## Congruence sheaves

## and congruence differential equations

## Beyond hypergeometric functions

Vasily Golyshev

Lille, March 6, 2014

## Plan of talk

Motivation: Fano classification
14 special
Hypergeometric
operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Report on joint work in progress with
Anton Mellit and Duco van Straten
$\square$ Hypergeometric monodromy
$\square$ Calabi-Yau operators
$\square$ Langlands Correspondence
$\square$ Idea of Congruence sheaves
$\square$ Example of D2s
$\square$ Outlook

## Motivation: Fano classification

Motivation: Fano
$\triangleright$ classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Fano: complex projective variety $F$ with positive $-K$.
Classification:
$\operatorname{dim} 1: \mathbb{P}^{1}$
dim 2: del Pezzo surfaces
$\operatorname{dim}$ 3: $H^{2}(F, \mathbb{Z})=\mathbb{Z}$ : Iskovskikh, 17 families; higher rank: Mori-Mukai, 105 families

## New approach to classification

Motivation: Fano
$\triangleright$ classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics

A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Classify Fanos by classifying mirror dual objects:
Landau-Ginzburg models; respective Picard-Fuchs differential equations

Golyshev, 'Classification problems and mirror duality' Corti, Coates, Galkin, Golyshev, Kasprzyk, 'Mirror symmetry and Fano manifolds'

Pioneered for CY by van Straten - van Enckevort.

## A famous hypergeometric series

Motivation: Fano D classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

$$
\phi(t):=\sum_{n=0}^{\infty} \frac{5 n!}{n!^{5}} t^{n}
$$

Satisfies hypergeometric differential equation

$$
\begin{gathered}
\mathcal{P} \phi(t)=0 \\
\mathcal{P}:=D^{4}-5^{5} t\left(D+\frac{1}{5}\right)\left(D+\frac{2}{5}\right)\left(D+\frac{3}{5}\right)\left(D+\frac{4}{5}\right) \\
D:=t \frac{\partial}{\partial t}
\end{gathered}
$$

Three singular points $\Sigma:=\left\{0,1 / 5^{5}, \infty\right\} \subset \mathbb{P}^{1}$

## Candelas, de la Ossa, Green, Parkes (1991)

Motivation: Fano
$D$ classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics

A project
Langlands
Correspondence:
.very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do
$\square$ Picard-Fuchs equation of family

$$
\pi: Y \longrightarrow \mathbb{P}^{1}
$$

of Calabi-Yau threefolds.
$\square \operatorname{rank} H^{3}\left(Y_{t}\right)=4, h^{3,0}=h^{2,1}=h^{1,2}=h^{0,3}=1$
$\square$ Defines symplectic local system $R^{3} \pi_{*}(\mathbb{Z})$ on $\mathbb{P}^{1} \backslash \Sigma$
$\square$ Contains enumerative information of general quintic $X \subset \mathbb{P}^{4}$ : numbers of lines, conics, etc on $X$.

Motivation: Fano $\triangleright$ classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence:
.very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

## Logarithmic solution:

$$
\phi_{1}(t):=\log (t) \cdot \phi(t)+f_{1}(t), \quad f_{1}(t) \in t \mathbb{Q}[[t]]
$$

$q$-coordinate:

$$
q:=\exp \left(\phi_{1}(t) / \phi(t)=t+770 t^{2}+101475 t^{3}+\ldots\right.
$$

Express $\mathcal{P}$ in $q$-coordinate

$$
\begin{gathered}
P \sim D^{2} \frac{5}{K(q)} D^{2} \\
K(q)=5+\sum_{d} \frac{n_{d} d^{3} q^{d}}{1-q^{d}} \\
n_{1}=2875, \quad n_{2}=609250, \quad n_{3}=317206375, \ldots
\end{gathered}
$$

## 14 special Hypergeometric operators

Motivation: Fano classification

Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

$$
\begin{gathered}
D^{4}-N t\left(D+\alpha_{1}\right)\left(D+\alpha_{2}\right)\left(D+\alpha_{3}\right)\left(D+\alpha_{4}\right) \\
\alpha_{1}+\alpha_{4}=1=\alpha_{2}+\alpha_{3}
\end{gathered}
$$

