Second Quantized Mathieu Moonshine

Roberto Volpato

AEI Potsdam

Automorphic Forms, Lie Algebras and String Theory
Lille, March 3, 2014

References
D.Persson, R.Volpato, 1312.0622 [hep-th]
M.R.Gaberdiel, D.Persson, R.Volpato 1302.5425 [hep-th]
M.R.Gaberdiel, D.Persson, H.Ronellenfitsch, R.Volpato 1211.7074 [hep-th]
M.R.Gaberdiel, R.Volpato, 1206.5143 [hep-th]
M.R.Gaberdiel, S.Hohenegger, R.Volpato, 1106.4315, 1008.3778, 1006.0221 [hep-th]

Plan of the talk

(1) (Generalized) Mathieu Moonshine

2 Interpretation of Mathieu Moonshine
(3) Second Quantized Mathieu Moonshine

(Generalized) Mathieu Moonshine

Elliptic genus of K3: definition

- 2-dim $\mathcal{N}=(4,4)$ SCFT with central charge $c=6$
- Non-linear σ-model with target space K3
- The model depends on the choice of metric and B-field (80-dim moduli space of theories).

Elliptic genus

$$
\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left((-1)^{F+\tilde{F}} q^{L_{0}-\frac{c}{24}} \bar{q}^{\tilde{L}_{0}-\frac{\tilde{c}}{24}} y^{2 J_{0}^{3}}\right)
$$

where $(\tau, z) \in \mathbb{H} \times \mathbb{C}$ and $q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$.
J_{0}^{3} is Cartan generator of (left) $s u(2)$ in $\mathcal{N}=(4,4)$ SC algebra

Elliptic genus of K3: properties

$$
\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left((-1)^{F+\tilde{F}} q^{L_{0}-\frac{c}{24}} \bar{q}^{\tilde{L}_{0}-\frac{\tilde{c}}{24}} y^{2 J_{J_{3}^{3}}}\right)
$$

- Receives contributions only from right-moving ground states \rightarrow holomorphic in τ and z
- Independent of the metric and B-field
- Elliptic and modular properties:

$$
\begin{array}{ll}
\phi\left(\tau, z+\ell \tau+\ell^{\prime}\right)=e^{-2 \pi i\left(\ell^{2} \tau+2 \ell z\right)} \phi(\tau, z) & \ell, \ell^{\prime} \in \mathbb{Z} \\
\phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=e^{2 \pi i \frac{c z^{2}}{c \tau+d}} \phi(\tau, z) & \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
\end{array}
$$

\equiv (weak) Jacobi form of weight 0 and index 1

- $\phi_{K 3}(\tau, z)=8\left(\frac{\vartheta_{2}(\tau, z)^{2}}{\vartheta_{2}(\tau, 0)^{2}}+\frac{\vartheta_{3}(\tau, z)^{2}}{\vartheta_{3}(\tau,)^{2}}+\frac{\vartheta_{4}(\tau, z)^{2}}{\vartheta_{4}(\tau, 0)^{2}}\right)$

$\mathcal{N}=4$ characters and Mathieu representations

Decompose $\phi_{K 3}$ into (left) $\mathcal{N}=4$ characters $\operatorname{ch}_{\Delta, \ell}(\tau, z)$ at $c=6$

$$
\begin{array}{rlr}
\phi_{K 3}(\tau, z)= & 20 \operatorname{ch}_{\frac{1}{4}, 0}^{B P S}(\tau, z)-2 \operatorname{ch}_{\frac{1}{4}, \frac{1}{2}}^{B P S}(\tau, z) & \text { BPS reps } \\
& +\sum_{n=1}^{\infty} A_{n} \operatorname{ch}_{\frac{1}{4}+n, \frac{1}{2}}(\tau, z) & \text { massive reps }
\end{array}
$$

where A_{n} are the multiplicities of massive $\mathcal{N}=4$ irreps

$$
\frac{1}{2} A_{n}=45, \quad 231, \quad 770, \quad 2277, \quad 5796, \quad 13915, \quad \ldots
$$

The Mathieu group M_{24}

M_{24} is a finite simple group of order

$$
\left|M_{24}\right|=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \sim 2 \times 10^{8}
$$

Properties:

- Subgroup of S_{24} (=permutations of 24 symbols)
- 26 conjugacy classes
- 26 irreducible representations of dimensions

