Congruence sheaves and congruence differential equations **Beyond hypergeometric functions**

Vasily Golyshev

Lille, March 6, 2014

Plan of talk

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Report on joint work in progress with Anton Mellit and Duco van Straten

- □ Hypergeometric monodromy
- □ Calabi-Yau operators
- □ Langlands Correspondence
- □ Idea of Congruence sheaves
- \Box Example of D2s
- \Box Outlook

Motivation: Fano \triangleright classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Fano: complex projective variety F with positive -K. Classification:

dim 1: \mathbb{P}^1

dim 2: del Pezzo surfaces

dim 3: $H^2(F,\mathbb{Z}) = \mathbb{Z}$: Iskovskikh, 17 families; higher rank: Mori–Mukai, 105 families Motivation: Fano Classification 14 special Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2

Automorphic property of D2s

What one might hope to do

Classify Fanos by classifying mirror dual objects: Landau–Ginzburg models; respective Picard–Fuchs differential equations

Golyshev, 'Classification problems and mirror duality' Corti, Coates, Galkin, Golyshev, Kasprzyk, 'Mirror symmetry and Fano manifolds'

Pioneered for CY by van Straten - van Enckevort.

A famous hypergeometric series

Motivation: Fano \triangleright classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

$$\phi(t) := \sum_{n=0}^{\infty} \frac{5n!}{n!^5} t^n$$

Satisfies hypergeometric differential equation

 $\mathcal{P}\phi(t) = 0$

$$\mathcal{P} := D^4 - 5^5 t \left(D + \frac{1}{5}\right) \left(D + \frac{2}{5}\right) \left(D + \frac{3}{5}\right) \left(D + \frac{4}{5}\right)$$

$$D := t \frac{\partial}{\partial t}$$

Three singular points $\Sigma := \{0, 1/5^5, \infty\} \subset \mathbb{P}^1$

Motivation: Fano \triangleright classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

 $\hfill\square$ Picard-Fuchs equation of family

```
\pi: Y \longrightarrow \mathbb{P}^1
```

of Calabi-Yau threefolds.

I rank
$$H^3(Y_t) = 4$$
, $h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1$

 \Box Defines symplectic local system $R^3\pi_*(\mathbb{Z})$ on $\mathbb{P}^1\setminus\Sigma$

□ Contains *enumerative information* of general quintic $X \subset \mathbb{P}^4$: numbers of lines, conics, etc on X.

Motivation: Fano \triangleright classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of

 D_{2s} What one might hope to do Logarithmic solution:

$$\phi_1(t) := \log(t) \cdot \phi(t) + f_1(t), \ f_1(t) \in t\mathbb{Q}[[t]]$$

q-coordinate:

$$q := exp(\phi_1(t)/\phi(t) = t + 770t^2 + 101475t^3 + \dots$$

Express \mathcal{P} in q-coordinate

$$P \sim D^2 \frac{5}{K(q)} D^2$$

$$K(q) = 5 + \sum_{d} \frac{n_d d^3 q^d}{1 - q^d}$$

 $n_1 = 2875, \quad n_2 = 609250, \quad n_3 = 317206375, \dots$

14 special Hypergeometric operators

Motivation: Fano classification 14 specialHypergeometric \triangleright operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

$$D^4 - Nt(D + \alpha_1)(D + \alpha_2)(D + \alpha_3)(D + \alpha_4)$$
$$\alpha_1 + \alpha_4 = 1 = \alpha_2 + \alpha_3$$

Mirror to complete intersections in weighted projective spaces.

α_1	α_2	α_1	$lpha_2$
$\frac{1}{12}$	5 23 17-163218-14-13-12	1 4+ 5+ 4+ 3+ 3+ 2	<u> </u>

Hypergeometric Monodromy

Motivation: Fano classification 14 specialHypergeometric \triangleright operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

 $G = \langle h_0, h_1, h_\infty \rangle \subset GL_n(\mathbb{C})$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations > D3**Beyond hypergeometrics** A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Differential operator of type D3 can be written as

$$D^{3} + t \left(D + \frac{1}{2} \right) \left(a_{3} (D^{2} + D) + b_{1} \right) + t^{2} (D + 1) \left(a_{2} (D + 1)^{2} + b_{0} \right) + a_{1} t^{3} (D + 2) \left(D + \frac{3}{2} \right) (D + 1) + a_{0} t^{4} (D + 3) (D + 2) (D + 1).$$

Th. [-, Przyjalkowski] Regularized quantum differential equations of rank 1 Fano threefolds of index d and degree $2d^2N$ are exactly (N,d) – modular D3's: given by the expansions of level N weight 2 modular forms with respect to the d'th root of the Hauptmodul on $X_0(N)^{+N}$.

