# Quantum-resistant cryptography from supersingular elliptic curves

David Urbanik

July 12, 2016

David Urbanik

SIDH Key Exchange

July 12, 2016 1 / 27

## Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:



## Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:



Just *one* pair of these functions is not enough; need (exponentially) many of them indexed by a parameter s:



## Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:



Just *one* pair of these functions is not enough; need (exponentially) many of them indexed by a parameter s:



To do encryption, two parties need to agree on s. In 1976, Diffie and Hellman showed it can be done over a public channel.

David Urbanik

SIDH Key Exchange

July 12, 2016 2 / 27

#### The Diffie-Hellman Protocol

Setup: Fix a group G and  $g \in G$ .

| - |       |     |                  |    |
|---|-------|-----|------------------|----|
|   | 22.00 | a 1 | <br><b>b b b</b> |    |
|   |       |     | <br>             | ПŇ |
|   |       |     | _                |    |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

#### The Diffie-Hellman Protocol

Setup: Fix a group G and  $g \in G$ .



#### The Diffie-Hellman Protocol

Setup: Fix a group G and  $g \in G$ .



Hard problem: Given g,  $g^a$ , and  $g^b$ , determine  $g^{ab}$ .

David Urbanik

| _     |        |     |      |
|-------|--------|-----|------|
| 1 ) ~ | sud.   |     | 2201 |
| 1.74  | VIII I |     |      |
| 24    | viu    | 0.1 | Jann |

<ロ> (日) (日) (日) (日) (日)

• Nearly all cryptosystems which use only an open channel are broken by quantum computers.

• • • • • • • • • • • •

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).
- Both are special cases of the Abelian Hidden subgroup problem:

#### Abelian Hidden Subgroup Problem

**Input**: Abelian group G, a set X,  $H \le G$ , and  $f : G \to X$  where  $f(g_1) = f(g_2)$  iff  $g_1H = g_2H$ . **Output**: A generating set for H.

## The Diffie-Hellman Protocol (again)

Setup: Fix a group G and  $g \in G$ .



Hard problem: Given g,  $g^a$ , and  $g^b$ , determine  $g^{ab}$ .

# The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and  $E \in C$ .

Alice's Computation

Public Channel

Bob's Computation



Hard problem: Given *E*,  $E/\langle R_A \rangle$ ,  $E/\langle R_B \rangle$  \*, determine  $E/\langle R_A, R_B \rangle$ . \* Some extra information is also available.

David Urbanik

SIDH Key Exchange

July 12, 2016 6 / 27

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

#### Elliptic Curves

A set of solutions  $\{(x, y)\}$  over a field k to an equation of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
.

< ロ > < 同 > < 三 > < 三

#### Elliptic Curves

A set of solutions  $\{(x, y)\}$  over a field k to an equation of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
.

After a change of coordinates:

Weierstrass Form

$$y^2 = x^3 + ax + b$$

Montgomery Form

$$by^2 = x^3 + ax^2 + x$$

Legendre Form

$$y^2 = x(x-1)(x-\lambda)$$

→ ▲ ≣ ▶ ≣ ∽ ۹ (° July 12, 2016 7 / 27

(日) (同) (三) (三)

#### Elliptic Curves

A set of solutions  $\{(x, y)\}$  over a field k to an equation of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
.

After a change of coordinates:

• Weierstrass Form

$$y^2 = x^3 + ax + b$$

Montgomery Form

$$by^2 = x^3 + ax^2 + x$$

Legendre Form

$$y^2 = x(x-1)(x-\lambda)$$

Elliptic curves also need to be non-singular, i.e. there is a unique tangent line at every point.

David Urbanik

July 12, 2016 7 / 27

(日) (同) (三) (三)

## **Elliptic Curve Examples**



Figure:  $y^2 = x^3 + ax + b$ ,  $a \in \{-2, -1, 0, 1\}$  and  $b \in \{-1, 0, 1, 2\}$ .

