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The talk is based on my papers:

[1] Finite groups of automorphisms of
Kählerian K3 surfaces (1979), (ann. (1976)).

[2] Integral symmetric bilinear forms and
some their geometric applications (1979).

[3] Preprint arXiv:1109.2879v7
(last variant in August 2013).

During the 30 years gap, important
papers by Mukai (1988), Xiao (1996),
Kondō (1998), Hashimoto (2010),
others were published.

But, from my point of view, some im-
portant general point was missing. It is
why I decided to write the preprint.

Today, I shall also consider important
applications of results of this preprint.
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Kälerian K3 X is a compact complex
surface with KX = 0 ( (ωX) = 0 ),
q(X) = 0.

H2(X,Z) is an even unimodular lat-
tice of signature (3, 19).

H2(X,Z) ∼= LK3 = 3U ⊕ 2E8.
H2,0(X) = CωX ⊂ H2(X,Z)⊗ C.

Picard lattice

SX = {x ∈ H2(X,Z) | x · ωX = 0} =

H2(X,Z) ∩H1,1(X).

SX ⊂ H2(X,Z) is a primitive sublat-
tice.

Three Cases:
a) SX < 0 (general case);
b) SX ≤ 0 with 1-dimensional Ker-

nel;
c) SX is hyperbolic (sign. (1, t(−))

(X is algebraic.)
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For periods, Global Torelli Theorem,
we usually consider Marked K3: (X, α)

α : H2(X,Z) ∼= LK3.

Further, General Case: a) SX < 0:
The main idea of preprint [3]:

Introduce ADDITIONAL MARKING

τ : SX ⊂ Ni

τ is prim. embedding, Ni is one of
Niemeier lattices: even, < 0, unimodu-
lar lattices of rank 24 (Niemeier, 1973):
N1 = N(D24), N2 = N(D16 ⊕ E8),
N3 = N(3E8), N4 = N(A24),
N5 = N(2D12), N6 = N(A17 ⊕ E7),
N7 = N(D10 ⊕ 2E7), N8 = N(A15 ⊕
D9),
N9 = N(3D8), N10 = N(2A12),
N11 = N(A11⊕D7⊕E6), N12 = N(4E6),
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N13 = N(2A9 ⊕D6), N14 = N(4D6),
N15 = N(3A8), N16 = N(2A7 ⊕ 2D5),
N17 = N(4A6), N18 = N(4A5 ⊕D4),
N19 = N(6D4), N20 = N(6A4),
N21 = N(8A3), N22 = N(12A2),
N23 = N(24A1), N24 = N(∅) = Leech.

This marking does exist. It follows
from the general result from Nik, [2].
Notations: Discriminant quadratic

form of an even lattice S:

qS : AS = S∗/S → Q/2Z.

l(A) is the minimal number of gen-
erators of a finite Abelian group A.

Ap is the p-component of A.
K(qp) is a p-adic lattice (over Zp) of

the rank l(Aqp) with the discriminant
form qp on a p-group Aqp.
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Theorem 1 (from Nik, [2]). For even
lattice S with (t(+), t(−), qS), integers

(l(+), l(−)), a primitive embedding
S ⊂ L into one of unimodular even L
of signature (l(+), l(−)) exists iff

(1) l(+) − l(−) ≡ 0 mod 8;

(2) l(+) − t(+) ≥ 0, l(−) − t(−) ≥ 0,

l(+) + l(−) − t(+) − t(−) ≥ l(AS);

(3) (−1)
l(+)−t(+)|AS| ≡ det K(qSp

) mod (Zp
∗)2

for each odd prime p such that
l(+) + l(−) − t(+) − t(−) = l(ASp

);

(4) |AS| ≡ ± det K(qS2
) mod (Z2

∗)2,
if l(+) + l(−)− t(+)− t(−) = l(AS2

) and

qS2 6∼= q
(2)
θ (2)⊕ q′.

If the last inequality in (2) is strict,
one does not need (3) and (4). If qS2

∼=
q
(2)
θ (2)⊕ q′, one does not need (4).
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From Theorem 1, we obtain at once:

Theorem 2. Any Kählerian K3, X
has marking by one of Niemeier lattices

N1, N2, . . . , N24.

Actually by

N1, N2, . . . , N23

(we can exclude difficult Leech lattice)
if we apply Kondō’s trick.

Proof: Primitively S = SX ⊂ LK3.
rk LK3 = 22. Thus (by Theorem 1),

rk S + l(AS) ≤ 22.