Mirror to complete intersections in weighted projective spaces.

| $\alpha_{1}$ | $\alpha_{2}$ | $\alpha_{1}$ | $\alpha_{2}$ |
| :---: | :---: | :---: | :---: |
| $\frac{1}{12}$ | $\frac{5}{12}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| $\frac{1}{10}$ | $\frac{3}{10}$ | $\frac{1}{5}$ | $\frac{2}{5}$ |
| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{4}$ | $\frac{1}{3}$ |
| $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
| $\frac{1}{6}$ | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{2}$ |
| $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |

## Hypergeometric Monodromy

Motivation: Fano classification

Hypergeometric
$D$ operators
Differential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very rough sketch
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do


$$
G=\left\langle h_{0}, h_{1}, h_{\infty}\right\rangle \subset G L_{n}(\mathbb{C})
$$

## Differential equations D3

Motivation: Fano classification 14 special Hypergeometric operators

Differential equations $D$ D3
Beyond hypergeometrics A project
Langlands
Correspondence:
.very rough sketch..
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2 Automorphic property of $D 2$ s
What one might hope to do

Differential operator of type D3 can be written as

$$
\begin{aligned}
& D^{3}+t\left(D+\frac{1}{2}\right)\left(a_{3}\left(D^{2}+D\right)+b_{1}\right) \\
& \quad+t^{2}(D+1)\left(a_{2}(D+1)^{2}+b_{0}\right) \\
& \quad+a_{1} t^{3}(D+2)\left(D+\frac{3}{2}\right)(D+1) \\
& \quad+a_{0} t^{4}(D+3)(D+2)(D+1) .
\end{aligned}
$$

Th. [-, Przyjalkowski] Regularized quantum differential equations of rank 1 Fano threefolds of index $d$ and degree $2 d^{2} N$ are exactly ( $\mathrm{N}, \mathrm{d}$ ) modular D3's: given by the expansions of level $N$ weight 2 modular forms with respect to the $d$ 'th root of the Hauptmodul on $X_{0}(N)^{+N}$.

## Calabi-Yau Operators

Motivation: Fano classification 14 special Hypergeometric operators

Differential equations $D$ D3
Beyond hypergeometrics A project
Langlands
Correspondence:
...very rough sketch..
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2 Automorphic property of $D 2$ s
What one might hope to do

Abstraction of Picard-Fuchs operators for families

$$
Y \longrightarrow \mathbb{P}^{1}
$$

of Calabi-Yau 3 -folds/motives defined over $\mathbb{Z}$.

Definition: $\mathcal{P} \in \mathbb{Z}[t, D]$ is called Calabi-Yau, when:
$\square$ Fuchsian of order four.
$\square$ MUM (maximal unipotent monodromy) at 0 .
$\square$ Monodromy $\subset S p_{4}(\mathbb{Z})$.
$\square$ Integrality: $\phi(x) \in \mathbb{Z}[[t]], n_{d} \in \mathbb{Z}$.

## Beyond hypergeometrics

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond
$\Delta$ hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch..
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type $D 2$ Automorphic property of $D 2$ s
What one might hope to do

Simplest family of operators with four singular points
$\left.D^{4}+t\left(a D^{4}+2 a D^{3}+b D^{2}+c D+e\right)+f t^{2}\left(D+\alpha_{1}\right)\left(D+\alpha_{2}\right)\left(D+\alpha_{3}\right)\right)\left(D+\alpha_{4}\right)$
singularities are at the roots of $1+a t+f t^{2}=0$. $b, c, e$ : accesory parameters.

## A project

Motivation: Fano classification
14 special
Hypergeometric
operators
Differential equations D3
Beyond hypergeometrics
$\triangleright$ A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2
Automorphic property of D2s
What one might hope to do

## Find all such operators with

- coming from geometry.
- or: with monodromy $\subset S p_{4}(\mathbb{Z})$
- or: with an integral solution $\phi \in \mathbb{Z}[[x]]$

Seems very difficult:
$\square$ we do not know position of the the four points: $j$-invariant
$\square$ we do not know the value of the accesory parameters
$\square$....but we know many examples ( $\sim 85$ cases). List complete?