<ロ> (日) (日) (日) (日) (日)

$$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



David Urbanik

July 12, 2016 10 / 27



David Urbanik

July 12, 2016 11 / 27

3



David Urbanik

July 12, 2016 12 / 27

3

A ∰ ► A ∃



David Urbanik

SIDH Key Exchange

July 12, 2016 13 / 27





Define a point "at  $\infty$ " such that

 $A+B=\infty$  .

 $G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\} \cup \{\infty\}$ 



Define a point "at  $\infty$ " such that

 $A+B=\infty$  .

This way we get an identity element, and also inverses.



David Urbanik

SIDH Key Exchange

July 12, 2016 15 / 27



David Urbanik

SIDH Key Exchange

July 12, 2016 16 / 27

3

| _     |      |               |
|-------|------|---------------|
| 1 1 2 | and. | <br>hand      |
| 174   | vici | <br>U A I I I |
|       |      |               |

イロト イ団ト イヨト イヨト

Why is this group operation associative?

David Urbanik

-

Image: A match a ma



| - |     |     |   |      |     |
|---|-----|-----|---|------|-----|
|   | 21/ | u d |   | rhr  | mik |
|   | av  | ľ   | 0 | i De |     |



| - |      |     |     |     |     |
|---|------|-----|-----|-----|-----|
|   | 21/1 | a 1 | 112 | han | 112 |
|   | avı  | u   |     | Dan | In  |



| - |      |    |   |     |     |   |
|---|------|----|---|-----|-----|---|
|   | 21/1 | а. |   | rh. | nni | Ŀ |
| _ | avı  | u. | 0 |     | a   | n |



| Dovid | Irbanik  |
|-------|----------|
|       | JIDannik |



| -    |     |      |   |     |    |    |
|------|-----|------|---|-----|----|----|
| -1-1 | 21/ | d l  |   | rha | mi |    |
| _    | av  | LU I | 0 | 100 |    | r. |



| _ |         |        |      |    |
|---|---------|--------|------|----|
|   | ) 21/10 | i l lr | hani | Ŀ. |
| _ |         |        | Dann |    |

## Supersingular elliptic curves

| _ |      | <br>         |      |  |
|---|------|--------------|------|--|
|   | 22.1 | <br>         | han  |  |
|   |      | <br><b>U</b> | Dali |  |
|   | _    |              | _    |  |

-

Image: A match a ma

# Supersingular elliptic curves

Many equivalent definitions:

| _ |       | <br> |     |  |
|---|-------|------|-----|--|
|   | 22.1  |      | rb. |  |
|   | - A V |      |     |  |
|   |       |      |     |  |

Image: A match a ma

# Supersingular elliptic curves

Many equivalent definitions:

• Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of *p*-torsion points of *E* is trivial, where char(k) = p.

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of *p*-torsion points of *E* is trivial, where char(k) = p.
- Writing *E* in Legendre form,  $E: y^2 = x(x-1)(x-\lambda)$  is supersingular iff  $\lambda$  is a root of

$$f(x) = \sum_{i=0}^{\frac{p-1}{2}} {\binom{n}{i}}^2 x^i$$

イロト 不得下 イヨト イヨト 二日

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of *p*-torsion points of *E* is trivial, where char(k) = p.
- Writing *E* in Legendre form,  $E: y^2 = x(x-1)(x-\lambda)$  is supersingular iff  $\lambda$  is a root of

$$f(x) = \sum_{i=0}^{\frac{p-1}{2}} {\binom{n}{i}}^2 x^i$$

If we write E as a cubic homogeneous polynomial f(x, y, z) in the projective plane, then E is supersingular iff the coefficient of (xyz)<sup>p-1</sup> in f(x, y, z)<sup>p-1</sup> is zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

#### Quotients of elliptic curves

| - D  |      |    |   |
|------|------|----|---|
| 1 10 |      | 20 | - |
|      |      |    |   |
|      | <br> |    |   |

< E

・ロト ・日下 ・ 日下

• Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If Φ is a subgroup of the elliptic curve group of E, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu's formulas).