Calabi-Yau Operators

Motivation: Fano classification 14 specialHypergeometric operators **Differential equations** > D3Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Abstraction of Picard-Fuchs operators for families

 $Y \longrightarrow \mathbb{P}^1$

of Calabi-Yau 3-folds/motives defined over \mathbb{Z} .

Definition: $\mathcal{P} \in \mathbb{Z}[t, D]$ is called *Calabi-Yau*, when:

□ Fuchsian of order four.

 \Box MUM (maximal unipotent monodromy) at 0.

 \Box Monodromy $\subset Sp_4(\mathbb{Z})$.

 \Box Integrality: $\phi(x) \in \mathbb{Z}[[t]], n_d \in \mathbb{Z}.$

Beyond hypergeometrics

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond \triangleright hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to

do

Simplest family of operators with *four* singular points

 $D^{4}+t(aD^{4}+2aD^{3}+bD^{2}+cD+e)+ft^{2}(D+\alpha_{1})(D+\alpha_{2})(D+\alpha_{3}))(D+\alpha_{4})$

singularities are at the roots of $1 + at + ft^2 = 0$. b, c, e: accessory parameters.

A project

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics \triangleright A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Find all such operators with

- coming from geometry.
- or: with monodromy $\subset Sp_4(\mathbb{Z})$
- or: with an *integral solution* $\phi \in \mathbb{Z}[[x]]$

Seems very difficult:

 \square we do not know position of the the four points: *j*-invariant

 $\hfill\square$ we do not know the value of the accesory parameters

 \Box but we know many examples (~ 85 cases). List complete?

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics \triangleright A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to

do

Example: Coming from a Calabi-Yau 3-fold in Grass(3,6): $D^4-t(65D^4+130D^3+105D^2+40D+6)+4^3t^2(D+1/4)(D+1)^2(D+3/4)$ Solution holomorphic at 0:

$$\phi(x) = \sum_{n=0}^{\infty} a_n t^n$$

$$a_n = \sum_{k,l,m} {\binom{n}{k} \binom{n}{l} \binom{m}{k} \binom{m}{l} \binom{k+l}{k} \binom{n}{m}^2}$$
$$= \sum_{k,l} {\binom{n}{k}^2 \binom{n}{l}^2 \binom{k+l}{n}^2}$$

D2sWhat one might hope to do

A step back Special Heun equations:

$$D^{2} + t(aD^{2} + aD + \lambda) + bt^{2}(D+1)^{2}$$

singularities are at the roots of $1 + at + bt^2 = 0$, λ : accessory parameter. Basically *four* cases; studied by **F. Beukers**, **A. Beauville**, **D. Zagier** and others.

New systematic approach: Congruence sheaves.

Works very nicely for this case.

Langlands Correspondence: ...very rough sketch...

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: \triangleright ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Number field case:

 $K\supset \mathbb{Q}$

 $Gal(\overline{K}/K)$ -representations \leftrightarrow Automorphic representations

$$\rho: Gal(\overline{K}/K) \longrightarrow G \longleftrightarrow \pi_{\rho} \in L^{2}({}^{L}G(\mathbb{A})/{}^{L}G(\mathbb{Q}))$$

Example: Elliptic curve E/\mathbb{Q} :

 $\begin{array}{rcl} H^1(E,\mathbb{Q}_l) & \leftrightarrow & \text{Hecke Eigenform} \sum_{n=0}^{\infty} a_n q^n \\ Tr(F_p) & \leftrightarrow & a_p \end{array}$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: \triangleright ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Example: Family of elliptic curves $\pi : \mathcal{E} \longrightarrow C = \mathbb{P}^1 / \mathbb{F}_p$

$$\mathcal{L} = R^1 \pi_*(\mathbb{Q}_l)$$

is an *l*-adic sheaf:

 $\Box \ x: Spec(k) \longrightarrow C \text{ point (in the scheme sense), } |k| = q = p^{r}.$ $\Box \ x^{*}(\mathcal{L}) \text{ is } Gal(\overline{k}/k) \text{-representation.}$ $\Box \text{ Frobenius } F_{x} \in Gal(\overline{k}/k) \text{ (inverse to) } a \longrightarrow a^{q}.$ $\Box \ F_{x} \in Aut(x^{*}(\mathcal{L})).$

