
A Friendly Introduction to Supersingular Isogeny

Diffie-Hellman

David Urbanik

March 10, 2017

1 Preface

The purpose of this article is to provide an introduction to the Supersingular
Isogeny Diffie-Hellman protocol for interested readers who do not have a strong
background in the theory of elliptic curves. Although some familiarity with
ordinary Diffie-Hellman protocols and elliptic curve arithmetic will be helpful,
in principle a reader of this article need only be comfortable with mathematics
at the level of a first course in group theory. Readers of this article should not
expect to come away with a detailed understanding of the underlying mathe-
matics, but rather some intuition for the main ideas and governing philosophy
behind the protocol.

2 Ordinary Diffie-Hellman

It is worth beginning with a review of the ordinary Diffie-Hellman protocol. In
ordinary Diffie-Hellman, Alice and Bob wish to establish a shared secret s over
an open channel which is being eavesdropped by an eavesdropper, Eve. The
protocol specifies a cyclic group G = 〈g〉 which is public knowledge. Alice and
Bob each choose private integers 0 ≤ a, b < |G| respectively, compute ga and
gb, and exchange the results over the open channel. Once they have received
each other’s results, they can each compute (gb)a = (ga)b, which they take to
be their shared secret s. Diagrammatically, this is depicted in Figure 1.

By itself, this is not a description of a secure cryptographic protocol (even
against classical adversaries). Rather, the protocol’s security depends on the
model chosen for the group G. For instance, suppose that we choose G to be
the integers {0, 1, · · · , n − 1} with addition modulo n. Taking g = 1, we see
that Alice will send a over the open channel, Bob will send b, and the protocol
is trivially broken as Eve can easily compute s = ab (mod n) herself. Choosing
a different generator g will make no difference, as one can invert g mod n to
compute a = g−1(ag) (mod n) from the public information ag (and likewise for
b).

1

(gb)a (ga)b

Alice’s Computation Bob’s Computation

x 7→ x
a

x 7→ x
a

x 7→ x
b

g
a

g
b g

a

x 7→ x
b

Public Information
g g

Group G

g
b

Figure 1: A schematic version of the Diffie-Hellman protocol, emphasizing the
public information (in green) and the private information of Alice and Bob
(yellow and blue respectively).

Other groups fare better. Suppose we instead choose a prime p, and consider
the group (Z/pZ)× of units modulo p. This is again a cyclic group, for which
we can find a generator g. Note that this group will in fact be isomorphic to the
one in our previous example with n = p− 1, yet the best known attacks against
Diffie-Hellman over this group are decidedly non-trivial, and achieve only sub-
exponential complexity. For instance, the index calculus methods described in
[5] require Lp(1/3, (128/9)1/3) expected time to compute the discrete logarithm
a = logg(g

a) (and hence break the protocol), where

Lp(α, c) = exp((c+ o(1))(log p)α(log log p)1−α).

A particularly nice family of groups for Diffie-Hellman is those associated
with elliptic curves over a field F. In general, elliptic curves are a set of points
satisfying an equation cubic in x and quadratic in y, but when the characteristic
of F is not 2 or 3, they can, through various transformations, be converted to a
set of the form

E(F) = {(x, y) ∈ F2 : y2 = x3 + ax+ b} ∪ {∞},

where a, b ∈ F. Here we have thrown in an extra “point at infinity”, denoted
∞, for reasons which we will explain shortly.

Elliptic curves have associated to them a particularly nice group structure,
which can be viewed geometrically. This is depicted in Figure 2. If A and B
are distinct points on E which do not have the same x-coordinate, the point
A+B is obtained by drawing the secant line through A and B, which intersects
a 3rd point, and reflecting the result using the map (x, y) 7→ (x,−y), which is
a symmetry of the curve equation. The case for adding A to itself is similar,

2

Figure 2: Three images exhibiting the elliptic curve group law on an elliptic
curve, drawn in red. In the last image A + B = ∞. Although this picture
assumes our curve is defined over R, the group law works the same over any
field (i.e., the algebraic equations giving the group law are the same), although
one can’t draw such pictures when viewing the curve over, say, a finite field.

except we need to use a tangent line rather than a secant line. Finally, our
point ∞ comes into play when adding points which lie on the same vertical
line. Since vertical lines only intersect two ordinary points on elliptic curves, we
cannot apply the same rule as in the previous two cases. Our solution is to take
these pairs of points to be additive inverses of each other, whose sum A+B is
equal to the identity element ∞. One can check that with these rules1 elliptic
curves form an abelian group.