Then

rk S + l(AS) < 24, rk S ≤ 19 < 24 .

Then (by Theorem 1), S has primitive
S ⊂ Ni for one of i = 1, 2, . . . , 24.
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Kondō’s trick. Repeat the same for

S1 = S ⊕ 〈−2〉.

rk S1+l(AS1
) ≤ 22+2 = 24, rk S1 ≤ 19+1 < 24.

rk S1+l((AS1
)p) ≤ 22 < 24, if p 6= 2.

rk S1 + l((AS1
)2) ≤ 22 + 2 = 24,

S1 ⊗ Z2 = S ⊗ Z2 ⊕Kθ(2)

and primitively S ⊂ Ni where Ni has
elements with square (−2). Therefore,
Ni is different from the Leech lattice.

END of proof.
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Opposite: by epimorph. of Torelli map:
Theorem 3. Primitive S ⊂ Ni

(i = 1, 2, . . . , 24) is Picard lattice of a
K3 surface X ⇐⇒

there exists a K3 X with marking
SX = S ⊂ Ni above

iff exists prim. embedd. S ⊂ LK3
⇐⇒
S satisf. Th 1 for (l(+) = 3, l(−) = 19).

The main necessary conditions are:
rk S ≤ 19, rk S + l(AS) ≤ 22.
Main Idea: Depending on which

Ni, i = 1, . . . , 24, gives marking of X ,
it has different geometry, arithmetic.
Theorem 4. (preprint Nik, [3]) For

each i = 1, . . . , 23, i 6= 4, 10, ∃X which
can be marked by Ni only. All Niemeier
lattices are important for Kählerian K3.
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Why marking SX ⊂ Ni impor-
tant for X?
(Nik, [1], [2, Rem. 1.14.7], (1979)).
(A) Using this marking, we can find

all non-singular rational curves on X.

Classes of non-singular rational curves
E ⊂ X correspond to basis P (SX) =
P (X) of the root system ∆(SX) of (−2)-
roots δ ∈ SX , that is δ2 = −2. They
generate the reflection group W (SX)
and P (SX) is the set of ⊥ roots to a
fundamental chamber M of W (SX).

Let P (Ni) is basis of the root system
Ri of Ni.

Changing marking τ : SX ⊂ Ni to
wτ by w ∈ W (Ni), we get:

τ (Γ(P (SX)) ⊂ Γ(P (Ni)) (we can require).

E.g., for N1 = N(D24), N2 = N(D16⊕
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E8), Γ(P (SX)) ⊂ D24, D16E8.
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(B) Using marking SX ⊂ Ni, we
can find the finite symplectic
automorphism group Aut X.

We assume that S = SX < 0. Then
Aut X is finite and symplectic: φ∗ωX =
ωX .

G = Aut X acts in S = SX without
kernel. Coinvariant sublattice SG =
(SG)⊥S has properties:

1) SG < 0,
2) SG has no (−2)-roots,
3) G|(S∗G/SG) is trivial,

4) (SG)G = {0} (obvious).
Such SG was called in Nik [2]

Leech type lattice.
The same is valid for any K3 X and fi-
nite symplectic G ⊂ Aut X . H2(X,Z)G =
(SX)G < 0 and is Leech type lattice.
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(B) We can calculate Aut X from
marking

S = SX ⊂ Ni.
We use

O(Ni) = W (Ni)o A(Ni)

where A(Ni) permutes the root basis
P (Ni), the Dynkin diagram.

Theorem 5. (Nik, [1],[2, Rem. 1.14.7])
(1) G = Aut X =
{φ ∈ A(Ni) | φ|(S)⊥Ni

= id};
(2) G ⊂ A(Ni) is KahK3 subgroup (comes
from (1) for some K3 X marking by Ni)
⇐⇒ Coinvariant sublattice of G
(Ni)G = ((Ni)

G)⊥Ni
has

primitive (Ni)G ⊂ LK3 ⇐⇒
(Ni)G satisfies Thm 1 for
(l(+) = 3, l(−) = 19).
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In preprint Nik. [3], for all

N1, N2, . . . , N23

all these KahK3 subgroups (conjugacy
classes) G ⊂ A(Ni) are calculated.
Example 1. N1 = N(D24), N2 =

N(D16⊕E8) have trivial A(N1), A(N2).
If X is marked by N1, N2, then Aut X

is trivial and respectively
Γ(P (X)) ⊂ D24, Γ(P (X)) ⊂ D16E8.
Any prim. SX = S ⊂ N1, N2 satisfy-
ing Thm 1 for (l(+) = 3, l(−) = 19) can

be taken for this marking (corresponds
to K3).
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Example 2. N1 = N(D24), N2 =
N(D16 ⊕ E8), N4 = N(A24), N5 =
N(2D12), N10 = N(2A12) have trivial
KahK3 subgroups only.