1, 23, 45, 231, 252, 253, 483, 770, 990, 1035, 1265,
$1771,2024,2277,3312,3520,5313,5544,5796,10395$

$\mathcal{N}=4$ characters and Mathieu representations

A_{n} are the multiplicities of massive $\mathcal{N}=4$ irreps

$$
\frac{1}{2} A_{n}=45, \quad 231, \quad 770, \quad 2277, \quad 5796, \quad 13915, \quad \ldots
$$

Dimensions of irreps of M_{24} :

$$
\begin{gathered}
1,23,45,231,252,253,483,770,990,1035,1265, \\
1771,2024,2277,3312,3520,5313,5544,5796,10395
\end{gathered}
$$

\ldots and $13915=3520+10395$
(for higher n, many possible decompositions)
[Eguchi, Ooguri, Tachikawa 1004.0956]

A Mathieu Moonshine?

Conjecture:[EOT]

There are M_{24} reps $R_{\Delta, \ell}$ s.t.

$$
\phi_{K 3}(\tau, z)=\sum_{(\Delta, \ell)} \operatorname{dim} R_{\Delta, \ell} \operatorname{ch}_{\Delta, \ell}(\tau, z)
$$

Spectrum \mathcal{H} of right-moving BPS decomposes as

$$
\mathcal{H}=\bigoplus_{(\Delta, \ell)}\left(\text { rep. } R_{\Delta, \ell} \text { of } M_{24}\right) \otimes(\mathcal{N}=4 \text { irrep with label }(\Delta, \ell))
$$

How can we prove this?

Path integral

Elliptic genus is obtained from path-integral on the torus $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$

Path integral is $S L(2, \mathbb{Z})$ invariant
 $\phi(\tau, z)$ is Jacobi form of wt 0 under $S L(2, \mathbb{Z})$

Twisted-twining genera

Twisted-twining genera $\phi_{g, h}$ from path-integral with twisted periodicity conditions

Path integral is invariant under $\Gamma_{g, h} \subseteq S L(2, \mathbb{Z})$

$$
\phi_{g, h}(\tau, z) \text { is Jacobi form of wt } 0 \text { for } \Gamma_{g, h}
$$

Operatorial interpretation

- if $g=$ identity (untwisted twining genera)

$$
\begin{aligned}
\phi_{1, h}(\tau, z) & =\operatorname{Tr}_{\mathcal{H}}\left(h(-1)^{F+\tilde{F}} q^{L_{0}-\frac{c}{24}} \bar{q}^{\tilde{L}_{0}-\frac{\tilde{c}}{24}} y^{2 J_{0}^{3}}\right) \\
& =\sum_{(\Delta, \ell)} \operatorname{Tr}_{R_{\Delta, \ell}}(h) \operatorname{ch}_{\Delta, \ell}^{\mathcal{N}=4}(\tau, z)
\end{aligned}
$$

- For general $g h=h g$,

$$
\begin{aligned}
\phi_{g, h}(\tau, z) & =\operatorname{Tr}_{\mathcal{H}_{g}}\left(\rho_{g}(h)(-1)^{F+\tilde{F}} q^{L_{0}-\frac{c}{24}} \bar{q}^{\tilde{L}_{0}-\frac{\tilde{c}}{24}} y^{2 J_{0}^{3}}\right) \\
& =\sum_{(\Delta, \ell)} \operatorname{Tr}_{R^{(g)}}\left(\rho_{g, \ell}(h)\right) \operatorname{ch}_{\Delta, \ell}^{\mathcal{N}=4}(\tau, z)
\end{aligned}
$$

where

- \mathcal{H}_{g} is the g-twisted sector
- ρ_{g} is projective representation of

$$
C_{M_{24}}(g):=\left\{h \in M_{24} \mid g h=h g\right\}
$$

Generalized Mathieu Moonshine

Conjecture: For each commuting $g, h \in M_{24}$ there is a Jacobi form $\phi_{g, h}(\tau, z)$ of wt 0 index 1 (twisted-twining genera) such that:
(1) $\phi_{1,1}=\phi_{K 3}$
(2) $\phi_{g, h}(\tau, z) \sim \phi_{k^{-1} g k, k^{-1} h k}(\tau, z) \quad k \in M_{24}$
(8) $\phi_{g, h}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \sim e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi_{g^{a} h^{c}, g^{b} h^{d}}(\tau, z)$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$
(4) $\phi_{g, h}(\tau, z)=\sum_{(\Delta, \ell)} \operatorname{Tr}_{R_{\Delta, \ell}^{(g)}}\left(\rho_{g}(h)\right) \operatorname{ch}_{\Delta, \ell}^{\mathcal{N}}=4(\tau, z)$

where $\rho_{g}^{\left(\triangle, Q^{\prime}\right)}$ is a (projective) rep of $C_{M_{24}}(g)$