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2
Automorphic property of D2s
What one might hope to do

Example: Coming from a Calabi-Yau 3-fold in $\operatorname{Grass}(3,6)$ :
$D^{4}-t\left(65 D^{4}+130 D^{3}+105 D^{2}+40 D+6\right)+4^{3} t^{2}(D+1 / 4)(D+1)^{2}(D+3 / 4)$
Solution holomorphic at 0 :

$$
\begin{gathered}
\phi(x)=\sum_{n=0}^{\infty} a_{n} t^{n} \\
a_{n}=\sum_{k, l, m}\binom{n}{k}\binom{n}{l}\binom{m}{k}\binom{m}{l}\binom{k+l}{k}\binom{n}{m}^{2} \\
=\sum_{k, l}\binom{n}{k}^{2}\binom{n}{l}^{2}\binom{k+l}{n}^{2}
\end{gathered}
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

A step back

## Special Heun equations:

$$
D^{2}+t\left(a D^{2}+a D+\lambda\right)+b t^{2}(D+1)^{2}
$$

singularities are at the roots of $1+a t+b t^{2}=0, \lambda$ : accesory parameter. Basically four cases; studied by F. Beukers, A. Beauville, D. Zagier and others.
New systematic approach: Congruence sheaves.
Works very nicely for this case.

## Langlands Correspondence: ...very rough sketch...

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project

Langlands
Correspondence:
$D$...very rough sketch
Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2
Automorphic property of D2s
What one might hope to do

## Number field case:

$$
\begin{gathered}
K \supset \mathbb{Q} \\
(\bar{K} / K) \text {-representations }
\end{gathered} \leftrightarrow \text { Automorphic representations }
$$

Example: Elliptic curve $E / \mathbb{Q}$ :

$$
\begin{aligned}
H^{1}\left(E, \mathbb{Q}_{l}\right) & \leftrightarrow \\
\operatorname{Tr}\left(F_{p}\right) & \leftrightarrow a_{p}
\end{aligned}
$$

Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project

Langlands Correspondence:
$\triangleright$...very rough sketch.
Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of $D 2$ s
What one might hope to do

## Function field case:

$$
\begin{aligned}
& K=k(C), C \text { curve over } k:=\mathbb{F}_{p} \\
& \text { Gal }(\bar{K} / K) \text {-representations } \leftrightarrow \text { Automorphic representations } \\
& \\
& l \text {-adic sheaves on } C \leftrightarrow \text { Hecke-Eigensheaves on Bun. }
\end{aligned}
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project

Langlands Correspondence: $D$...very rough sketch Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Example: Family of elliptic curves $\pi: \mathcal{E} \longrightarrow C=\mathbb{P}^{1} / \mathbb{F}_{p}$

$$
\mathcal{L}=R^{1} \pi_{*}\left(\mathbb{Q}_{l}\right)
$$

is an $l$-adic sheaf:
$\square x: \operatorname{Spec}(k) \longrightarrow C$ point (in the scheme sense), $|k|=q=p^{r}$.
$\square x^{*}(\mathcal{L})$ is $\operatorname{Gal}(\bar{k} / k)$-representation.
$\square$ Frobenius $F_{x} \in \operatorname{Gal}(\bar{k} / k)$ (inverse to) $a \longrightarrow a^{q}$.
$\square F_{x} \in \operatorname{Aut}\left(x^{*}(\mathcal{L})\right)$.

$$
\text { Frobenius } F_{x} \leftrightarrow \text { Hecke-operator } H_{x}
$$

## The glueing problem

Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project

Langlands
Correspondence:
D very rough sketch.
Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Families over $\pi: X \longrightarrow \mathbb{P}^{1}:=\mathbb{P}_{\mathbb{Z}}^{1}$


For $p$ prime get $X \bmod p \longrightarrow \mathbb{P}^{1} \bmod p$ and thus $l$-adic sheaves $\mathcal{L}_{p}$. Relation between $\mathcal{L}_{p}$ ?

