular, one would dream of having
an object like

Spec(Z) X Spec(F1) SpeC(Z),
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since Weil’s proof of the Riemann hypothesis for a curve over a finite field makes use of the product
of two copies of this curve. I have nothing to say about that question. The mere fact that the
Riemann zeta function has infinitely many zeroes indicates that Spec(Z) cannot be viewed as an
object of finite type over F1, hence Spec(Z) Xgpec(r,)Spec(Z) cannot be an honest algebraic variety
over Z.

On the other hand, if X is a variety of finite type over F;, its base change Xz = X ®p, Z to
Z must be a variety of finite type over Z. So there is hope to describe such objects X using usual
algebraic geometry, and we can ask:

Question: Which varieties over Z are obtained by base change from F; to Z?

For instance, when X is smooth over F1, Xz will be smooth over Z, which is already a strong
constraint.

3. Our starting point for a tentative definition of varieties over F; is the short definition
of schemes which says that a scheme is a covariant functor from rings to sets which is locally
representable by a ring. In this language, the base change from a field k£ to a k-algebra A is
described by the following easy lemma. Given a variety X over k (resp. a k-algebra A), let
XA =X QA (resp. Ay = A® A).

Lemma 1:
i) There is a canonical inclusion X (A) C X (An).
ii) Given any variety S over A and any natural transformation of functors (from k-algebras to
sets)
¢: (A= X(A)) — (A~ S(Ap))

there exists a unique algebraic morphism
(Z : XA S
inducing ¢ on each set X (A).

We would like to have a similar situation with £k = F; and A = Z. But nobody is telling us
which are the A-algebras coming from k.

4. A definition:

4.1. For any integer n > 1, a finite field F;, has a finite extension F,~» of degree n, obtained
by adjoining roots of unity. As Kapranov and Smirnov suggest, F; should have an extension Fin»
of degree n, and we decide that

Fin ®p, Z=Z[T]/(T" —1).
In other words, Fi» ®p, Z is the ring R,, of functions on the affine group scheme of n-th roots of
unity.

Let R be the full subcategory of Rings with objects the rings R,,,n > 1, and their finite tensor
products. Let also R’ be the full subcategory of Rings with objects the tensor products of rings in
R with the rings Z[1/N],N > 1.

Definition: A variety over F is a covariant functor X from R to finite sets, equipped with
natural inclusions X (R) C Xz(R), R € ObR, where Xz is a variety over Z, and such that the
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following property (U) holds: for any variety S over Z and any ”good” transformation of functors
(from R to sets)
¢:(R— X(R)) — (R— S(R))

there exists a unique algebraic map B
¢ : Xz S

inducing ¢ on each set X (R), R € ObR.

4.2. Here are three possibilities for what ”good’ could mean in the previous definition:

(G0) Let X (C) be the union of the subsets o(X(R)) C Xz(C), where R runs over all rings in
R and o over all ring morphisms from R to C. There is a continuous map ¢¢ from the topological
closure of X(C) (in Xz(C)) to S(C) such that, for all R and o as above,

co¢p=¢gcoo.
(G1) The same as (GO0), but now ¢¢ is holomorphic on the holomorphic hull of X(C) in

Xz(C).

(G2) The functor X extends to a functor from R’ to sets, and ¢ extends to a transformation
of functors on R'. Then (G0) holds and, furthermore, the same statement is true when C (resp.
R) gets replaced by any finite extension of a p-adic field (resp. by R’).

5. Examples:

5.0. When Xz = Spec(Z) and X (R) = Xz(R), we say that X = Spec(F;).

5.1. When Xz(R) = R* and X(R) is the set u(R) of roots of unity in R, we say that
X = Gyn/F.

Lemma 2: The property (U) holds when S is affine and ¢ satisfies (GO0).

Sketch of proof: We prove the existence of 5 when S is the affine line (looking at coordinates
reduces the proof to that case). For any n > 1 the map ¢ sends the element 7' € u(R,) to a
polynomial Z?:_()l a;(n)T" in R,,. On the other hand, the topological closure of X (C) is the circle
S1. The continuous map ¢c from the circle to C can be written as a Laurent series

+oo
dc(z) = Z ;2.