Generalized Mathieu Moonshine

Conjecture: For each commuting $g, h \in M_{24}$ there is a Jacobi form $\phi_{g, h}(\tau, z)$ of wt 0 index 1 (twisted-twining genera) such that:
(1) $\phi_{1,1}=\phi_{K 3}$
(2) $\phi_{g, h}(\tau, z) \sim \phi_{k^{-1} g k, k^{-1} h k}(\tau, z) \quad k \in M_{24}$
(3) $\phi_{g, h}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \sim e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi_{g^{a} h^{c}, g^{b} h^{d}}(\tau, z)$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$
(-) $\phi_{g, h}(\tau, z)=\sum_{(\Delta, \ell)} \operatorname{Tr}_{R_{\Delta, \ell}^{(g)}}\left(\rho_{g}(h)\right) \operatorname{ch}_{\Delta, \ell^{N}}=4(\tau, z)$
where $\rho_{g}^{(\Delta, \ell)}$ is a (projective) rep of $C_{M_{24}}(g)$

Generalized Mathieu Moonshine

Conjecture: For each commuting $g, h \in M_{24}$ there is a Jacobi form $\phi_{g, h}(\tau, z)$ of wt 0 index 1 (twisted-twining genera) such that:
(1) $\phi_{1,1}=\phi_{K 3}$
(2) $\phi_{g, h}(\tau, z) \sim \phi_{k^{-1} g k, k^{-1} h k}(\tau, z) \quad k \in M_{24}$
(6) $\phi_{g, h}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \sim e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi_{g^{a} h^{c}, g^{b} h^{d}}(\tau, z)$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$
where $\rho_{g}^{(\Delta, \ell)}$ is a (projective) rep of $C_{M_{24}}(g)$

Generalized Mathieu Moonshine

Conjecture: For each commuting $g, h \in M_{24}$ there is a Jacobi form $\phi_{g, h}(\tau, z)$ of wt 0 index 1 (twisted-twining genera) such that:
(1) $\phi_{1,1}=\phi_{K 3}$
(2) $\phi_{g, h}(\tau, z) \sim \phi_{k^{-1} g k, k^{-1} h k}(\tau, z) \quad k \in M_{24}$
(3) $\phi_{g, h}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \sim e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi_{g^{a} h^{c}, g^{b} h^{d}}(\tau, z) \quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$

where $\rho_{g}^{(\Delta, \ell)}$ is a (projective) rep of $C_{M_{24}}(g)$

Generalized Mathieu Moonshine

Conjecture: For each commuting $g, h \in M_{24}$ there is a Jacobi form $\phi_{g, h}(\tau, z)$ of wt 0 index 1 (twisted-twining genera) such that:
(1) $\phi_{1,1}=\phi_{K 3}$
(2) $\phi_{g, h}(\tau, z) \sim \phi_{k^{-1} g k, k^{-1} h k}(\tau, z) \quad k \in M_{24}$
(3) $\phi_{g, h}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) \sim e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi_{g^{a} h^{c}, g^{b} h^{d}}(\tau, z) \quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$
(4) $\phi_{g, h}(\tau, z)=\sum_{(\Delta, \ell)} \operatorname{Tr}_{R_{\Delta, \ell}^{(g)}}\left(\rho_{g}(h)\right) \operatorname{ch}_{\Delta, \ell}^{\mathcal{N}=4}(\tau, z) \quad h \in C_{M_{24}}(g)$
where $\rho_{g}^{(\Delta, \ell)}$ is a (projective) rep of $C_{M_{24}}(g)$

Generalized Mathieu Moonshine

- All $\phi_{g, h}$ with expected modular properties have been found
- Verified that $R_{\Delta, \ell}^{(g)}$ exist such that

$$
\phi_{g, h}(\tau, z)=\sum_{(\Delta, \ell)} \operatorname{Tr}_{R_{\Delta, \ell}^{(g)}}\left(\rho_{g}(h)\right) \operatorname{ch}_{\Delta, \ell}^{\mathcal{N}=4}(\tau, z)
$$