## Congruence Sheaves

Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch..
$D$ Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

## Provisional definition:

Condition on $P_{x}(t)=\operatorname{det}\left(F_{x}-t\right)$ characteristic polynomial of $F_{x}$. For $\mathcal{L}$ of rank 2 and weight 1 :

$$
\begin{gathered}
P_{x}(t)=\left(t-\alpha_{0}\right)\left(t-\alpha_{1}\right) \\
\alpha_{0}=1 \quad \bmod N, \alpha_{1}=p \quad \bmod N
\end{gathered}
$$

If this happens for almost all $p$ and $x \in C\left(\mathbb{F}_{p}\right)$, we say: $\mathcal{L}$ is a $N$-congruence sheaf.

$$
1+p-\operatorname{Tr}\left(F_{x}\right) \equiv 0 \quad \bmod N
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2 Automorphic property of D2s
What one might hope to do

## For $\mathcal{L}$ of rank 4 and weight 3 :

$$
\begin{aligned}
& P(t)=\left(t-\alpha_{0}\right)\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)\left(t-\alpha_{3}\right) \\
& \alpha_{0}=1 \quad \bmod N_{1}, \quad \alpha_{3}=p^{3} \quad \bmod N_{1} \\
& \alpha_{1}=p \quad \bmod N_{2}, \quad \alpha_{2}=p^{2} \quad \bmod N_{2}
\end{aligned}
$$

If this happens for almost allp and $x \in C\left(\mathbb{F}_{p}\right)$, we say: $\mathcal{L}$ is a $\left(N_{1}, N_{2}\right)$-congruence sheaf.

Works as glue between various $\mathcal{L}_{p}$

## A special Hecke-algebra

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics

A project
Langlands
Correspondence: ...very rough sketch.
$\triangleright$ Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Kontsevich (2005) Notes on motives in finite characterisic

Makes Langlands correspondence explicit for
$\square S L_{2}$-local systemson $\mathbb{P}^{1} \backslash\{$ four points $\}$with unipotent local monodromies

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2 Automorphic property of D2s
What one might hope to do

From data $\Sigma=\left\{\right.$ roots of $\left.t^{3}+a t^{2}+b t+c=0, \infty\right\}$ get a polynomial in three variables:

$$
P(x, y, z)=(b-x y-y z-x z)^{2}-4(x y z+c)(x+y+z+a)
$$

It is the discriminant of the polynomial

$$
\left(t^{3}+a t^{2}+b t+c\right)-(t-x)(t-y)(t-z)
$$

Picture of the surface $P(x, y, z)=0$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do


$$
a=b=c=0
$$

Picture of the surface $P(x, y, z)=0$

Motivation: Fano classification
14 special
Hypergeometric
operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do


$$
a>0, b=c=0
$$

Picture of the surface $P(x, y, z)=0$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
D Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do


Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector Equation of type D2 Automorphic property of D2s
What one might hope to do

Now take a prime number $p$ and a point $x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$.

Define a $(p+1) \times(p+1)$-matrix $H_{x}$ by

$$
\left(H_{x}\right)_{y z}=2+\#\left\{w \mid w^{2}=P(x, y, z)\right\}+\text { correction }
$$

For $x, y \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$ one has (miracle!)

$$
\left[H_{x}, H_{y}\right]=0
$$

Hecke-algebra: algebra generated by $H_{x}, x \in \mathbb{P}^{1}(\mathbb{F})$.

