A \mathbb{Z}^N -graded generalization of the Witt algebra

Kenji IOHARA (ICJ)

March 5, 2014

Contents

1	Generalized Witt Algebras	1
	1.1 Background	1
	1.2 A generalization of the Witt algebra	2
2	Some Representations 2.1 The case $\Lambda = \mathbb{Z}$ 2.2 The case $\Lambda = \mathbb{Z}^N$ $(N > 1)$	3 3 4

1 Generalized Witt Algebras

Let Λ be a \mathbb{Z} -lattice of rank N > 0 and $\mathfrak{g} = \bigoplus_{\lambda \in \Lambda} \mathfrak{g}_{\lambda}$ be a Λ -graded Lie algebra, i.e., $[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}] \subset \mathfrak{g}_{\lambda+\mu}$. \mathfrak{g} is said to be **simple-graded** if dim $\mathfrak{g} \geq 2$ and there is no non-trivial proper graded ideal. We assume that each homogeneous component is of finite dimension. Here, our ground field is always fixed as an algebraically closed field k of characteristic 0.

1.1 Background

The problem on classification of Λ -graded Lie algebras that are *simple-graded* is an old problem which is still open. When the rank of Λ is 1, the problem had been completely resolved by O. Mathieu [M] in 1992. In the case when the rank of Λ is greater than 1, only a partial solution was known and given by

K. I. and O. Mathieu in our recent paper [IM]. There still has no conjectural form for general cases.

To be precise, in [IM], we have classified Λ -graded simple-graded Lie algebras $\mathfrak{g} = \bigoplus_{\lambda \in \Lambda} \mathfrak{g}_{\lambda}$ where dim $\mathfrak{g}_{\lambda} = 1$ for any $\lambda \in \Lambda$,¹ these consists of two classes:

- 1. \mathfrak{g} is of type $A_1^{(2)}$ or $A_2^{(2)}$,
- 2. \mathfrak{g} is a generalization of the Witt algebra.

Let us explain the second case in detail.

1.2 A generalization of the Witt algebra

Let $\langle\cdot,\cdot\rangle$ be a non-degenerate skew-symmetric bilinear form on \mathbb{C}^2 ;

$$\langle (x_1, y_1), (x_2, y_2) \rangle = \det \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix},$$

and set $\rho = (1, 1)$. Let \mathcal{L} be the Lie algebra of the symbols of twisted pseudo differential operators, i.e.,

$$\mathcal{L} = igoplus_{\lambda \in \mathbb{C}^2} \mathbb{C} L_\lambda$$

as vector space with its Lie bracket $[\cdot, \cdot]$ satisfying

$$[L_{\lambda}, L_{\mu}] = \langle \lambda + \rho, \mu + \rho \rangle L_{\lambda + \mu}.$$

Let $\pi : \Lambda \hookrightarrow \mathbb{C}^2$ be an inclusion and W_{π} be the subalgebra of \mathcal{L} generated by $\{L_{\lambda}\}_{\lambda \in \pi(\Lambda)}$. This is clearly a Λ -graded Lie algebra with multiplicity 1.

Remark 1.1. The next identity is the key identity to verify the Jacobi identity of the above Lie bracket

$$\langle \lambda, \mu \rangle \nu + \langle \mu, \nu \rangle \lambda + \langle \nu, \lambda \rangle \mu = 0,$$

which is true for any $\lambda, \mu, \nu \in \mathbb{C}^2$.

The next lemma is easy to verify:

¹In case when dim $\mathfrak{g}_{\lambda} \leq 1$, nothing about the classification, even its conjectural form, is known !

Lemma 1.2 (cf. [IM]). W_{π} is simple-graded iff $\operatorname{Im} \pi \not\subset \mathbb{C}\rho$ and $2\rho \not\in \operatorname{Im} \pi$.

When $\operatorname{Im} \pi$ is contained in a one-dimensional subspace of \mathbb{C}^2 , the commutation relation simplifies as

$$[L_{\lambda}, L_{\mu}] = \langle \rho, \mu - \lambda \rangle L_{\lambda + \rho}$$

In such a case, W_{π} is called a generalized Witt algebra by W. T. Yu Ruppert. In this sense, W_{π} for a generic π is a generalized generalized Witt algebra....

Remark 1.3. It can be shown that dim $H_2(\mathcal{L}) \leq 1$ and the equality holds iff \mathcal{L} is a generalized Witt algebra.

2 Some Representations

Let us look at representations of the Lie algebra $\mathfrak{g} = W_{\pi}$. To simplify the notation, we identify Λ with its image in \mathbb{C}^2 via π . Here, we describe ' Λ -graded' \mathfrak{g} -module M whose multiplicity is a constant, say $C \in \mathbb{N}^*$.

2.1 The case $\Lambda = \mathbb{Z}$

Let us recall the known result due to I. Kaplansky and L. J. Santharoubane [KS] for the Witt algebra, i.e., when $\Lambda = \mathbb{Z}$;

$$\mathbf{W} = \mathbb{C}[z^{\pm 1}]\frac{d}{dz}, \qquad [L_m, L_n] = (n-m)L_{m+n},$$

where we set $L_m := z^{m+1} \frac{d}{dz}$. Here are examples:

1. For $(u, \delta) \in \mathbb{C}/\mathbb{Z} \times \mathbb{C}, \, \Omega_u^{\delta} := \bigoplus_{x \in u} \mathbb{C}e_x^{\delta}$ with

$$L_m \cdot e_x^{\delta} := (m\delta + x)e_{x+m}^{\delta} \cdot$$

2. The A-family $(A_{a,b})_{(a,b)\in\mathbb{C}^2}$. Here, $A_{a,b}$ is the W-module with basis $\{e_n^A\}_{n\in\mathbb{Z}}$ and the action given by the formula:

$$L_m \cdot e_n^A := \begin{cases} (m+n)e_{m+n}^A & n \neq 0, \\ (am^2 + bm)e_m^A & n = 0. \end{cases}$$