- complete proof for $g=1$
[Cheng 1005.5415, Gaberdiel, Hohenegger, RV 1006.0221, 1008.3778; Eguchi, Hikami 1008.4924; Gannon 1211.5531]
- for $g \neq 1$, verified only for the first $500(\Delta, \ell)$ for each g [Gaberdiel, Persson, Ronellenfitsch, Volpato 1211.7074, 1302.5425]
- No ambiguity: $R_{\Delta, \ell}^{(g)}$ are unique (but the non-trivial statement is existence)

The conjecture is (partially) proved! But what's the interpretation?

Interpretation of Mathieu Moonshine

Interpretation?

- Obvious idea: is there a K3 model with symmetry group M_{24} ?

Interpretation?

- Obvious idea: is there a K3 model with symmetry group M_{24} ? NO

Complete classification of group G of symmetries of K3 models:

- There is no G such that $M_{24} \subseteq G$
- There are some G such that $G \not \subset M_{24}$
[Gaberdiel, Hohenegger, R.V. 1106.4315]

Interpretation?

New approach

- Look for interpretation of elliptic genus as space-time supersymmetric index in string theory compactifications
- Use string dualities to explain Moonshine (?)

Examples:

- $1 / 4 \mathrm{BPS}$ index in type $\mathrm{II} / \mathrm{K} 3 \times T^{2}$
[Cheng 1005.5415]
- 'New supersymmetric index' in Het/K3 $\times T^{2}$
[Cheng, Dong, Duncan, Harvey, Kachru, Wrase 1306.4981]
[Harrison, Kachru, Paquette 1309.0510]
[Wrase 1402.2973]
- $1 / 2$ BPS index in type $I I / K 3 \times S^{1}$ in NS5 branes background [Harvey, Murthy 1307.7717]

Second Quantized Mathieu Moonshine

Four dimensional $\mathcal{N}=4$

4-dim string compactifications with $\mathcal{N}=4$ space-time SUSY

$$
I I B /\left(K 3 \times T^{2}\right) \quad \leftrightarrow \quad I I A /\left(K 3 \times T^{2}\right) \quad \leftrightarrow \quad \text { Het } / T^{6}
$$

- Moduli space \mathcal{M}, with $\operatorname{dim} \mathcal{M}=134$
- Gauge group (at generic points): $U(1)^{28}$ (= 22 vector multiplets)
- Lattice of electric-magnetic charges: $(P, Q) \in \Gamma^{6,22} \oplus \Gamma^{6,22}$
- Duality group: $S L(2, \mathbb{Z}) \times O(6,22, \mathbb{Z})$

1/2 BPS states

$1 / 2$-BPS states are in the duality orbits of $(0, Q)$ (purely electric)
Index $B_{\frac{1}{2} B P S}(Q)$ counts 'degeneracy' of $1 / 2$ BPS states
Properties of $B_{\frac{1}{2} B P S}(Q)$:

- Independent of the moduli
- Invariant under duality group $S L(2, \mathbb{Z}) \times O(6,22, \mathbb{Z})$
\rightarrow it depends only on Q^{2}, i.e $B_{\frac{1}{2} B P S}(Q)=d\left(\frac{Q^{2}}{2}\right)$
Derivation in perturbative limit of Het / T^{6} :

$$
\sum_{n \in \mathbb{Z}} d(n) q^{n}=\frac{1}{\eta(\tau)^{24}} \quad \leftrightarrow \quad d(n)=\oint \frac{e^{-2 \pi i n \tau}}{\eta(\tau)^{24}}
$$

[Dabholkar, Harvey '89]

1/4 BPS states

1/4-BPS states are dyons (generic charge (P, Q))
Index $B_{\frac{1}{4} B P S}(P, Q)$ counts 'degeneracy' of $1 / 4 \mathrm{BPS}$ states
Properties of $B_{\frac{1}{4} B P S}(P, Q)$:

- Locally constant on moduli space, but can 'jump'
\rightarrow wall-crossing phenomenon
- Invariant under duality group $S L(2, \mathbb{Z}) \times O(6,22, \mathbb{Z})$

$$
B_{\frac{1}{4} B P S}(P, Q)=d\left(\frac{Q^{2}}{2}, \frac{P^{2}}{2}, P \cdot Q\right)
$$

$$
d(m, n, \ell)=(-1)^{\ell+1} \int_{\mathcal{C}} \frac{e^{-2 \pi i(m \sigma+n \tau+\ell z)}}{\Phi_{10}\left(\begin{array}{cc}
\sigma & z \\
z
\end{array}\right)}
$$

[Dijkgraaf, Verlinde ${ }^{2}$ '96], [Dijkgraaf, Moore, Verlinde ${ }^{2}$ '96], ...