Motivation: Fano classification
14 special
Hypergeometric
operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
$\triangle$ Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s
What one might hope to do

Example $p=7, a=3, b=4, c=0$.

$$
H_{1}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 2 & 2 & 0 \\
1 & 1 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 2 & 0 & 2 & 2 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 & 0 & 2 & 2 & 0 \\
0 & 8 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

## The trace function of $\mathcal{L}$ is the Hecke-eigenvector

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\triangle$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

Hecke-algebra acts on functions on $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$, written as vectors

$$
\begin{aligned}
& v=\left(v_{x}\right), \quad x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right) \\
& \left(H_{x} v\right)_{y}=\sum_{z}\left(H_{x}\right)_{y z} v_{z}
\end{aligned}
$$

Drinfelds theorem tells: $S L_{2}\left(\mathbb{F}_{p}\right)$-automorphic representations correspond to normalised common eigenvectors

$$
H_{x} v=v_{x} \cdot v, \quad v_{x} v_{y}=\sum_{z} H_{x y z} v_{z}
$$

and hence to $l$-adic local systems $\mathcal{L}$ on $\mathbb{P}^{1} \backslash \Sigma$.

$$
\mathcal{L} \leftrightarrow v=\left(\operatorname{Tr}\left(F_{x}\right)_{x \in \mathbb{P}^{1}}\right)
$$

## Let's calculate!

Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\triangle$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

## Strategy

$\square$ Run over $p=3,5,7,11, \ldots \ldots$
$\square \ldots$ and all $f=t^{3}+a t^{2}+b t+c \in \mathbb{F}_{p}[t]$.
$\square$ Determine rational common eigenvectors for Hecke-algebra.
$\square$ Sort them for various $p$ using congruences.

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\square$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

## Decomposition of the Hecke-algebra

Example: $p=7$

| $a, b, c$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0,0,1$ | 1 | 1 | 2 | 2 | 2 |  |
| $0,0,2$ | 1 | 1 | 6 |  |  |  |
| $0,0,3$ | 1 | 1 | 6 |  |  |  |
| $0,1,0$ | 1 | 1 | 2 | 2 | 2 |  |
| $0,1,1$ | 1 | 7 |  |  |  |  |
| $0,1,3$ | 1 | 3 | 4 |  |  |  |
| $0,3,0$ | 1 | 1 | 1 | 1 | 2 | 2 |
| $0,3,1$ | 1 | 3 | 4 |  |  |  |
| $0,3,2$ | 1 | 7 |  |  |  |  |
| $0,3,3$ | 1 | 1 | 2 | 4 |  |  |

## Motivation: Fano

 classification 14 special Hypergeometric operatorsDifferential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very rough sketch
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\triangle$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

The 8 non-trivial rational eigenvectors for $p=7$.

| $a, b, c$ | Eigenvector $v$ | $N$ | $j$ |
| :--- | :--- | :--- | :--- |


| 0, 0,2 |  | -4 | 2 | 2 | -1 | 2 | -1 | -1 | 8] | 3 |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0, 0,3 |  | 5 | -4 | -4 | 2 | -4 | 2 | 2 | 8] | 3 |  | 0 |
| 0, 1, 0 |  | -8 | 0 | 4 | -4 | -4 | 4 | 0 |  |  |  | 6 |
| 0,3,3 |  | -2 | 8 | -2 | 3 | 3 | -2 | -2 | 8] |  |  | 4 |
| 0, 3, 0 |  | 8 | -4 | 8 | -4 | 2 | 8 | 2 |  |  |  | 6 |
| 0, 3, 0 |  | 8 | 2 | 8 | 2 | -4 | 8 | -4 |  |  |  | 6 |
| 0, 3, 0 |  | 8 | 0 | -8 | 0 | 0 | -8 | 0 |  |  |  | 6 |
| 0, 0,1 |  | -1 | -1 | -1 | 8 | -1 | 8 | 8 | 8] |  |  | 0 |

$N$ : the congruence. $j: j$-invariant $\in \mathbb{F}_{p}$ of the four points.

Motivation: Fano classification
14 special
Hypergeometric
operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\square$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

## Observations:

Running over $p=3,5,7,11, \ldots$ we see:
$\square$ There are very few $\mathbb{Q}$-Hecke-eigenvectors.
$\square$ All of these have a non-trivial congruence.
$\square$ There are no $7,10,11,12, \ldots$ congruences.
$\square 3,4,5,6,8$-congruences are persistent.

