Linear projections and successive minima

Christophe Soulé

In arithmetic geometry, cohomology groups are not vector spaces as in clas-
sical algebraic geometry but rather euclidean lattices. As a consequence, to
understand these groups we need to evaluate not only their rank, but also their
successive minima, which are fundamental invariants in the geometry of num-
bers. The goal of this article is to perform this task for line bundles on projective
curves.

Let K be a number field, Ok its ring of integers and E a projective Ok-
module of finite rank N. We endow F % C with an hermitian metric A and

we let p1,..., un be the logarithm of the successive minima of (E, h). Assume
Xk C P(EY) is a smooth geometrically irreducible curve of genus g > 0. We
shall find a lower bound for the numbers p;, g+ 8 <7 < N — 3, in terms of a
normalized height of X and the average of the p;’s (Theorem 2). This result
is a complement to [12], Theorem 4, which gives a lower bound for p.

The method of proof is a variant of [12], loc. cit. It relies upon Morrison’s
proof of the fact that Xx is Chow semi-stable [10]. We use a filtration V; =
Ex D V3 D ... D Vy of the vector space Ex. But, contrary to [12], this filtration
is chosen so that, for suitable values of 7, the projection P(V;Y)--- — P(V;¥,)
does not change the degree of the image of Xy . That such a choice is possible
follows from a result of C. Voisin, namely an effective version of a theorem of
Segre on linear projections of complex projective curves (Theorem 1). I thank
her for proving this result and for helpful discussions. I am also greatful to the
referee for useful corrections.

1 Linear projections of projective curves

Let C' C P™ be an integral projective curve over C and d its degree. Assume
that C is not contained in some hyperplane, d > 3 and n > 3.

Theorem 1. (C. Voisin) There exists an integer A(d) and a finite set ¥ of
points in (P — C)(C), of order at most A(d), such that, for every point P €
P"(C) — £ U C(C), the linear projection P™--. — P"~1 of center P maps C
birationally onto its image.

Proof. The existence of a finite set ¥ with the property above is a special case
of a theorem of C. Segre [5]. The order of ¥ can be bounded as follows by a
function of d.



If n > 3 a generic linear projection into P? will map C' isomorphically onto
its image [9] and the exceptional set 3 C P™ bijectively onto the exceptional set
in P3. Therefore we can assume that n = 3.

When the projection with center P € P3(C) is not birational from the curve
C to its image €’ C P2, we have d’ = deg(C") < g hence d < d— 2, and P is
the vertex of a cone K with base C’ containing C. So we have to bound the
number of such cones.

Let N be the dimension of the kernel of the restriction map
a: H(P3, 0(d)) — H(C,0(d)).
Clearly N is bounded as a function of d and any f € ker(«) is an homogeneous

polynomial of degree d’ which vanishes on C.

Let Z C P3(C) x PNY=1(C) be the set of pairs (P, f) such that f is the
equation of a cone K of vertex P. If p; : P3 x PN~1 — P3 is the first projection,
we have to bound the order of p;(Z). We note that this order is at most the
number ¢ of connected components of Z.

Now Z is defined by equations of bidegree (4,1), § < d'. Indeed f is homo-
geneous of degree d’ and (P, f) € Z when all the derivatives of f, except those
of order d’, vanish at P.

Let L =0O(d',1), M = dim H°(P? x PV, L) — 1, and
j:P? x PN - pM

the Segre embedding. Since j(Z) is the intersection of j(P3 x P) with linear
hyperplanes, Bézout theorem ([6], § 8.4) tells us that

¢ < deg(j(P* x PV)).
Hence c is bounded by a function of d. O
Corollary 1. Given any projective line A C P™, there exists a finite set ® of

order at most A(d) +d in A such that, if P € A — ®, the linear projection of
center P maps C' birationally onto its image.

Proof. Since C is not equal to A, the cardinality of C'N A is at most d. So the
corollary follows from Theorem 1.

Remark. The proof of Theorem 1 provides an upper bound for A(d). Indeed
deg(y) = (") d”,
d <d/2 and
13

d 11
N = dimH°(P?,0(d')) = <+ d? + Kd’ +1.

In particular, when d > 12 we get
log(A(d) + d) < 12log(d) — 12.