So what about discrete logarithms in elliptic curve groups? The best known
attack is based on the Pollard rho algorithm, and runs in exponential time
O(

√
|G|). It turns out that the Pollard rho algorithm is actually very general –

it works in any cyclic group, and only requires that one be able to compute the
group operation. Hence, an attack based on Pollard rho can be used against
any version of the Diffie-Hellman protocol, not just one modelled on elliptic
curves. This means that in some sense, elliptic curves appear to be a kind of
“ideal model” for Diffie-Hellman. That is, at least conjecturally, one can do no
better than elliptic curves for implementing this protocol.

3 Building a new Diffie-Hellman

As you may know, the existence of a universal quantum computer would make
it possible to break Diffie-Hellman. Naively, one might suppose that we could
simply pick a better model for our group, but the polynomial time discrete
logarithm algorithm due to Peter Shor requires nothing more than the ability to

1One extra condition that we haven’t mentioned is that the curves have to be non-singular,
which is simply to say that tangent lines have to exist at every point, for this to work.

3

efficiently compute the group operation, and so all models, even elliptic curves,
are affected. That is, Diffie-Hellman is broken by Quantum Computers on
general grounds, irrespective of the particular implementation chosen.

To understand how we might solve this problem, it is worth revisiting the
Diffie-Hellman protocol and asking: what makes it work? For instance, was
it important that we used a group G? Not really, since we never needed the
existence of inverses or an identity. Was it important that we had a binary
operation? Do the maps computed by Alice and Bob have to be exponentiation
maps?

What is really needed in a protocol like Diffie-Hellman is actually a kind of
commutative diagram. That is, one should be able to draw a picture something
like the following:

g ga

gb gab

x 7→xa

x 7→xb x 7→xb

x7→xa

(1)

The diagram is a pictorial representation of a computation that can be done
in two different ways. The first way starts with g, follows the top arrow to
the right (i.e., computes ga) and then follows the rightmost arrow downward
(computes (ga)b). The second path works similarly, and computes (gb)a. To
say the diagram commutes is simply to say that we end up with the same result
either way. This commutativity is important, because it means that Alice and
Bob will both get the same result, and hence the same shared secret, from their
computations.

The study of mathematics is abound with commutative diagrams. For in-
stance, consider the following suggestively drawn diagram:

G G/A

G/B G/AB

X 7→X/A

X 7→X/B X 7→X/B

X 7→X/A

(2)

The diagram depicts, at least on an intuitive level, what happens when we
take a group G with two normal subgroups A and B, and “quotient out” A and
B in two different orders. The result is, up to isomorphism, the group G/AB
(note that AB = BA, so the order doesn’t matter). If we regard isomorphic
groups as being the same, then the diagram commutes.

We can now imagine defining a completely analogous protocol to Diffie-
Hellman, which works as follows. The protocol specifies a public group G. Alice
and Bob each choose private subgroups A and B respectively. Alice computes
the quotient group G/A and sends the result to Bob. Bob computes G/B and
sends the result to Alice. They both then compute G/AB (up to isomorphism!)
by computing (G/B)/A and (G/A)/B respectively.

4

This would work, except that the way we have labelled the arrows on this
diagram is somewhat misleading. The group A is a subgroup of G, and not
a subgroup of G/B, so we cannot quotient out A from G/B. What we really
mean by this is to look at the associated quotient map, φB : G→ G/B, and to
compute (G/B)/φB(A). This distinction is important, because if we wish to use
such a diagram to construct a Diffie-Hellman-like protocol, both of the arrows
labelled X 7→ X/A must be computed by Alice with her information, and in
general there may be no easy way for Alice to compute (G/B) 7→ (G/B)/φB(A)
if she only knows G/B and A but not the map φB . We will return to this
problem in the next section.