Like for Example 1, if X is marked by
one of them, then Aut X is trivial and
respectively

Γ(P (X)) ⊂ D24, D16E8, A24, 2D12, 2A12.

Any primitive
SX = S ⊂ Ni, i = 1, 2, 4, 5, 10,
satisfying Thm 1 for
(l(+) = 3, l(−) = 19) can be taken for

this marking (corresponds to K3).
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Example 3. N = N3 = N(3E8)
has A(N3) = S3 on components 3E8.
Only cyclic C1, C2 ⊂ S3 are KahK3
subgroups. For C2 = [(ij)] and k 6= i, j
(of course, {i, j, k} = {1, 2, 3}.)

(ij) : (E8)k

(ij) : (E8)i ↔ (E8)j

N[(ij)] = [δ1i − δ1j, . . . , δ8i − δ8j]
∼=

∼= E8(2). (δ1k, . . . , δ8k is basis of (E8)k.)
For marking SX = S ⊂ N3, Aut X =
C1 (trivial) if N[(ij)] 6⊂ SX for all
1 ≤ i < j ≤ 3, and
Aut X = [(ij)] ∼= C2 otherwise.
Any prim. SX = S ⊂ N3, satisf. Th 1
for (3, 19), can be taken (it gives K3).
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In general, marking by Niemeier lat-
tices razes the following general inter-
esting question:

What are other, different from (A)
and (B), properties of K3, X which
follow from marking by Niemeier lat-
tices Ni?

I know some.

16



RELATION TO OTHER RESULTS:

• In Nik, [1], (1976, 1979) I classified
finite Abelian symplectic automorphism
groups of Kählerian K3: 14 groups,
action on H2(X,Z) = LK3 is unique,
moduli are connected.

E.g. cyclic groups are Cn, n = 2, 3, 4, 5, 6, 7, 8.

• Sh. Mukai (1988) classfied abstract
finite symplectic automorphism groups
of Kählerian K3: 80 groups.

• G. Xiao (1996) gave another proof
of Mukai’s result.

• Sh. Kondō (1998) gave another proof
of Mukai’s result using Niemeier lattices
(similarly to my considerations today).
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• K. Hashimoto (2010) proved uniqui-
ness of action (with 5 exceptions) for
non-abelian groups using Niemeier lat-
tices (similarly to my considerations to-
day). This result finalized my unique-
ness results for Abelian groups (1979).

• My today’s considerations can be
also considered as some amplification of
these results for K3 depending on their
marking by Niemeier lattices:

For a fixed i = 1, . . . 23, what is fi-
nite symplectic automorphism group
of K3 marked by Ni ?
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Physicists (Gaberdiel, Hohenegger,Volpato,
others) study symmetries of K3 σ-models.

Roughly speaking, even unimodular
lattice H2(X,Z) ∼= LK3 of signature
(3, 19) is replaced by the even unimod-
ular lattice H∗(X,Z) ∼= L∗K3 of signa-
ture (4, 20).

Picard lattice SX is replaced by neg-
ative definite primitive S ⊂ L∗K3. By
Thm 1, then existence of primitive
S ⊂ L∗K3 is equivalent to existence of
primitive S ⊂ Ni for one of 1 ≤ i ≤ 24.

Then symmetrices of K3 σ-models are

G ⊂ A(Ni),

with rk(Ni)G ≤ 20 ⇐⇒ rk NG
i ≥ 4 .

The same, what I did for K3, can be
repeated for K3 σ-models. Even, this
case looks simpler and more natural.
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Look preprint: arXiv:1106.4315

M.R. Gaberdiel,S. Hohenegger,
R. Volpato

Symmetries of K3 sigma models.

2011, 40 pages.
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(A) and (B) both can be considered as
degeneration (given by (A)) of a Kählerian
K3 surface with finite symplectic auto-
morphism group given by (B).

