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Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function
and its inverse:

Encryption(—)
—
Message Space Ciphertext Space

Decryption(—)
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Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function
and its inverse:

Encryption(—)

—
Message Space Ciphertext Space

Decryption(—)

Just one pair of these functions is not enough; need (exponentially) many
of them indexed by a parameter s:

Encryption(—,s)

—
Message Space Ciphertext Space
R

Decryption(—,s)

To do encryption, two parties need to agree on s. In 1976, Diffie and
Hellman showed it can be done over a public channel.
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The Diffie-Hellman Protocol

Setup: Fix a group G and g € G.
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The Diffie-Hellman Protocol

Setup: Fix a group G and g € G.

Alice’s Computation Public Channel Bob’s Computation
g g
x>—>xal J’X'—)Xb
b
ga ~~‘_““‘ ga gb ’—"’__—— g
b (——- T B
x»—)x"’i J{X*—)Xb
b — b
(g”)° = (&%)
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Hard problem: Given g, g2, and g?, determine g??.
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Cryptography Under Attack
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Cryptography Under Attack

@ Nearly all cryptosystems which use only an open channel are broken
by quantum computers.

@ Quantum computers can factor integers (breaks RSA), and compute
discrete logarithms (breaks all forms of Diffie-Hellman).

@ Both are special cases of the Abelian Hidden subgroup problem:

Abelian Hidden Subgroup Problem

Input: Abelian group G, aset X, H< G, and f : G — X where

f(g1) = f(&) iff &1H = g H.
Output: A generating set for H.
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The Diffie-Hellman Protocol (again)

Setup: Fix a group G and g € G.

Alice’s Computation Public Channel Bob’s Computation
g g
XHXQJ lx»—)xb
b
ga S——— ga gb ’_"_,_—— g
gb 4--- == ga
X>—>X3l lx»—mb
b _ b
(g”)° = (&%)

Hard problem: Given g, g2, and g?, determine g??.
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The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and E € C.

Alice’s Computation Public Channel Bob’s Computation
E E
Xb—)X/(R;OJ’ lXHX/<RB>
E/<RA> ‘\\\\\E/(RA) E/<RB)“_/_-——” E/<RB>
E/(Re) T 7 E/(Ra)
XHX/(RA)‘L J’X»—>X/<RB>
E/<R57RA> = E/<RA,RB>

Hard problem: Given E, E/(Ra), E/(Rg) *, determine E/(Ra, Rg).

* Some extra information is also available.
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Elliptic Curves

A set of solutions {(x,y)} over a field k to an equation of the form

y2 + aixy + azy = x3 + azx2 + asx + ae
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Elliptic Curves

A set of solutions {(x,y)} over a field k to an equation of the form
2 _ .3 2
Yo+ aixy + a3y = x° + axX” + asx + ap .

After a change of coordinates:

@ Weierstrass Form
yvi=x34+ax+b

o Montgomery Form

by? = x3 + ax® + x

o Legendre Form
y?=x(x—1)(x = \)
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Elliptic Curves

A set of solutions {(x,y)} over a field k to an equation of the form
2 _ .3 2
Yo+ aixy +azy = X7 + axx” + agx + ag

After a change of coordinates:

@ Weierstrass Form

yv2=x3+ax+b

o Montgomery Form
by? = x3 + ax® + x

o Legendre Form
y?=x(x—1)(x = \)

Elliptic curves also need to be non-singular, i.e. there is a unique tangent
line at every point.
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Elliptic Curve Examples
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Figure: y2 = x>+ ax+b, a€{-2,-1,0,1} and b€ {-1,0,1,2}.

David Urbanik SIDH Key Exchange July 12, 2016

8 /27



The Group of an Elliptic Curve E

G = {(x,y) € k*: (x,y) is a point on E}
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The Group of an Elliptic Curve E

G = {(x,y) € k*: (x,y) is a point on E}

A+B
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The Group of an Elliptic Curve E

G ={(x,y) € k*: (x,y) is a point on E} U {oc}

Define a point “at co” such that
2 A+B=oc .
—
A
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The Group of an Elliptic Curve E

G ={(x,y) € k*: (x,y) is a point on E} U {oc}

Define a point “at co” such that

This way we get an identity element,
and also inverses.