2 Successive minima

2.1

Let K be a number field, [K : Q] its degree over Q, Ok its ring of integers,

S = Spec(Of) the associated scheme and X the set of complex embeddings of

K. Consider an hermitian vector bundle (E, k) over S, i.e. E is a torsion free

Ok-module of finite rank N and, for all o € X, the associated complex vector

space E, = F 5@ C is equipped with an hermitian scalar product h,. If G is
K

the conjugate of o, we assume that the complex conjugation F, ~ Ez is an
isometry. If v € E we define

lv]| = maén/hg(v,v) .
(4SS

If i is a positive integer, i < N, we let u; be the infimum of the set of real
numbers 7 such that there exist vy,...,v; € E, linearly independent over K,
such that log ||vg || < r for all @ < i. The number p; is thus the logarithm of the
i-th successive minimum of (E, h). Let

1+t oy
S e N Y ot 1
% ~ (1)

2.2

If Y = Hom(FE, Ok) is the dual of F we let P(EY) be the associated projective
space, representing lines in EV. Let E), = EV 5@ K and Xk C P(E},) a smooth
K

geometrically irreducible curve of genus g and degree d. We assume that the
embedding of Xk into P(E};) is defined by a complete linear series on X 777.
We also assume that d > 2g + 1. The rank of E is thus N =d+ 1 —g.

If X is the Zariski closure of Xg in P(EY) and O(1) the canonical hermitian
line bundle on P(EY), the Faltings height of X is the real number

h(Xx) = deg (1(O(1) | X),
see [2] (3.1.1) and (3.1.5).

2.3
For any positive integer ¢ < N we define the integer f; by the formulae
fi=i—1 if i—1<d-—2g
and
fi=i—1+4+a« if t—1=d—-2g9+ «, 0<a<yg.
Assume k and i are two positive integers, k < N, i < N. We let

hig =

)

fi if i<k,i=N-lori=N
fo if K<i<N-2.



Finally, if 2 < k < N, we let
hik

B, = max — .
(=1 hix— > hjx
j=1

i=2,..,N

Proposition 1. For every k such that 2 < k < N — 3, the following inequality
holds:

h(Xk)
(K : Q]

Bi(punt1-k — p1) + +2dp > (2d — N Bi)(p — p1) — 2dlog(A(d) + d) .

2.4
From Proposition 1 we shall deduce the following result:

Theorem 2. If g > 0, for every integer k such that 4 < k < d—2g — 6, the
following inequality holds:

h(Xk)
= > — —_— —12d1 12d.
N1k — B> k(?d[K:Q]+M dlog(d) + 12d
Remarks.
- It is proved in [12] that, when d > 2¢g + 1,
h(Xk) 2g(d — 29)
R s ST S ).
WK :Q THEErd_ag W)
In particular
h(Xk)
_ > 0.
2K :q =0

- From Bombieri-Vaaler’s version of Minkowski’s theorem on successive min-
ima [4] we know that

deg (E,h) log|Di|
"ENK Q2K

K(N),

where Dk is the absolute discrimant of K and the constant K (N) depends only
on N. If hyz is the L2-metric on H°(X, O(1)) ([3], (1.2.3)), the quantity

1 <h<xK> ~ d/e\g<H°<X,0<1>>,hLz>)
[K:Q] \ 2d N

is the normalized height of Xk introduced by Bost in [3], (1.2.4).



2.5

To prove Proposition 1 fix a positive integer & < N — 3 and choose elements
Z1,...,xn in F, linearly independent over K and such that

log ||lz:]| = pn—it1, 1<i<N.

Fix integers no, o = k+ 1,..., N — 2, to be specified later (in § 2.7). If
1 <i < N we define

P =

{xi—l—nixil fk+1<i<N-2 (2)

T; else.

We get a complete flag Fx = V3 D Vo D ... D Vy by defining V; to be the
linear span of v;, v;41,...,VN.

When m is large enough the cup-product map
¢ EY" — HY(Xf,O(m))

is surjective, hence H°(X g, O(m)) is generated by the monomials

oY = (PN,
ap + - +ay = m. A special basis of H?(X g, O(m)) is a basis made of such
monomials.

Let r1,79,--- ,ry be N real numbers and r = (r1,...,ry). We define
the weight of v; to be 7;, the weight of a monomial in E?}m to be the sum
of the weights of the wv;’s occuring in it, and the weight of a monomial u €
H°(Xk,0O(m)) to be the minimum wt,(u) of the weights of the monomials in
the v;’s mapping to u by ¢. The weight wt,.(B) of a special basis B is the sum of
the weights of its elements, and w,.(m) is the minimum of the weights of special
bases of HY(Xx,O(m)).

When r1 > ro > -+ > rny = 0 are natural integers there exists e, € N such
that, as m goes to infinity,
2

wp(m) = e, mT + O(m)

([11], [10] Corollary 3.3).