There’s one additional thing that needs to be specified for a Diffie-Hellman-
like protocol, which is a prescription that certain computations be “easy”. For
instance, ordinary Diffie-Hellman requires that computing the exponential maps
x 7→ xa and x 7→ xb be easy, since Alice and Bob need to be able to do these
computations. In practice, what this really means is that computing the group
operation is easy; it’s difficult to imagine a group where it’s easy to exponentiate
but hard to multiply, and if you want to multiply gk and gl in 〈g〉 and know
that gk and gl are the kth and lth powers of g respectively (and you would know
this if you had computed these values from g) then computing the product is a
matter of computing the exponentiation g 7→ gk+l.

So if ordinary Diffie-Hellman is a combination of the diagram (1) and the
prescription that group operations be easy, what is the case for our protocol
based on the diagram (2)? Note that although the fact that exponentiation is
easy follows if the group operation is easy, it doesn’t follow “directly”, in the
sense that computing x 7→ xa by multiplying x by itself a times is still slow.
Instead, there is a decomposition of the map x 7→ xa in terms of many different
applications of, for instance, the maps y 7→ y2 and y 7→ x · y (as in the square
and multiply algorithm), which “factors” the map x 7→ xa into some sequence
of maps that can each be computed efficiently. Analogously, we do not require
that the computations X 7→ X/A and X 7→ X/B in diagram (2) be efficient
“directly”, but rather that there is a composition series, that is a maximal chain
of normal subgroups like

{1} = A0 ⊂ A1 ⊂ · · · ⊂ Am = A , (3)

where each successive quotient X/A1, (X/A1)/φA1(A2), etc., can be computed
efficiently. Assuming m is reasonably sized, it then follows that the computation
X 7→ X/A, which is obtained by applying the m quotients in order, is efficient
as well.

In the case of ordinary Diffie-Hellman, we could consider the security of the
protocol in the “ideal case”, that is, where only the group operation could be
presumed efficient2. We found that for classical algorithms, the best known
attack was the Pollard rho algorithm, which took exponential time, but in the
quantum case Shor’s algorithm worked in polynomial time. A possible analogue
of this “ideal case” for our modified Diffie-Hellman is to assume that “simple

2And other auxiliary operations like computations on integers, of course.

5

quotients” are efficiently computable, that is quotients of the form X 7→ X/S
where S is simple, and to ask what kinds of algorithms, both classical and
quantum, can find A from knowledge of X and X/A on this assumption.

There is reason to believe our protocol will be secure against such general
attacks. For one, nothing we have said so far has assumed anything in particular
about the groups involved, or is even specific to groups! Indeed, diagrams like (2)
hold whenever we have a notion of quotient and a version of the first isomorphism
theorem (so for instance, rings and modules work too). Therefore, any algorithm
which could break such a protocol on purely general grounds would have to be
extremely powerful – too powerful, one hopes, even for quantum computers.

Of course, just because there is no general way to break a protocol doesn’t
mean that we can find a feasible, practical implementation. Like with ordinary
Diffie-Hellman, it is possible that our choice of model for the group G and its
quotients might leave other attack avenues open. For one, we need a model that
has exponentially many subgroups A and B of G to choose from, so that the
brute force attack of trying all possible quotients is exponential. We also need a
way of identifying the quotients up to isomorphism (remember that the diagram
(2) only commutes in the sense that the resulting groups are isomorphic), and to
resolve the problem of how Alice finds φB(A) from her knowledge of A without
knowing φB , as we discussed earlier.

What’s truly remarkable, then, is that it is possible to find a model for this
protocol that satisfies all these requirements. What’s more, the best known
attacks against this particular model, in both the classical and quantum case,
are exactly the kind of “ideal attacks” we described – they use nothing more
than the efficient computation of the “simple quotient” maps X 7→ X/S. And
just as in the case of ordinary Diffie-Hellman, the solution comes from the rich
mathematics of elliptic curves.