Frobenius
$$F_x$$
 \leftrightarrow Hecke-operator H_x

The glueing problem

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: \triangleright ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Families over
$$\pi: X \longrightarrow \mathbb{P}^1 := \mathbb{P}^1_{\mathbb{Z}}$$

For p prime get $X \mod p \longrightarrow \mathbb{P}^1 \mod p$ and thus l-adic sheaves \mathcal{L}_p . Relation between \mathcal{L}_p ?

Congruence Sheaves

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Provisional definition:

Condition on $P_x(t) = det(F_x - t)$ characteristic polynomial of F_x . For \mathcal{L} of rank 2 and weight 1:

$$P_x(t) = (t - \alpha_0)(t - \alpha_1)$$

 $\alpha_0 = 1 \mod N, \ \alpha_1 = p \mod N$

If this happens for almost all p and $x \in C(\mathbb{F}_p)$, we say: \mathcal{L} is a *N*-congruence sheaf.

 $1 + p - Tr(F_x) \equiv 0 \mod N$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

For \mathcal{L} of rank 4 and weight 3:

$$P(t) = (t - \alpha_0)(t - \alpha_1)(t - \alpha_2)(t - \alpha_3)$$

$$\alpha_0 = 1 \mod N_1, \quad \alpha_3 = p^3 \mod N_1$$

 $\alpha_1 = p \mod N_2, \quad \alpha_2 = p^2 \mod N_2$

If this happens for almost all p and $x \in C(\mathbb{F}_p)$, we say: \mathcal{L} is a (N_1, N_2) -congruence sheaf.

Works as glue between various \mathcal{L}_p

A special Hecke-algebra

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to

do

Kontsevich (2005) Notes on motives in finite characterisic

Makes Langlands correspondence **explicit** for

 \Box SL_2 -local systems

 \square on $\mathbb{P}^1 \setminus \{ \mathsf{four points} \}$

 \Box with unipotent local monodromies

Motivation: Fano classification 14 special Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... \triangleright Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector

Equation of type D2

Automorphic property of

D2s

What one might hope to do

From data $\Sigma = \{\text{roots of } t^3 + at^2 + bt + c = 0, \infty\}$ get a polynomial in three variables:

$$P(x, y, z) = (b - xy - yz - xz)^{2} - 4(xyz + c)(x + y + z + a)$$

It is the **discriminant** of the polynomial

$$(t^{3} + at^{2} + bt + c) - (t - x)(t - y)(t - z)$$

Picture of the surface P(x, y, z) = 0

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

$$a = b = c = 0$$

Picture of the surface P(x, y, z) = 0

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

a > 0, b = c = 0

Picture of the surface P(x, y, z) = 0

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Now take a prime number p and a point $x \in \mathbb{P}^1(\mathbb{F}_p)$.

Define a $(p+1) \times (p+1)$ -matrix H_x by

 $(H_x)_{yz} = 2 + \#\{w \mid w^2 = P(x, y, z)\} +$ correction

For $x, y \in \mathbb{P}^1(\mathbb{F}_p)$ one has (miracle!)

 $[H_x, H_y] = 0$

Hecke-algebra: algebra generated by $H_x, x \in \mathbb{P}^1(\mathbb{F})$.

Motivation: Fano classification 14 special Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Example p = 7, a = 3, b = 4, c = 0.

$$H_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 2 & 2 & 0 \\ 1 & 1 & 0 & 2 & 2 & 2 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \end{pmatrix}$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the ➢ Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Hecke-algebra acts on **functions on** $\mathbb{P}^1(\mathbb{F}_p)$, written as vectors

$$v = (v_x), \quad x \in \mathbb{P}^1(\mathbb{F}_p)$$

 $(H_x v)_y = \sum_z (H_x)_{yz} v_z$

Drinfelds theorem tells: $SL_2(\mathbb{F}_p)$ -automorphic representations correspond to normalised common eigenvectors

$$H_x v = v_x . v, \quad v_x v_y = \sum_z H_{xyz} v_z$$

and hence to *l*-adic local systems \mathcal{L} on $\mathbb{P}^1 \setminus \Sigma$.

$$\mathcal{L} \leftrightarrow v = (Tr(F_x)_{x \in \mathbb{P}^1})$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the ▶ Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

Strategy

```
\hfill\square Run over p=3,5,7,11,\ldots
```

```
\Box ...and all f = t^3 + at^2 + bt + c \in \mathbb{F}_p[t].
```

□ Determine rational common eigenvectors for Hecke-algebra.