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\square$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

## Focus on 5-congruence:

| $p$ | $a, b, c$ | $j$ | Eigenvector |
| ---: | ---: | ---: | :--- |
| 7 | $0,3,3$ | 4 | $[-2,8,-2,3,3,-2,-2,8]$ |
| 11 | $0,2,0$ | 1 | $[12,-3,-3,12,2,-3,2,-3,12,2,2,12]$ |
|  | $0,2,0$ | 1 | $[12,2,2,12,-3,2,-3,2,12,-3,-3,12]$ |
| 13 | $0,2,5$ | 4 | $[4,4,-1,-6,-1,-1,-1,4,14,4,4,-6,-6,14]$ |
| 17 | $0,1,2$ | 1 | $[3,-2,-2,3,-2,-7,-2,-2,-2,3,-2,-7,3,3,8,3,18$, |
| 19 | $0,2,4$ | 15 | $[5,5,-5,0,20,5,0,-20,-20,0,0,0,0,-5,0,0,5,-5,-5$ |

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the
$\square$ Hecke-eigenvector
Equation of type $D 2$
Automorphic property of D2s
What one might hope to do

## $\mathbf{j}$-invariant for 5 -congruence trace function

| $p$ | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $j$ | 4 | 1 | 4 | 1 | 15 | 14 | 12 | 0 | 34 | 5 | 2 | 24 | 13 | 44 |

Reconstruct $j \in \mathbb{Q}$ from reductions mod $p$ (Wang algorithm):

$$
j=\frac{2^{14} 31^{3}}{5^{3}} \text { ! }
$$

Simplest choice: $a=11, b=-1, c=0$.

## Equation of type $D 2$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
$\triangle$ Equation of type $D 2$ Automorphic property of D2s
What one might hope to do

Special Heun equation with Riemann symbol

$$
\begin{gathered}
\left\{\begin{array}{cccc}
0 & * & * & \infty \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right\} \\
\mathcal{P}=f \partial^{2}+f^{\prime} \partial+t-\lambda
\end{gathered}
$$

where

$$
f=t\left(t^{2}+a t+b\right)
$$

Singular points: 0 , roots of $t^{2}+a t+b, \infty$. $\lambda$ : the accesory parameter.

## Automorphic property of $D 2 \mathrm{~s}$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics

## A project

Langlands
Correspondence:
.very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
property of $D 2$ s
What one might hope to do

## Multiplication theorem:

Let

$$
\phi(t)=\phi_{\lambda}(t)=1+b_{1}(\lambda) t+b_{2}(\lambda) t^{2}+\ldots
$$

be solution of differential equation

$$
\mathcal{P} \phi(t)=0
$$

Then one has:

$$
\phi(x) \phi(y)=\frac{1}{2 \pi i} \oint K(x, y, z) \phi(z) \frac{d z}{z}
$$

where

$$
K(x, y, z)=\frac{b}{\sqrt{P(x, y, b / z)}}
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s What one might hope to do

## Complete analogy:

Langlands for $C=\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$

$$
v_{x} v_{y}=\sum_{z} H_{x y z} v_{z}
$$

Geometric Langlands for $C=\mathbb{P}^{1}(\mathbb{C})$ :

$$
\phi(x) \phi(y)=\frac{1}{2 \pi i} \oint K(x, y, z) \phi(z) \frac{d z}{z}
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch
Congruence Sheaves The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s
What one might hope to do

Change from point-basis to power-basis Functions on $\mathbb{F}_{p} \subset \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$

$$
\begin{gathered}
\delta_{x}, \quad x \in \mathbb{F}_{p} \leftrightarrow x^{n}, \quad n=0, \ldots, p-1 \\
v \leftrightarrow \phi_{p}(x)=\sum_{n=0}^{p-1} a_{n} x^{n}
\end{gathered}
$$