4 Isogenies and Supersingular Elliptic Curves

We have already discussed elliptic curve groups, so it may come as no surprise
that the groups we discussed in the previous section will be modelled on elliptic
curves3. What remains to be seen is how one can take quotients of these groups,
and how we can choose the curves in such a way so that we solve all the potential
problems we described in the previous section.

3Technical Remark: This is somewhat misleading. When we said that diagram (2) com-
muted what we meant was that it commuted if we identified groups up to isomorphism. We
will find here that we have a simple way of identifying elliptic curves up to elliptic curve iso-
morphism, but this is not quite what we were asking for! That’s because although isomorphic
elliptic curves have isomorphic groups, it is possible for two curves over some field to have
isomorphic groups but not be isomorphic as curves (in fact, this will happen all the time in
our case). So the diagrams that we will implement here will actually be a sort of refinement
of (2), in the sense that there will be more objects available than if we were identifying elliptic
curve groups up to group isomorphism. Hence we will require the fact that diagrams of the
form (2) commute when the isomorphism classes are isomorphism classes of elliptic curves,
which is not so obvious.

6

Note that when we say take a quotient of an elliptic curve group, what we
will mean is to construct a quotient group which is again an elliptic curve.
Hence computing the quotient of a curve E by a subgroup S consists of two
parts: one of finding a curve E/S which models the group E(F)/S, and another
of computing the quotient map φS : E → E/S. The map φS is what we call
an isogeny. It turns out that isogenies of elliptic curves are rational functions.
The problem of how to compute both the curve E/S and the isogeny map was
solved by Velu[6], who gave explicit formulas for both. The general case for an
arbitrary isogeny is rather complicated, and takes time polynomial in the size
of the quotient group to compute. Since our quotient groups are exponential in
size, this justifies our earlier requirement that we can find a chain of subgroups
of the form (3), since this will allow us to factor a large isogeny as a composition
of many smaller ones, and thus compute the overall quotient efficiently.

Hence, we need to choose our curves in such a way so that both Alice and
Bob have a wide range of subgroups to choose from, and so that the subgroups
are easily decomposed into chains of the form in (3). The usual solution is to
find a large prime of the form p = 2eA3eB − 1, and take F = Fp2 , a field with p2

elements4. The theory of elliptic curves then tells us that we can find a curve
E with group E(Fp2) = (Z/(2eA3eB)Z)2. We then prescribe that Alice’s secret
keys be cyclic subgroups of order 2eA , and Bob’s secret keys be cyclic subgroups
of order 3eB . If Alice then finds a generator RA for her subgroup, we then have
a composition series of the form in (3):

{∞} = 〈2eARA〉 ⊂ 〈2eA−1RA〉 ⊂ · · · ⊂ 〈RA〉 = A (4)

Bob’s case is analogous, with 3 replacing 2, eB replacing eA, and RB replacing
RA.

The next thing to explain is the adjective supersingular. A supersingular
elliptic curve is a very special type of elliptic curve, which is defined by having a
particularly large (and non-commutative) endomorphism ring. It turns out that
computing isogenies between elliptic curves is very closely related to computa-
tions in the endomorphism ring of those curves[3]. Hence the larger and more
complicated the endomorphism rings of the curves E and E/A are, the more
difficult it will be for a potential attacker to discover the isogeny φA : E → E/A
which is Alice’s private key (knowledge of the isogeny is equivalent to knowledge
of A). For this reason, we choose to use supersingular curves for our protocol;
since quotients of supersingular curves remain supersingular, we can do this
without issue.

The story so far is summarized in Figure 3. We have two remaining prob-
lems to solve. The first is how Alice is able to compute the map (E/B) 7→
(E/B)/A, recalling that what we really meant by this was to compute (E/B) 7→
(E/B)/φB(A), and the second is how Alice and Bob represent the isomorphism
class of the resulting curve so that they end up with the same shared secret.