For example, a classical example of
Kummer surface with 16A1 (16 not in-
tersected non-singular rational curves)
can be considered as degeneration of codi-
mension 1 of K3 surfaces with finite sym-
plectic automorphism group (C2)

4.
It is interesting to ask: Do K3 surfaces

with finite symplectic automorphism group
(C2)

4 have other degenerations of codi-
mension 1 which are different from Kum-
mer?

What are degenerations of codimen-
sion 1 (or any codimension) of K3 sur-
faces with other finite symplectic auto-
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morphism groups?
Let me inform you about my recent

results in this direction.

I give here only a very particular case,
but the same can be done in general for
all types of finite symplectic automor-
phism groups on Kählerian K3 surfaces.

These results can be considered as im-
portant application of my preprint Nik
[3].
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Degenerations of codim 1 of Kählerian K3 surfaces
with maximal finite sympl. autom. group

and which can be marked by N23 only

n = 21, H = (C2)
4: rk NH = 15:

DEGEN 16A1, 4A1, rk S = 16;

n = 39, H = 24C2, rk NH = 17:
DEGEN 16A1, 8A1, rk S = 18;

n = 40, H = Q8 ∗ Q8 (|H| = 32),
rk NH = 17: DEGEN 8A1, rk S = 18;

n = 49, H = 24C3, rk NH = 17:
DEGEN 8A1, rk S = 18;

n = 56, H = Γ25a1 (|H| = 64),
rk NH = 18: DEGEN 16A1, 8A1,
rk S = 19;

n = 65, H = 24D6, rk NH = 18:
DEG 16A1, 12A1, 8A1, 4A1, rk S = 19;

n = 75, H = 42A4, rk NH = 18:
DEGEN 16A1, rk S = 19;
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Cases
n = 76, H = H192 (|H| = 192),
n = 78, H = A4,4 (|H| = 288),
n = 80, H = F384 (|H| = 384),
n = 81, H = M20 (|H| = 960)

have rk NH = 19 and no degenerations
since rk S ≤ 19.
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Proof for n = 21, H = (C2)
4: By Nik.

[3], Kahlerian K3 conjugacy classes in
A(N23) are

H21,1 =

[(α2α20)(α3α10)(α5α6)(α8α11)

(α9α21)(α12α22)(α17α23)(α19α24),

(α2α19)(α3α5)(α6α10)(α8α9)

(α11α21)(α12α23)(α17α22)(α20α24),

(α1α16)(α2α20)(α3α6)(α5α10)

(α12α23)(α14α18)(α17α22)(α19α24),

(α1α14)(α2α24)(α3α5)(α6α10)

(α12α22)(α16α18)(α17α23)(α19α20)]

with orbits

{α1, α16, α14, α18}, {α2, α20, α19, α24},
{α3, α10, α5, α6}, {α8, α11, α9, α21},
{α12, α22, α23, α17}, {α4}, {α7}, {α13}, {α15}.
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H21,2 =

[(α1α3)(α2α23)(α5α14)(α6α16)

(α10α18)(α12α20)(α17α24)(α19α22),

(α1α2)(α3α23)(α5α17)(α6α12)

(α10α22)(α14α24)(α16α20)(α18α19),

(α1α16)(α2α20)(α3α6)(α5α10)

(α12α23)(α14α18)(α17α22)(α19α24),

(α1α14)(α2α24)(α3α5)(α6α10)

(α12α22)(α16α18)(α17α23)(α19α20)]

with orbits

{α1, α3, α2, α16, α14, α23, α6, α5,

α20, α24, α18, α12, α17, α10, α19, α22}
{α4}, {α7}, {α8}, {α9}, {α11}, {α13},

{α15}, {α21}.
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For H21,1 only orbits

{α1, α16, α14, α18}, {α2, α20, α19, α24},
{α3, α10, α5, α6}, {α8, α11, α9, α21},

{α12, α22, α23, α17},
are possible (give primitive S ⊂ LK3)
by Theorem 1. We get A4.

For H = H21,2 only the orbit

{α1, α3, α2, α16, α14, α23, α6, α5,

α20, α24, α18, α12, α17, α10, α19, α22}
is possible (gives primitive S ⊂ LK3)
by Theorem 1. We get A16: Kummer
surface.
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If we add nef polarization h ∈ S⊥LK3
,

we get the same geometry: finite sym-
plectic automorphism group, non-singular
rational curves which are contracting by
|h|: This will be a codim=1 subfamily
in complex family of Kählerian K3 sur-
faces.
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