 \Box Sort them for various p using congruences.

Decomposition of the Hecke-algebra

Example: p = 7

a, b, c						
0, 0, 1	1	1	2	2	2	
0, 0, 2	1	1	6			
0, 0, 3	1	1	6			
0, 1, 0	1	1	2	2	2	
0, 1, 1	1	7				
0, 1, 3	1	3	4			
0, 3, 0	1	1	1	1	2	2
0, 3, 1	1	3	4			
0, 3, 2	1	7				
0, 3, 3	1	1	2	4		

Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of *L* is the ► Hecke-eigenvector

Motivation: Fano

classification

14 special

Equation of type D2Automorphic property of D2sWhat one might hope to

do

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the ➢ Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to do

The 8 non-trivial rational eigenvectors for p = 7.

N: the congruence.

j: j-invariant $\in \mathbb{F}_p$ of the four points .

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the ➢ Hecke-eigenvector Equation of type D2Automorphic property of D2sWhat one might hope to

do

Observations:

Running over $p = 3, 5, 7, 11, \ldots$ we see:

 $\hfill\square$ There are very few $\ensuremath{\mathbb{Q}}\xspace$ -Hecke-eigenvectors.

 $\hfill\square$ All of these have a non-trivial congruence.

 \Box There are no 7, 10, 11, 12, ... congruences.

 \Box 3, 4, 5, 6, 8-congruences are persistent.

Motivation: Fano classification 14 special Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch...

Congruence Sheaves

The trace function of \mathcal{L} is the \triangleright Hecke-eigenvector Equation of type D2 Automorphic property of D2s

What one might hope to do

Focus on 5-congruence:

p	a,b,c	j	Eigenvector
7	0, 3, 3	4	$\left[-2, 8, -2, 3, 3, -2, -2, 8 ight]$
11	0, 2, 0	1	$\left[12, -3, -3, 12, 2, -3, 2, -3, 12, 2, 2, 12\right]$
	0, 2, 0	1	$\left[12,2,2,12,-3,2,-3,2,12,-3,-3,12\right]$
13	0, 2, 5	4	[4, 4, -1, -6, -1, -1, -1, 4, 14, 4, 4, -6, -6, 14]
17	0, 1, 2	1	[3, -2, -2, 3, -2, -7, -2, -2, -2, -2, 3, -2, -7, 3, 3, 8, 3, 18,
19	0, 2, 4	$\overline{15}$	[5, 5, -5, 0, 20, 5, 0, -20, -20, 0, 0, 0, 0, 0, -5, 0, 0, 5, -5, -5]

Motivation: Fano classification 14 special Hypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the

▷ Hecke-eigenvector

Equation of type $D\,2$

Automorphic property of

D2s

What one might hope to

do

j-invariant for 5-congruence trace function

p	7	11	13	17	19	23	29	31	37	41	43	47	53	59
j	4	1	4	1	15	14	12	0	34	5	2	24	13	44

Reconstruct $j \in \mathbb{Q}$ from reductions mod p (Wang algorithm):

 $j = \frac{2^{14} 31^3}{5^3}$!

Simplest choice: a = 11, b = -1, c = 0.

Equation of type D2

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector \triangleright Equation of type D2Automorphic property of D2s

What one might hope to do

Special Heun equation with Riemann symbol

$$\left\{ \begin{array}{cccc} 0 & * & * & \infty \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right\}$$

$$\mathcal{P} = f\partial^2 + f'\partial + t - \lambda$$

where

$$f = t(t^2 + at + b)$$

Singular points: 0, roots of $t^2 + at + b$, ∞ . λ : the accessory parameter.