Our next goal is to find an upper bound for e,..

2.6

For every positive integer i < N we let e; be the drop in degree of X when
projected from P(EY;) to P(V;¥). A criterion of Gieseker ([7], [10] Corollary 3.8)
tells us that e, < S with

£—1

§= 1:i0<r?.h<1ie:N Z(T” B Tij+1)(€ij * e”“) '
j=0



Note that S is an increasing function in each variable e;. Furthermore, it follows
from Clifford’s theorem and Riemann-Roch that

ei < fi (3)

for every positive i < N — see [10] proof of Theorem 4.4 (N.B.: in [10] Theo-
rem 4.4 the filtration of Vj has length n + 1, while n = dim Vj. In our case, we
start the filtration with V7, hence the discrepancy between our definition of f;
and [10] loc. cit.).

2.7

We now specify our choice of the integers n; in (2). This is where our argument
will differ from [12], Theorem 4, which corresponds to the choice n; = 0 for
every 4.

Let wy,...,wy € E), be the dual basis of v,...,vx. The linear projection
from P(V;") to P(V;%,) has center the image w; of w;.

If y1,...,yn € E), is the dual basis of z1,..., 2N, we get

w,_{ywnizi ifk<i<N-3

Yi else,
where z;+y;+1 is a linear combination of y; 42, yi+3, - - - with coefficients depend-
ing only on m;41,n;42,---. When n # m are two integers, the vectors y; + n z;

and y; + m z; are linearly independent over K, therefore their images in P(V;¥)
are distinct. Since ey_3 < fy_3 and g > 0 we get exy_3 < d — 3, therefore
the image of X in P(V,Y), i« < N — 3, has degree at least 3. Furthermore
dimP(V;Y) > 3. By Theorem 1 and Corollary 1, it follows that we can choose n;
such that 0 < n; < A(d) +d and the projection from P(V;") to P(V;Y ;) does not
change the degree of the image of Xg. We fix the integers n;, k <i < N — 3,
with this property. Hence we have

e; = e, whenever k<i< N —2. (4)
2.8
From (3) and (4) we conclude that

(see 2.3). Hence, by Morrison’s main combinatorial theorem, [10] Corollary 4.3,

for any decreasing sequence of real numbers r; > r9 > --- > ry we have, if
k>2,
S <(r)
with
N



So, when 1 > ro > -+ > ry = 0 is a decreasing sequence of integers,

er <Y(r). (5)
Let
log||zi—1]| +log(A+d) ifk+1<i<N-2
i {log ||| + log(A + d) else, (6)
and r; = s; — sy. The sequence r1,...,7y = 0 is decreasing and (2) implies
that

log ||vs|] <log|lwi—1]] +1log(1+n;) <s; if k+1<i<N-—2,

and
log ||vi]| = log ||z;]| < s; else.

We endow O(1) with the metric induced by the metric h on E. We choose
an hermitian metric, invariant by complex conjugation, on the complex points
of X, and we endow M = H°(X,O(m)) with the associated L*-metric. After

multiplying the metric on X by a fixed constant we know that, for every m,

the morphism ¢ is norm decreasing. Therefore, if u = p(vP* ... 05N) is a

monomial in M we have
N N N
log ||u]] < Zailog [los || < Zai 8; = Zairi +msy.
i=1 i=1 i=1

By definition of wt,(u), we get
log ||lu|| < wty(u) +msy .

Let d/e\g(M ) be the arithmetic degree of the hermitian vector bundle M =
(M, hgpz) over S. From the inequality above and the Hadamard inequality we
deduce that, for any special basis B of M,

deg(M) > —[K : QY (wtp(u) + msy).
ueB

This implies
deg(M) > —[K : Q|(wn(m) +mh®(Xg, O(m)) sn) -

By (5) and the definition of e,, since both w,(m) and ¥ (r) are linear func-
tions of r, by approximating r by a collection of rational numbers we get that,
for every positive real number 7,

m2
wn(m) < (V) + 1) 5 + O(m)



(cf. [12] § 2.2), so we get

deg(1) > [ : QUU(r) + 2 s+ 1) "o+ O(m).

On the other hand, by [8] Theorem 8, we have

— m?
deg(M) = h(Xk) - + O(mlog(m)).

Therefore, for every n > 0,

hMXk) =z =[K: Q(¢(r) +2dsy +1n). (7)

By the definition of 1, we deduce from (7) that

h(X) al
[K a] +2dsy > —B; <ZT1> ,

=1

and, using (6),

N
+2d puy > —By <Z(Hz‘ —p1) + PNk — M3> —2dlog(A(d)+d). (8)

i=1

h(Xk)
(K : Q]

Since pz > p1, (8) implies the inequality in Proposition 1.