Inverse Vandermonde-Transformation

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 2 & \ldots & 2^{p-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & p-1 & \ldots & (p-1)^{p-1}
\end{array}\right) \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{p-1}
\end{array}\right)=\left(\begin{array}{c}
v_{p-1} \\
\vdots \\
v_{1} \\
v_{0}
\end{array}\right)
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$\triangle$ property of $D 2$ s
What one might hope to do

$$
p=7:
$$

| Eigenvector | 8 | -2 | -2 | -2 | 3 | 3 | -2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Transform | 1 | 3 | 5 | 0 | 5 | 4 | 1 |

$p=13:$

| Eigenvector | 14 | 4 | 4 | -6 | -6 | 4 | 4 | -1 | -6 | -1 | -1 | -1 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Transform | 1 | 3 | 6 | 4 | 3 | 8 | 10 | 5 | 3 | 9 | 6 | 10 | 1 |

$$
p=43:
$$

| 44 | -6 | 4 | -1 | -6 | 4 | 4 | 4 | -6 | 9 | -1 | -11 | 4 | 4 | $\ldots$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 | 19 | 18 | 4 | 30 | 39 | 42 | 39 | 21 | 32 | 24 | 9 | 12 | $\ldots$ |

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics A project Langlands Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s What one might hope to do

$$
\begin{gathered}
x=0 \quad \bmod 7, x=4 \quad \bmod 13, x=18 \quad \bmod 43 \\
\Rightarrow x=147 \\
\bmod 7 \cdot 13 \cdot 43
\end{gathered}
$$

## We get a series

$$
\phi(t)=1+3 t+19 t^{2}+147 t^{3}+1251 t^{4}+\ldots
$$

with

$$
\phi(t) \equiv \phi_{p}(t) \quad \bmod p
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s What one might hope to do

## Apéry numbers

$$
\begin{gathered}
1,3, \quad 19,147, \ldots \\
a_{n}:=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}
\end{gathered}
$$

Generating function

$$
\phi(t):=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

satisfies the differential equation

$$
\left(D^{2}-t\left(11 D^{2}+11 D+3\right)+t^{2}(D+1)^{2}\right) \phi(t)=0
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3
Beyond hypergeometrics
A project
Langlands
Correspondence: ...very rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s
What one might hope to do

## F. Beukers (1981) Modular interpretation

Operator arises as Picard-Fuchs operator of modular elliptic surface for $\Gamma_{1}(5)$.

$$
\pi: X \longrightarrow \mathbb{P}^{1}
$$

with singular four singular fibres of type $I_{1}, I_{1}, I_{5}, I_{5}$.


Number of points in fibre $X_{t}\left(\mathbb{F}_{p}\right)$ divisible by 5.

$$
1+p-\operatorname{Tr}\left(F_{p}\right) \equiv 0 \quad \bmod 5
$$

Motivation: Fano classification 14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics
A project
Langlands
Correspondence:
.very
rough sketch..
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic
$D$ property of $D 2$ s What one might hope to do

So indeed: $R^{1} \pi_{*}\left(\mathbb{Q}_{l}\right)$ is a 5 -congruence sheaf! What did we do?
$\square$ Use explicit $S L_{2}$-Hecke-algebra.
$\square$ Found 5-congruence trace-functions.
$\square$ Found from it Apéry sequence.
$\square$ Found arithmetic D2-equation.
It works for all Beukers-Zagier-Beauville operators.
Bonus: Get not only differential equation, but also get the Frobenius traces of all fibres!

## What one might hope to do

Motivation: Fano classification
14 special Hypergeometric operators
Differential equations D3 Beyond hypergeometrics

A project
Langlands
Correspondence: ...very
rough sketch.
Congruence Sheaves
The trace function of $\mathcal{L}$ is the Hecke-eigenvector
Equation of type D2
Automorphic property of D2s

What one might
hope to do
$\square$ Find explicit Hecke-algebras and multiplication theorems for general Heun-equations.Same for D3sFind explicit Hecke-algebra for $S p_{4}$-case.
$\square$ Find bi-congruence trace-functions.
$\square$ We claim: is substitute for modularity of D2 and D3!
$\square$ Find corresponding differential operators of CY-type.

