Quantum-resistant cryptography from supersingular elliptic curves

David Urbanik

July 12, 2016

Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:

Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:

Just one pair of these functions is not enough; need (exponentially) many of them indexed by a parameter s :

Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:

Just one pair of these functions is not enough; need (exponentially) many of them indexed by a parameter s :

To do encryption, two parties need to agree on s. In 1976, Diffie and Hellman showed it can be done over a public channel.

The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.

The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.

Alice's Computation
Public Channel
Bob's Computation

$$
\begin{aligned}
& g \quad g \\
& x \mapsto x^{a} \downarrow \\
& g^{a} \ldots \ldots g^{a} \quad g^{b} \ldots \ldots \\
& g^{b} \not \ldots \ldots \ldots \ldots \ldots g^{a} \\
& x \mapsto x^{a} \downarrow \\
& \downarrow x \mapsto x^{b} \\
& \left(g^{b}\right)^{a} \\
& =\quad\left(g^{a}\right)^{b}
\end{aligned}
$$

The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.

Alice's Computation Public Channel Bob's Computation

$$
\begin{aligned}
& g \quad g \\
& x \mapsto x^{a} \downarrow \quad \downarrow{ }^{x \mapsto x^{b}} \\
& g^{a} \ldots \ldots . g^{a} \quad g^{b} \ldots \ldots \\
& g^{b}\left[\ldots-\ldots-\ldots-\cdots \cdots g^{a}\right. \\
& x \mapsto x^{a} \downarrow \\
& \downarrow x \mapsto x^{b} \\
& \left(g^{b}\right)^{a} \\
& =\quad\left(g^{a}\right)^{b}
\end{aligned}
$$

Hard problem: Given g, g^{a}, and g^{b}, determine $g^{a b}$.

Cryptography Under Attack

Cryptography Under Attack

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.

Cryptography Under Attack

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).

Cryptography Under Attack

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).
- Both are special cases of the Abelian Hidden subgroup problem:

Abelian Hidden Subgroup Problem
Input: Abelian group G, a set $X, H \leq G$, and $f: G \rightarrow X$ where
$f\left(g_{1}\right)=f\left(g_{2}\right)$ iff $g_{1} H=g_{2} H$.
Output: A generating set for H.

The Diffie-Hellman Protocol (again)

Setup: Fix a group G and $g \in G$.

Alice's Computation
$g \quad g$
$x \mapsto x^{a} \downarrow$
$g^{a} \ldots \ldots \ldots g^{a}$

$$
x \mapsto x^{a} \downarrow
$$

$$
\begin{aligned}
& g^{b} \text { \&-.....-. } \\
& \downarrow^{x \mapsto x^{b}} \\
& \left(g^{b}\right)^{a} \\
& = \\
& \left(g^{a}\right)^{b}
\end{aligned}
$$

Public Channel
Bob's Computation

Hard problem: Given g, g^{a}, and g^{b}, determine $g^{a b}$.

The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class \mathcal{C} and $E \in \mathcal{C}$.

Alice's Computation Public Channel Bob's Computation

$$
\begin{aligned}
& \begin{array}{rl}
E & E \\
x \mapsto X /\left\langle R_{A}\right\rangle \downarrow & \downarrow x \mapsto x /\left\langle R_{B}\right\rangle
\end{array} \\
& E /\left\langle R_{A}\right\rangle \ldots \ldots .{ }^{E} /\left\langle R_{A}\right\rangle \quad E /\left\langle R_{B}\right\rangle \ldots \ldots E /\left\langle R_{B}\right\rangle \\
& E /\left\langle R_{B}\right\rangle{ }^{-\cdots-\cdots} E /\left\langle R_{A}\right\rangle \\
& X \mapsto X /\left\langle R_{A}\right\rangle \downarrow \\
& E /\left\langle R_{B}, R_{A}\right\rangle \\
& =\quad E /\left\langle R_{A}, R_{B}\right\rangle
\end{aligned}
$$

Hard problem: Given $E, E /\left\langle R_{A}\right\rangle, E /\left\langle R_{B}\right\rangle^{*}$, determine $E /\left\langle R_{A}, R_{B}\right\rangle$. * Some extra information is also available.