As n goes to infinity the coefficient

ai(n) = > ¢c()¢i/n

¢r=1

tends to
a; = bc(z)27do.
Sl

Since all the a;(n)’s are integers, the sequence a;(n),n > 1, must be stationary, hence ¢¢ is a
Laurent polynomial ¢ € Z[T,T~'] = Hom(G,, A1). q-e.d.
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5.2. When, forall R € R, Xz(R) = R and X (R) is the set u(R)U{0}, we say that X = A;/F;.
When R € Ob(R'), if & = Hom(R, C) has cardinality N, we let X (R) be the set of elements z € R

such that
Z lo(z)]? < N.
OEX

Property (U) holds if S is affine and ¢ satisfies (G1) or (G2).
5.3. More generally, if X7z is a smooth toric variety over Z, we may write it as a disjoint union
of products of copies of A; with copies of G,,. By imposing that the corresponding coordinates lie

in u(R)U{0}, we get a subset X (R) C Xz(R), which satisfies (U) when S is affine and ¢ satisfies
(G1) or (G2).

5.4. Let E ~ Z" be a lattice equipped with an hermitian scalar product » on E ® C, and
||-|| the corresponding norm. It is customary in Arakelov theory to view the pair E = (E,h) as a
bundle on the curve Spec(Z) U {oo}, the global sections of which are the elements of E of norm
less than one.

If we define X (R) as the set of elements z € E ® R such that

> llo@)l* < N,

gEX

one can again show that property (U) holds (for some variety Xz) if S is affine and ¢ satisfies (G1)
or (G2).

5.5. When Xz = G is a Chevalley group as in §1, it seems natural to define X (R) as the set of
elements g € G(R) which are mapped to the standard maximal compact subgroup of G(C) by all
o € Y. The group G(F;) will then be an extension of W by a finite abelian elementary 2-group.
I have not checked if property (U) holds.

6. Zeta functions:

Let X be a variety over F;. For any n > 1, let ¢ = 2n + 1, and
N(q) := card X(R,,).

In all cases considered in §5, N(q) happens to be a polynomial in ¢ with integral coefficients (this
is easy to show, but somewhat surprising in case 5.4). We may then define

) = exp( ZN )" k).
k>1

S

Replacing T' by ¢~ and letting ¢ go to 1, we get

Z(q,q7°%) 01 (g — 1)*Cx(s),

where y is the Euler-Poincaré characteristic of Xz(C) and

(x(s) = P(s)/Q(s),

where P and () are polynomials with both integral coefficients and integral roots.
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For instance, when X = P{ (defined as in 5.3, i.e. X(R) consists of points in PV (R) having
homogeneous coordinates in y(R) U {0}) the formula (2) holds.

7. Motives:

7.1. Let T be a split torus over C, M a T-toric variety, and r > 1 an integer. The endo-
morphism which maps ¢ € T to its r-th power extends to an endomorphism @, of M. Totaro
noticed in a recent paper [3] that the subspace of the rational cohomology of M where ®, acts by
multiplication by r¢ provides a canonical splitting of the weight filtration (of degree 7).

In terms of mixed motives (still a conjectural notion), M gives rise to (several) extensions of
Tate motives (because of the stratification mentioned in §5.3), and their classes e € Ext(Z(7), Z(i +
n)) are killed by the greatest common divisor of 7*t" —pr? r > 1, i.e. (essentially) the denominator
of By, /n, where B, is the n-th Bernoulli number.

7.2. On the other hand, Beilinson proposed the formula
K2n—1(z) = EXtM/Z(Za Z(n))

describing the K-theory of Z as extensions of Tate motives over Spec(Z). Because of (3) one might
then speculate that

7"-Sn—l = EXtM/Fl (Z7 Z(n))

If the toric variety M is defined and smooth over Z, the example of §5.3 indicates that the extension
classes e above should lie in the image of the morphism 73, ; — Ka,_1(Z). It is a theorem of
Quillen and Mitchell that this image is (up to 2-torsion) the cyclic group Im(J)2,—1, the order of
which is the denominator of B,, /n. This is quite consistent with Totaro’s remark.

It would be interesting to check if this bound on e is sharp, i.e. if all elements in Im(J)ay,—1
can be interpreted in terms of toric varieties.
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