David Urbanik SIDH Key Exchange July 12, 2016 14 /27



The Group of an Elliptic Curve E

G ={(x,y) € k*: (x,y) is a point on E} U {oc}

David Urbanik SIDH Key Exchange July 12, 2016 15 / 27



The Group of an Elliptic Curve E

G ={(x,y) € k*: (x,y) is a point on E} U {oc}

A+A
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The Group of an Elliptic Curve E
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The Group of an Elliptic Curve E

Why is this group operation associative?
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The Group of an Elliptic Curve E

Why is this group operation associative?

A+B+C
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The Group of an Elliptic Curve E
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The Group of an Elliptic Curve E

Why is this group operation associative?

A+B+C
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Supersingular elliptic curves
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Supersingular elliptic curves

Many equivalent definitions:
e Elliptic curves for which the endomorphism ring has rank 4 (is an
order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
@ The group of p-torsion points of E is trivial, where char(k) = p.
e Writing E in Legendre form, E : y2 = x(x — 1)(x — ) is supersingular

iff X is a root of
p—1

= /n\2
-3 (1)

=
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Supersingular elliptic curves

Many equivalent definitions:

e Elliptic curves for which the endomorphism ring has rank 4 (is an
order in a quaternion algebra); normal elliptic curves have rank 2 or 1.

@ The group of p-torsion points of E is trivial, where char(k) = p.
e Writing E in Legendre form, E : y2 = x(x — 1)(x — ) is supersingular
iff A is a root of

p—1

= /m\2
=3 OE

e If we write E as a cubic homogeneous polynomial f(x,y, z) in the
projective plane, then E is supersingular iff the coefficient of (xyz)P~!
in f(x,y,z)P~1is zero.
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Quotients of elliptic curves
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Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

@ Isogenies are given by non-constant rational functions which fix the
identity point.
@ It is a theorem that such a map is always a group homomorphism.

o If ® is a subgroup of the elliptic curve group of E, then there is (up
to isomorphism) a unique isogeny with kernel ® (comes from Velu's
formulas).

@ The image curve under the isogeny is the quotient curve.
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The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and E € C.

Alice’s Computation Public Channel Bob’s Computation
E E
Xb—)X/(R;OJ’ lXHX/<RB>
E/<RA> ‘\\\\\E/(RA) E/<RB)“_/_-——” E/<RB>
E/(Re) T 7 E/(Ra)
XHX/(RA)‘L J’X»—>X/<RB>
E/<R57RA> = E/<RA,RB>

Hard problem: Given E, E/(Ra), E/(Rg) *, determine E/(Ra, Rg).

* Some extra information is also available.
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Computing the Second Isogeny

@ Suppose Alice receives the curve E/(Rg) from Bob and she wants to
compute (E/(Rg))/{Ra) = E/(Rg, Ra).
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Computing the Second Isogeny

@ Suppose Alice receives the curve E/(Rg) from Bob and she wants to
compute (E/(Rg))/{Ra) = E/(Rg, Ra).

@ To use Velu's formulas, we need to know a subgroup of the domain
curve, but Ry is a subgroup of the original curve E.

@ Bob could compute the action of his isogeny ¢g on Rx for Alice, but
this would require exchanging R over the public channel.

@ The solution is to choose two special points P4 and Q4 on E, and
then choose Ry = maPa + naQa for some integers ma and nja.

@ Bob then sends ¢g(Pa) and ¢g(Qa) to Alice, and then Alice can
compute

(mage(Pa) + nags(Qa)) = (¢8(maPa + naQa)) = (¢8(Ra))
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My Work

@ The current leading implementation of SIDH was developed by
researchers at Microsoft and released in April of 2016. I've been
optimizing the finite field arithmetic used for 64-bit ARM
architectures. Because the original algorithm used for finite field
operations on this platform was very generic, using hand-coded 64-bit
ARM assembly | was able to improve the performance by about a
factor of 10.

o Of all the quantum-resistant key-exchange protocols, SIDH has by far
the smallest key sizes, which can be made smaller with compression. |
am currently working on implementing key compression and
decompression algorithms which can make the key sizes of SIDH
comparable with those of existing quantum-vulnerable algorithms.
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