- $\Phi_{10}(\Omega)$ is Siegel modular form of weight 10

$$
\Phi_{10}\left((A \Omega+B)(C \Omega+D)^{-1}\right)=\operatorname{det}(C \Omega+D)^{10} \Phi_{10}(\Omega)
$$

where $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(4, \mathbb{Z})$

- $\Phi_{10}\left(\begin{array}{ll}\sigma & z \\ z & \tau\end{array}\right)$ has double zero at $z=0$ with

$$
\lim _{z \rightarrow 0} z^{-2} \Phi_{10}\left(\begin{array}{cc}
\sigma & z \\
z
\end{array}\right) \sim \eta(\tau)^{24} \eta(\sigma)^{24}
$$

- $d(m, n, \ell)$ 'jumps' as \mathcal{C} crosses the pole (wall-crossing) [Cheng, Verlinde '07]
Φ_{10} is the multiplicative lift of elliptic genus $\phi_{K 3}$ Multiplicative lift

$$
\Phi_{10}\left(\begin{array}{cc}
\sigma & z \\
z & \tau
\end{array}\right)=p q y \quad \prod\left(1-p^{m} q^{n} y^{l}\right)^{c(m n, l)}
$$

where $p=e^{2 \pi i \sigma}, q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$ and

$$
\phi_{K 3}(\tau, z)=\sum_{n, l} c(n, l) q^{n} y^{l}
$$

Electric-magnetic duality $\sigma \leftrightarrow \tau$ manifest

Derivation by D1-D5-P system in type IIB/K3 $\times T^{2}$

Second quantized elliptic genus

$$
\begin{aligned}
\frac{1}{\Phi_{10}\left(\begin{array}{ll}
\sigma & z \\
z & \tau
\end{array}\right)} & =(\text { correction }) \times \sum_{m=0}^{\infty} e^{2 \pi i m \sigma} \phi_{S^{m} K 3}(\tau, z) \\
& =(\text { correction }) \times \exp \left(\sum_{N=0}^{\infty} e^{2 \pi i N \sigma} T_{N} \phi_{K 3}(\tau, z)\right)
\end{aligned}
$$

where T_{N} are Hecke operators

$$
T_{N} \phi(\tau, z):=\frac{1}{N} \sum_{a d=N} \sum_{b=0}^{d-1} \phi\left(\frac{a \tau+b}{d}, a z\right)
$$

Second-quantized Mathieu Moonshine

For all commuting pairs $g, h \in M_{24}$, define [Cheng '10; Persson, Volpato '13]

$$
\begin{aligned}
\Phi_{g, h}\left(\begin{array}{cc}
\sigma & z \\
z & \tau
\end{array}\right)^{-1} & =(\text { correction }) \times \sum_{m=0}^{\infty} e^{2 \pi i m \sigma} \phi_{g, h}^{S^{m} K 3}(\tau, z) \\
& =(\text { correction }) \times \exp \left(\sum_{N=0}^{\infty} e^{2 \pi i N \sigma} \mathcal{T}_{N} \phi_{g, h}(\tau, z)\right)
\end{aligned}
$$

where \mathcal{T}_{N} are twisted equivariant Hecke operators

$$
\mathcal{T}_{N} \phi(\tau, z):=\frac{1}{N} \sum_{a d=N} \sum_{b=0}^{d-1} \epsilon_{g, h}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \phi_{g^{d}, g^{-b} h^{a}}\left(\frac{a \tau+b}{d}, a z\right)
$$

with $\epsilon_{g, h}$ suitable phases

Second-quantized Mathieu Moonshine

Infinite product representation

$$
\Phi_{g, h}\left(\begin{array}{cc}
\sigma & z \\
z & \tau
\end{array}\right)=p q^{\frac{1}{N}} y \prod_{(d, m, \ell)>0} \prod_{t=0}^{M-1}\left(1-e^{\frac{2 \pi i t}{M}} q^{\frac{m}{N}} y^{\ell} p^{d}\right)^{\hat{c}_{g, h}(d, m, \ell, t)}
$$