2.9

To make Proposition 1 more explicit, we need to evaluate Bj. For any i =
2,...,N, we let

h?,
Bix = - i—1
(=D hix— > ik
j=1
so that
By, =sup B; ;.
i

Lemma 1. Assume that k —1 < d—2g. Then

o ifi <k
2
Bi,k:2_f7
7
o ifk<i<N-—2
2
B’L’k:2_E



2.10

To prove Lemma 1 we first assume that ¢ < k. Then, if j < i we have

hj"k:fj:j—l.

Therefore . .
i i . .
_ (1—2)(t —1)
Zh]ak:Z(.]_l): )
j=1 j=1 2
and . )
Bix = G172
, (Z - 1)2 N (i— )2(1— ) 7

Assume now that kK <i < N — 2. Then, if 1 <j <k — 1, we have
hjx=f=j—-1.
Furthermore, if £ < j <i— 1, we get

hj’k:fk:k‘—l.

Therefore

(k—1)* L, 2

Bik = ‘ k=1 i1 =2-7
((-Dk-=1)=>G-1)-> (k-1
j=1 j=k
q.e.d.
2.11
Lemma 2. Assume that g >0 and 4 <k <d—2g—6. Then By <2 and
2d — NB; > % .

To prove Lemma 2 we first compute By_; ; and By ; under the assumption
k—1<d—2g. Whend —2g <i—1< N we have

fi=2—2—d+2g.

Therefore
hn_ip=fn-1=2(N—-2)—d+29=d—2

and
hN’k:fN:2(N—1)—d+2g:d.



On the other hand
N-2
Z (k - 1) )

N-2 k N-—-2 k
Zhj,kZij+ka=ZJ—1
i— J=1 =1 j=k+1

j=k+1
and
N-1 N—
h]k Z J.k +fN71'
Jj=1 Jj=1
Therefore
_ (d-2)*
By-ir = k N—2
(N —=2)(d—-2)— Z G-1D— > (k-1)
j=1 Jj=k+1
(d-2)*
- (k-1 (9)
(N—-2)(d—1-k)+
and
d2
Byg = ko N—2
(N=2)d+2—-> (G—-1)— > (k-1)
j=1 j=k+1
d2
T 0 (N—2)d+1—k) 4 HED (10)
+ (N =2)(d+1-k)+ D
When i < N — 2 we know from Lemma 1 that
2
B’i,k § 2 - % < 2,
hence ) 0
2d—NB;,>2d—(d+1—g) (2_k) > -

Wheni=N—-1weputk=44p,p>0,andd =104+2g+p+t,t > 0. Then
(9) implies that 2 — Bx_1 ; has the same sign as 2gt + 14g + p + t2 + 12t + 38,

9Y imol;
which is positive. On the other hand

2d

2d— NBn_1% — &

has the sign of the numerator of k — 1 — NkByn_1 x/(2d), namely
(2+4p)t3+(p*+(5g+21)p+10g+36)t>+((8+49)p*+ (8¢9 +121+729)p+186+118g+169*)t+(g—1)p*
3

2
(5 + 269 + 49%)p> + (172 + 4¢® + 609> + 240g)p + 244 + 328¢ + 92> + 8¢> > 0

10



Similarly (10) implies that 2 — By, has the same sign as t* + (2g + 12)t +
42 4 10g + p, so it is positive, and

2d

2d— N By~ —

has the sign of

(2+p)t? +((94+39)p+12+69)t+(g—1)p* + (11+18g+2¢%)p—14+22g+4g° > 0.

This ends the proof of Lemma 2.

2.12

To prove Theorem 2 we first note that By < 2 and 2d — N By > 2d/k by
Lemma 2. Since p1 < pny41-% and p1 < p, Proposition 1 implies

h(Xk)
(K : Q]

By dividing this inequality by 2d we obtain

2d
+2dp 2 —(u— ) — 2dlog(A(d) + d).

2(pNy1—k — 1) +

1 h(Xk)

g(ﬂN—i—l—k — 1)+ 2K : Q] +p = —(p—p1) —log(A(d) +d). (11)

T =

Since k < d we get

h(Xk)

M+M> > p— p1 — dlog(A(d) +d),

UN+1—k — p1 + Kk (

and, since d > 12, the remark in §1 implies Theorem 2.

11
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