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2sWhat one might hope to do

Multiplication theorem:

Let

$$\phi(t) = \phi_{\lambda}(t) = 1 + b_1(\lambda)t + b_2(\lambda)t^2 + \dots$$

be solution of differential equation

 $\mathcal{P}\phi(t) = 0$

Then one has:

$$\phi(x)\phi(y) = \frac{1}{2\pi i} \oint K(x, y, z)\phi(z)\frac{dz}{z}$$

where

$$K(x, y, z) = \frac{b}{\sqrt{P(x, y, b/z)}}$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2s

What one might hope to do

Complete analogy:

Langlands for $C = \mathbb{P}^1(\mathbb{F}_p)$

$$v_x v_y = \sum_z H_{xyz} v_z$$

Geometric Langlands for $C = \mathbb{P}^1(\mathbb{C})$:

$$\phi(x)\phi(y) = \frac{1}{2\pi i} \oint K(x, y, z)\phi(z)\frac{dz}{z}$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2sWhat one might hope to do

Change from point-basis to power-basis Functions on $\mathbb{F}_p \subset \mathbb{P}^1(\mathbb{F}_p)$

$$\delta_x, \ x \in \mathbb{F}_p \leftrightarrow x^n, \ n = 0, \dots, p-1$$

 $v \leftrightarrow \phi_p(x) = \sum_{n=0}^{p-1} a_n x^n$

Inverse Vandermonde-Transformation

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 2 & \dots & 2^{p-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & p-1 & \dots & (p-1)^{p-1} \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{p-1} \end{pmatrix} = \begin{pmatrix} v_{p-1} \\ \vdots \\ v_1 \\ v_0 \end{pmatrix}$$

$$p = 7$$
:

ns D3

etrics

Correspondence: ...very rough sketch...

Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic

 \triangleright property of D2s What one might hope to

do

Eigenvector	8	-2	-2	-2	3	3	-2
Transform	1	3	5	0	5	4	1

p = 13:

ſ	Eigenvector	14	4	4	-6	-6	4	4	-1	-6	-1	-1	-1	4
	Transform	1	3	6	4	3	8	10	5	3	9	6	10	1

$$p = 43:$$

44	-6	4	-1	-6	4	4	4	-6	9	-1	-11	4	4	• • •
1	3	19	18	4	30	39	42	39	21	32	24	9	12	• • •

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... Congruence Sheaves The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2sWhat one might hope to

do

 $x = 0 \mod 7, \ x = 4 \mod 13, \ x = 18 \mod 43$ $\Rightarrow x = 147 \mod 7 \cdot 13 \cdot 43$

We get a series

$$\phi(t) = 1 + 3t + 19t^2 + 147t^3 + 1251t^4 + \dots$$

with

$$\phi(t) \equiv \phi_p(t) \mod p$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2sWhat one might hope to

do

Apéry numbers

 $1, 3, 19, 147, \ldots$

$$a_n := \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}$$

Generating function

$$\phi(t) := \sum_{n=0}^{\infty} a_n t^n$$

satisfies the differential equation

 $(D^2 - t(11D^2 + 11D + 3) + t^2(D + 1)^2)\phi(t) = 0$

$$\phi(t)$$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2s

What one might hope to do

F. Beukers (1981) Modular interpretation

Operator arises as Picard-Fuchs operator of modular elliptic surface for $\Gamma_1(5)$.

 $\pi: X \longrightarrow \mathbb{P}^1$

with singular four singular fibres of type I_1, I_1, I_5, I_5 .

Number of points in fibre $X_t(\mathbb{F}_p)$ divisible by 5.

 $1 + p - Tr(F_p) \equiv 0 \mod 5$

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic \triangleright property of D2s What one might hope to do

So indeed: $R^1\pi_*(\mathbb{Q}_l)$ is a 5-congruence sheaf! What did we do?

- \Box Use explicit SL_2 -Hecke-algebra.
- $\hfill\square$ Found 5-congruence trace-functions.
- $\hfill\square$ Found from it Apéry sequence.
- $\hfill\square$ Found arithmetic D2-equation.

It works for all Beukers-Zagier-Beauville operators. **Bonus**: Get not only differential equation, but also get the Frobenius traces of all fibres!

Motivation: Fano classification 14 specialHypergeometric operators Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch... **Congruence Sheaves** The trace function of \mathcal{L} is the Hecke-eigenvector Equation of type D2Automorphic property of D2s

What one might ▷ hope to do

- □ Find explicit Hecke-algebras and multiplication theorems for general Heun-equations.
- $\hfill\square$ Same for D3s
- \Box Find explicit Hecke-algebra for Sp_4 -case.
- $\hfill\square$ Find bi-congruence trace-functions.
- $\hfill\square$ We claim: is substitute for modularity of D2 and D3!
- □ Find corresponding differential operators of CY-type.