3. The *B*-family $(B_{p,q})_{(p,q)\in\mathbb{C}^2}$. Here, $B_{p,q}$ is the **W**-module with basis $\{e_n^B\}_{n\in\mathbb{Z}}$ and the action given by the formula:

$$L_m \cdot e_n^B := \begin{cases} n e_{m+n}^B & m+n \neq 0, \\ (pm^2 + qm) e_0^B & m+n = 0. \end{cases}$$

Essentially, these modules exhaust all such W-modules for C = 1, i.e., it is known (cf. [KS] and [M]) that

- 1. if M is indecomposable and C = 1, then M is isomorphic to one of the above three modules, and
- 2. if M is irreducible W-module, then C = 1 and it is given by 1.

Remark 2.1. 1. The A-family is a deformation of Ω_0^1 .

2. The B-family is a deformation of Ω_0^0 .

2.2 The case $\Lambda = \mathbb{Z}^N$ (N > 1)

In this case, fix $\alpha \in \Lambda \subset \mathbb{C}^2$ such that $\langle \rho, \alpha \rangle \neq 0$ and set $\mathfrak{a} := \bigoplus_{n \in \mathbb{Z}} \mathbb{C}L_{n\alpha}$. The Lie subalgebra \mathfrak{a} of \mathfrak{g} is isomorphic to \mathbf{W} . The results explained here will be explained in a paper in preparation with O. Mathieu.

A natural generalization of the **W**-modules of type Ω_u^{δ} is given as follows: for $u \in \mathbb{C}^2/\Lambda$, we set $M_u := \bigoplus_{\mu \in u} \mathbb{C}L_{\mu} \subset \mathcal{L}$. Then, M_u is naturally a g-module by the adjoint action:

$$L_{\lambda}.L_{\mu} = \langle \lambda + \rho, \mu + \rho \rangle L_{\lambda + \mu},$$

with $\lambda \in \Lambda$ and $\mu \in u$. It is easy to see that

- 1. M_u is irreducible iff $u \cap \{-\rho, -2\rho\} = \emptyset$,
- 2. For each $\mathbb{Z}\alpha$ -coset $\gamma \subset u$, $M_u[\gamma] := \bigoplus_{\mu \in \gamma} \mathbb{C}L_\mu$ is an \mathfrak{a} -submodule isomorphic to Ω_u^{δ} for some $(u, \delta) \in \mathbb{C}/\mathbb{Z} \times \mathbb{C}$.

Secondly, we consider the case $-\rho \in u$. For $(a, b) \in \mathbb{C}^2$, we set

$$\mathcal{A}_{a,b} := \bigoplus_{\substack{\gamma \subset u \\ -\rho \notin \gamma}} M_u[\gamma] \oplus A_{a,b}.$$

One can introduce a structure of \mathfrak{g} -module on $\mathcal{A}_{a,b}$ which extends its \mathfrak{a} -module structure. It an indecomposable \mathfrak{g} -module iff $(a, b) \neq (0, 0)$.

Finally, we consider the case $-2\rho \in u$. For $(p,q) \in \mathbb{C}^2$, we set

$$\mathcal{B}_{p,q} := \bigoplus_{\substack{\gamma \subset u \\ -2\rho \notin \gamma}} M_u[\gamma] \oplus B_{p,q}.$$

One can introduce a structure of \mathfrak{g} -module on $\mathcal{B}_{p,q}$ which extends its \mathfrak{a} -module structure. It is an indecomposable \mathfrak{g} -module iff $(p,q) \neq (0,0)$.

We have

Theorem 2.2. Assume that $\rho \notin \text{Im } \pi$. Then, any indecomposable Λ -graded \mathfrak{g} -module M with multiplicity 1 is isomorphic to one of the above three modules.

So now, we assume that $\rho \in \text{Im }\pi$. In this case, in addition to the above three types of \mathfrak{g} -modules, there is one another class which we define below. Suppose that $\rho, 2\rho \in u$. For $(a, b), (p, q) \in \mathbb{C}^2$, we set

$$\mathcal{AB}_{a,b;p,q} = \bigoplus_{\substack{\gamma \in u \\ -\rho, -2\rho \notin u}} M_u[\gamma] \oplus A_{a,b} \oplus B_{p,q}.$$

One can introduce a structure of \mathfrak{g} -module on $\mathcal{AB}_{a,b;p,q}$ which extends its \mathfrak{a} -module structure. It is an indecomposable \mathfrak{g} -module iff $(a,b), (p,q) \neq (0,0)$.

We can also show the next theorem:

Theorem 2.3. Assume that $\rho \notin \operatorname{Im} \pi$. For each $C \in \mathbb{N}$ such that $C \geq 3$, there is a Λ -graded irreducible \mathfrak{g} -module M whose multiplicity is C.

One can also consider an analogue of Verma modules. But, in general, such modules are reducible !

References

- [IM] K. Iohara and O. Mathieu, Classification of simple Lie algebras on a lattice, Proc. London Math. Soc. (3) 106, (2013), 508–564.
- [K] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, 1994.

- [KS] I. Kaplansky and L. J. Santharoubane, Harish-Chandra modules over the Virasoro algebra, in Infinite-dimensional groups with applications, MSRI Publ. 4, Springer, New York-Berlin, (1985), 217–231.
- [M] O. Mathieu, Classification of simple graded Lie algebras of finie growth, Invent. Math. **108**, (1992), 455–519.