4The general case is p = f · leAA · leBB ± 1, where f is a small factor and log(l
eA
A) ≈ log(l

eB
B),

but we will restrict to the most common case here.

7

E/〈RB, RA〉 E/〈RA, RB〉

Alice’s Computation Bob’s Computation

X 7→ X/〈RA〉

X 7→ X/〈RA〉 X 7→ X/〈RB〉

E/〈RA〉

E/〈RB〉 E/〈RA〉

X 7→ X/〈RB〉

Public InformationE E

Supersingular Isogeny Class I

E/〈RB〉

Figure 3: What the SIDH protocol looks like “in spirit”, drawn in analogy to
Figure 1. The analogue of the Group G in Figure 1 is played by the “Supersin-
gular Isogeny Class”, which is simply the collection of all supersingular elliptic
curves which are related by isogenies.

To solve the first problem, we observe that what Alice really needs is knowl-
edge of the point φB(RA) ∈ φB(A), since φB(A) = 〈φB(RA)〉 because φB is
a group homomorphism. To solve this, Alice chooses her point RA as a linear
combination RA = sAPA + tAQA of two basis points PA and QA which gen-
erate the 2eA -torsion subgroup of E(Fp2). She keeps the integers sA and tA
private, and Bob assists her by computing φB(PA) and φB(QA) and sending
the result over the public channel. Using this information, Alice can compute
φB(RA) = sAφB(PA)+tAφB(QA) (again because φB is a group homomorphism)
and complete the protocol. The case for Bob’s computation is analogous. With
this modification, our protocol now appears as in Figure 4.

Our final problem is how Alice and Bob compute a common shared secret
from the curves (E/A)/B and (E/B)/A. It turns out that each elliptic curve
has an associated parameter called its j-invariant, which determines the curve
up to isomorphism. The j-invariant is a rational function of the coefficients of
the curve. For instance, if we have a curve X : y2 = x3 + ax+ b, the j-invariant
is given by

j(X) = 1728
4a3

4a3 + 27b2
. (5)

Since Alice and Bob end up with isomorphic curves, they may take their shared
secret s to be j((E/A)/B) = j((E/B)/A), completing the protocol.

8

E/〈RB, RA〉 E/〈RA, RB〉

Alice’s Computation Bob’s Computation

φA

φ′

A φ′

B

E/〈RA〉, φA(PB), φA(QB)

φB

Public Information
E,PB, QB E,PA, QA

Supersingular Isogeny Class I

E/〈RB〉, φB(PA), φB(QA)

E/〈RB〉, φB(PA), φB(QA) E/〈RA〉, φA(PB), φA(QB)

Figure 4: The SIDH protocol in practice. Compare with Figure 1 and Figure 3.

5 Epilogue

There is much more to say about SIDH. The purpose of this article is only to
provide intuition, and is not intended as a replacement for a serious reading of
the key papers (e.g. [2], [1], [3]). Feel free to email me with any comments,
questions or complaints.

References

[1] C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny diffie-hellman. In Lecture Notes in Computer Science, pages 572–
601. Advances in Cryptology CRYPTO 2016, 2016.

[2] L. De Feo, D. Jao, and J. Plut. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. J. Math. Cryptol., 2014.

[3] Steven D. Galbraith, C. Petit, B. Shani, and Yan Bo Ti. On the security of
supersingular isogeny cryptosystems. In Springer LNCS.

[4] D. Jao. Handbook of Information and Communication Security, chapter 3,
pages 35–57. Springer, 2010. Avaliable at http://djao.math.uwaterloo.

ca/wiki/images/a/a1/Handbook.pdf.

[5] A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve
in the medium prime case. In Lecture Notes in Computer Science, pages
326–344. Advances in Cryptology CRYPTO 2006, 2006.

[6] J. Velu. Isogenies entre courbes elliptiques. CR Acad. Sci. Paris Ser. AB,
1971. 273:A238A241.

9