Elliptic Curves

A set of solutions $\{(x, y)\}$ over a field \mathbb{k} to an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Elliptic Curves

A set of solutions $\{(x, y)\}$ over a field \mathbb{k} to an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

After a change of coordinates:

- Weierstrass Form

$$
y^{2}=x^{3}+a x+b
$$

- Montgomery Form

$$
b y^{2}=x^{3}+a x^{2}+x
$$

- Legendre Form

$$
y^{2}=x(x-1)(x-\lambda)
$$

Elliptic Curves

A set of solutions $\{(x, y)\}$ over a field \mathbb{k} to an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

After a change of coordinates:

- Weierstrass Form

$$
y^{2}=x^{3}+a x+b
$$

- Montgomery Form

$$
b y^{2}=x^{3}+a x^{2}+x
$$

- Legendre Form

$$
y^{2}=x(x-1)(x-\lambda)
$$

Elliptic curves also need to be non-singular, i.e. there is a unique tangent line at every point.

Elliptic Curve Examples

Figure: $y^{2}=x^{3}+a x+b, \quad a \in\{-2,-1,0,1\}$ and $b \in\{-1,0,1,2\}$.

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\} \cup\{\infty\}
$$

Define a point "at ∞ " such that

$$
A+B=\infty .
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\} \cup\{\infty\}
$$

Define a point "at ∞ " such that

$$
A+B=\infty .
$$

This way we get an identity element, and also inverses.

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\} \cup\{\infty\}
$$

The Group of an Elliptic Curve E

$$
G=\left\{(x, y) \in \mathbb{k}^{2}:(x, y) \text { is a point on } E\right\} \cup\{\infty\}
$$

The Group of an Elliptic Curve E

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

The Group of an Elliptic Curve E

Why is this group operation associative?

Supersingular elliptic curves

Supersingular elliptic curves

Many equivalent definitions:

Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.

Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of p-torsion points of E is trivial, where $\operatorname{char}(\mathbb{k})=p$.

Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of p-torsion points of E is trivial, where $\operatorname{char}(\mathbb{k})=p$.
- Writing E in Legendre form, $E: y^{2}=x(x-1)(x-\lambda)$ is supersingular iff λ is a root of

$$
f(x)=\sum_{i=0}^{\frac{p-1}{2}}\binom{n}{i}^{2} x^{i}
$$

Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of p-torsion points of E is trivial, where $\operatorname{char}(\mathbb{k})=p$.
- Writing E in Legendre form, $E: y^{2}=x(x-1)(x-\lambda)$ is supersingular iff λ is a root of

$$
f(x)=\sum_{i=0}^{\frac{p-1}{2}}\binom{n}{i}^{2} x^{i}
$$

- If we write E as a cubic homogeneous polynomial $f(x, y, z)$ in the projective plane, then E is supersingular iff the coefficient of $(x y z)^{p-1}$ in $f(x, y, z)^{p-1}$ is zero.

Quotients of elliptic curves

Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.

Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
- Isogenies are given by non-constant rational functions which fix the identity point.

Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.

Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If Φ is a subgroup of the elliptic curve group of E, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu's formulas).

Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If Φ is a subgroup of the elliptic curve group of E, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu's formulas).
- The image curve under the isogeny is the quotient curve.

The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class \mathcal{C} and $E \in \mathcal{C}$.