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If Φ is a subgroup of the elliptic curve group of *E*, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu's formulas).
- The image curve under the isogeny is the quotient curve.

# The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and  $E \in C$ .

Alice's Computation

Public Channel

Bob's Computation



Hard problem: Given *E*,  $E/\langle R_A \rangle$ ,  $E/\langle R_B \rangle$  \*, determine  $E/\langle R_A, R_B \rangle$ . \* Some extra information is also available.

David Urbanik

SIDH Key Exchange

July 12, 2016 25 / 27

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Suppose Alice receives the curve E/⟨R<sub>B</sub>⟩ from Bob and she wants to compute (E/⟨R<sub>B</sub>⟩)/⟨R<sub>A</sub>⟩ = E/⟨R<sub>B</sub>, R<sub>A</sub>⟩.

- Suppose Alice receives the curve E/⟨R<sub>B</sub>⟩ from Bob and she wants to compute (E/⟨R<sub>B</sub>⟩)/⟨R<sub>A</sub>⟩ = E/⟨R<sub>B</sub>, R<sub>A</sub>⟩.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but  $R_A$  is a subgroup of the original curve E.

- Suppose Alice receives the curve E/⟨R<sub>B</sub>⟩ from Bob and she wants to compute (E/⟨R<sub>B</sub>⟩)/⟨R<sub>A</sub>⟩ = E/⟨R<sub>B</sub>, R<sub>A</sub>⟩.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but  $R_A$  is a subgroup of the original curve E.
- Bob could compute the action of his isogeny  $\phi_B$  on  $R_A$  for Alice, but this would require exchanging  $R_A$  over the public channel.

(日) (周) (三) (三)

- Suppose Alice receives the curve E/⟨R<sub>B</sub>⟩ from Bob and she wants to compute (E/⟨R<sub>B</sub>⟩)/⟨R<sub>A</sub>⟩ = E/⟨R<sub>B</sub>, R<sub>A</sub>⟩.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but  $R_A$  is a subgroup of the original curve E.
- Bob could compute the action of his isogeny  $\phi_B$  on  $R_A$  for Alice, but this would require exchanging  $R_A$  over the public channel.
- The solution is to choose two special points  $P_A$  and  $Q_A$  on E, and then choose  $R_A = m_A P_A + n_A Q_A$  for some integers  $m_A$  and  $n_A$ .

イロト イポト イヨト イヨト 二日

- Suppose Alice receives the curve E/⟨R<sub>B</sub>⟩ from Bob and she wants to compute (E/⟨R<sub>B</sub>⟩)/⟨R<sub>A</sub>⟩ = E/⟨R<sub>B</sub>, R<sub>A</sub>⟩.
- To use Velu's formulas, we need to know a subgroup of the domain curve, but  $R_A$  is a subgroup of the original curve E.
- Bob could compute the action of his isogeny  $\phi_B$  on  $R_A$  for Alice, but this would require exchanging  $R_A$  over the public channel.
- The solution is to choose two special points  $P_A$  and  $Q_A$  on E, and then choose  $R_A = m_A P_A + n_A Q_A$  for some integers  $m_A$  and  $n_A$ .
- Bob then sends  $\phi_B(P_A)$  and  $\phi_B(Q_A)$  to Alice, and then Alice can compute

$$\langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle = \langle \phi_B(m_A P_A + n_A Q_A) \rangle = \langle \phi_B(R_A) \rangle$$

# My Work

- The current leading implementation of SIDH was developed by researchers at Microsoft and released in April of 2016. I've been optimizing the finite field arithmetic used for 64-bit ARM architectures. Because the original algorithm used for finite field operations on this platform was very generic, using hand-coded 64-bit ARM assembly I was able to improve the performance by about a factor of 10.
- Of all the quantum-resistant key-exchange protocols, SIDH has by far the smallest key sizes, which can be made smaller with compression. I am currently working on implementing key compression and decompression algorithms which can make the key sizes of SIDH comparable with those of existing quantum-vulnerable algorithms.

・ロン ・四 ・ ・ ヨン ・ ヨン