where M, N orders of g, h in central extension of $C_{M_{24}}(g)$

$$
\hat{c}_{g, h}(d, m, \ell, t):=\sum_{k=0}^{M-1} \sum_{b=0}^{N-1} \frac{e^{-\frac{2 \pi i t k}{M}}}{M} \frac{e^{\frac{2 \pi i b m}{N}}}{N} \epsilon_{g, h}\left(\begin{array}{ll}
k & b \\
0 & d
\end{array}\right) c_{g^{d}, g^{-b} h^{k}}\left(\frac{m d}{N}, \ell\right)
$$

with

$$
\phi_{g, h}(\tau, z)=\sum_{r, l} c_{g, h}(r, l) q^{r} y^{\prime} \quad r \in \mathbb{Q}, I \in \mathbb{Z}
$$

Second-quantized Mathieu Moonshine

Properties:

- All $\Phi_{g, h}$ invariant under finite index subgroups of paramodular groups $\Gamma_{t}(N) \subset S p(4, \mathbb{R})$
[Gritsenko, Nikulin] [Gritsenko, Cléry]
- 'Electric-magnetic duality’

$$
\Phi_{g, h}\left(\begin{array}{cc}
\sigma & z \\
z & \tau
\end{array}\right)=\Phi_{g, h^{\prime}}\left(\begin{array}{cc}
\tau / N & z \\
z & N \sigma
\end{array}\right)
$$

where h^{\prime} is not necessarily the same as h

- 'Wall-crossing':

$$
\lim _{z \rightarrow 0} z^{-2} \Phi_{g, h}\left(\begin{array}{cc}
\sigma & z \\
\tau
\end{array}\right) \sim \eta_{g, h}(\tau) \eta_{g, h^{\prime}}(\sigma)
$$

where $\eta_{g, h}$ are η-products defining 'old Mathieu Moonshine' [Mason '89-'90]

A physical meaning?

Suppose g, h are commuting discrete symmetries of internal CFT (non-linear sigma model on $\mathrm{K} 3 \times T^{2}$)

- We compactify on the g-orbifold of the internal CFT
\rightarrow new $4-\operatorname{dim} \mathcal{N}=4$ model (CHL model)
[Chauduri, Hockney, Lykken '95]
- Consider the h-twisted indices in the g-orbifold
$\frac{1}{2}$ BPS: $B_{\frac{1}{2} ; g, h}(Q):=\operatorname{Tr}_{g ; Q}(h \ldots)=d_{g, h}\left(\frac{Q^{2}}{2}\right)$
$\frac{1}{4} \mathrm{BPS}: B_{\frac{1}{4} ; g, h}(P, Q):=\operatorname{Tr}_{g ; P, Q}(h \ldots)=d_{g, h}\left(\frac{Q^{2}}{2}, \frac{P^{2}}{2}, P \cdot Q\right)$

A physical meaning?

Computed for various pairs of symmetries g, h [Cheng, Dabholkar, David, Gaiotto, Govindarajan, Jatkar, Murthy, Pioline, Sen, Verlinde, ...]

$$
\begin{array}{ll}
\frac{1}{2}-\mathrm{BPS}: & d_{g, h}(n)=\oint \frac{e^{-2 \pi i n \tau}}{\eta_{g, h}(\tau)} \\
\frac{1}{4} \text {-BPS: } & d_{g, h}(m, n, \ell)=(-1)^{\ell+1} \int_{\mathcal{C}} \frac{e^{-2 \pi i(m \sigma+n \tau+\ell z)}}{\Phi_{g, h}\left(\begin{array}{c}
\sigma \\
z \\
z
\end{array}\right)}
\end{array}
$$

$\eta_{g, h}$ and $\Phi_{g, h}$ coincide with some functions from second quantized Mathieu Moonshine

Summary and outlook

- Generalized MM suggests structure similar to CFT
- Problems in building a consistent CFT with right properties
- Second-quantized twisted-twining genera satisfy 'electric-magnetic duality' and 'wall-crossing'

Some open questions:

- Precise modular properties of $\Phi_{g, h}$?
- Can they be described as additive lifts?
- Denominators of BKM algebras?
- Relation with Umbral Moonshine?
- Physical interpretation of what we observe?