Alice's Computation Public Channel Bob's Computation

$$
\begin{aligned}
& \begin{array}{rl}
E & E \\
x \mapsto X /\left\langle R_{A}\right\rangle \downarrow & \downarrow x \mapsto X /\left\langle R_{B}\right\rangle
\end{array} \\
& E /\left\langle R_{A}\right\rangle \ldots \ldots . . E /\left\langle R_{A}\right\rangle \quad E /\left\langle R_{B}\right\rangle \ldots \ldots . . . E /\left\langle R_{B}\right\rangle \\
& E /\left\langle R_{B}\right\rangle{ }^{-\cdots-\cdots} E /\left\langle R_{A}\right\rangle \\
& X \mapsto X /\left\langle R_{A}\right\rangle \downarrow \\
& E /\left\langle R_{B}, R_{A}\right\rangle \\
& =\quad E /\left\langle R_{A}, R_{B}\right\rangle
\end{aligned}
$$

Hard problem: Given $E, E /\left\langle R_{A}\right\rangle, E /\left\langle R_{B}\right\rangle^{*}$, determine $E /\left\langle R_{A}, R_{B}\right\rangle$. * Some extra information is also available.

Computing the Second Isogeny

- Suppose Alice receives the curve $E /\left\langle R_{B}\right\rangle$ from Bob and she wants to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle R_{A}\right\rangle=E /\left\langle R_{B}, R_{A}\right\rangle$.

Computing the Second Isogeny

- Suppose Alice receives the curve $E /\left\langle R_{B}\right\rangle$ from Bob and she wants to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle R_{A}\right\rangle=E /\left\langle R_{B}, R_{A}\right\rangle$.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but R_{A} is a subgroup of the original curve E.

Computing the Second Isogeny

- Suppose Alice receives the curve $E /\left\langle R_{B}\right\rangle$ from Bob and she wants to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle R_{A}\right\rangle=E /\left\langle R_{B}, R_{A}\right\rangle$.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but R_{A} is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_{B} on R_{A} for Alice, but this would require exchanging R_{A} over the public channel.

Computing the Second Isogeny

- Suppose Alice receives the curve $E /\left\langle R_{B}\right\rangle$ from Bob and she wants to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle R_{A}\right\rangle=E /\left\langle R_{B}, R_{A}\right\rangle$.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but R_{A} is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_{B} on R_{A} for Alice, but this would require exchanging R_{A} over the public channel.
- The solution is to choose two special points P_{A} and Q_{A} on E, and then choose $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ for some integers m_{A} and n_{A}.

Computing the Second Isogeny

- Suppose Alice receives the curve $E /\left\langle R_{B}\right\rangle$ from Bob and she wants to compute $\left(E /\left\langle R_{B}\right\rangle\right) /\left\langle R_{A}\right\rangle=E /\left\langle R_{B}, R_{A}\right\rangle$.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but R_{A} is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_{B} on R_{A} for Alice, but this would require exchanging R_{A} over the public channel.
- The solution is to choose two special points P_{A} and Q_{A} on E, and then choose $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ for some integers m_{A} and n_{A}.
- Bob then sends $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ to Alice, and then Alice can compute

$$
\left\langle m_{A} \phi_{B}\left(P_{A}\right)+n_{A} \phi_{B}\left(Q_{A}\right)\right\rangle=\left\langle\phi_{B}\left(m_{A} P_{A}+n_{A} Q_{A}\right)\right\rangle=\left\langle\phi_{B}\left(R_{A}\right)\right\rangle .
$$

My Work

- The current leading implementation of SIDH was developed by researchers at Microsoft and released in April of 2016. I've been optimizing the finite field arithmetic used for 64-bit ARM architectures. Because the original algorithm used for finite field operations on this platform was very generic, using hand-coded 64-bit ARM assembly I was able to improve the performance by about a factor of 10.
- Of all the quantum-resistant key-exchange protocols, SIDH has by far the smallest key sizes, which can be made smaller with compression. I am currently working on implementing key compression and decompression algorithms which can make the key sizes of SIDH comparable with those of existing quantum-vulnerable algorithms.

