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Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function
and its inverse:

Message Space Ciphertext Space

Encryption(−)

Decryption(−)

Just one pair of these functions is not enough; need (exponentially) many
of them indexed by a parameter s:

Message Space Ciphertext Space

Encryption(−,s)

Decryption(−,s)

To do encryption, two parties need to agree on s. In 1976, Diffie and
Hellman showed it can be done over a public channel.
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The Diffie-Hellman Protocol

Setup: Fix a group G and g ∈ G .

Alice’s Computation Public Channel Bob’s Computation

g g

ga gb

gb ga

(gb)a = (ga)b

x 7→xa x 7→xb

ga gb

x 7→xa x 7→xb

Hard problem: Given g , ga, and gb, determine gab.
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Cryptography Under Attack

Nearly all cryptosystems which use only an open channel are broken
by quantum computers.

Quantum computers can factor integers (breaks RSA), and compute
discrete logarithms (breaks all forms of Diffie-Hellman).

Both are special cases of the Abelian Hidden subgroup problem:

Abelian Hidden Subgroup Problem

Input: Abelian group G , a set X , H ≤ G , and f : G → X where
f (g1) = f (g2) iff g1H = g2H.
Output: A generating set for H.
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The Diffie-Hellman Protocol (again)

Setup: Fix a group G and g ∈ G .

Alice’s Computation Public Channel Bob’s Computation

g g

ga gb

gb ga

(gb)a = (ga)b

x 7→xa x 7→xb

ga gb

x 7→xa x 7→xb

Hard problem: Given g , ga, and gb, determine gab.
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The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and E ∈ C.

Alice’s Computation Public Channel Bob’s Computation

E E

E/〈RA〉 E/〈RB〉

E/〈RB〉 E/〈RA〉

E/〈RB ,RA〉 = E/〈RA,RB〉

X 7→X/〈RA〉 X 7→X/〈RB〉

E/〈RA〉 E/〈RB〉

X 7→X/〈RA〉 X 7→X/〈RB〉

Hard problem: Given E , E/〈RA〉, E/〈RB〉 *, determine E/〈RA,RB〉.
* Some extra information is also available.
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Elliptic Curves

A set of solutions {(x , y)} over a field k to an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .

After a change of coordinates:

Weierstrass Form
y2 = x3 + ax + b

Montgomery Form

by2 = x3 + ax2 + x

Legendre Form
y2 = x(x − 1)(x − λ)

Elliptic curves also need to be non-singular, i.e. there is a unique tangent
line at every point.
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Elliptic Curve Examples

Figure: y2 = x3 + ax + b, a ∈ {−2,−1, 0, 1} and b ∈ {−1, 0, 1, 2}.
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The Group of an Elliptic Curve E

G = {(x , y) ∈ k2 : (x , y) is a point on E}
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The Group of an Elliptic Curve E

G = {(x , y) ∈ k2 : (x , y) is a point on E} ∪ {∞}

Define a point “at ∞” such that

A + B =∞ .

This way we get an identity element,
and also inverses.
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The Group of an Elliptic Curve E

Why is this group operation associative?
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The Group of an Elliptic Curve E
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The Group of an Elliptic Curve E

Why is this group operation associative?
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Supersingular elliptic curves

Many equivalent definitions:

Elliptic curves for which the endomorphism ring has rank 4 (is an
order in a quaternion algebra); normal elliptic curves have rank 2 or 1.

The group of p-torsion points of E is trivial, where char(k) = p.

Writing E in Legendre form, E : y2 = x(x − 1)(x − λ) is supersingular
iff λ is a root of

f (x) =

p−1
2∑

i=0

(
n

i

)2

x i .

If we write E as a cubic homogeneous polynomial f (x , y , z) in the
projective plane, then E is supersingular iff the coefficient of (xyz)p−1

in f (x , y , z)p−1 is zero.
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Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in
this case, the map is called an isogeny.

Isogenies are given by non-constant rational functions which fix the
identity point.

It is a theorem that such a map is always a group homomorphism.

If Φ is a subgroup of the elliptic curve group of E , then there is (up
to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s
formulas).

The image curve under the isogeny is the quotient curve.

David Urbanik SIDH Key Exchange July 12, 2016 24 / 27



The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and E ∈ C.

Alice’s Computation Public Channel Bob’s Computation

E E

E/〈RA〉 E/〈RB〉

E/〈RB〉 E/〈RA〉

E/〈RB ,RA〉 = E/〈RA,RB〉

X 7→X/〈RA〉 X 7→X/〈RB〉

E/〈RA〉 E/〈RB〉

X 7→X/〈RA〉 X 7→X/〈RB〉

Hard problem: Given E , E/〈RA〉, E/〈RB〉 *, determine E/〈RA,RB〉.
* Some extra information is also available.
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Computing the Second Isogeny

Suppose Alice receives the curve E/〈RB〉 from Bob and she wants to
compute (E/〈RB〉)/〈RA〉 = E/〈RB ,RA〉.

To use Velu’s formulas, we need to know a subgroup of the domain
curve, but RA is a subgroup of the original curve E .

Bob could compute the action of his isogeny φB on RA for Alice, but
this would require exchanging RA over the public channel.

The solution is to choose two special points PA and QA on E , and
then choose RA = mAPA + nAQA for some integers mA and nA.

Bob then sends φB(PA) and φB(QA) to Alice, and then Alice can
compute

〈mAφB(PA) + nAφB(QA)〉 = 〈φB(mAPA + nAQA)〉 = 〈φB(RA)〉 .
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My Work

The current leading implementation of SIDH was developed by
researchers at Microsoft and released in April of 2016. I’ve been
optimizing the finite field arithmetic used for 64-bit ARM
architectures. Because the original algorithm used for finite field
operations on this platform was very generic, using hand-coded 64-bit
ARM assembly I was able to improve the performance by about a
factor of 10.

Of all the quantum-resistant key-exchange protocols, SIDH has by far
the smallest key sizes, which can be made smaller with compression. I
am currently working on implementing key compression and
decompression algorithms which can make the key sizes of SIDH
comparable with those of existing quantum-vulnerable algorithms.
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