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Introduction: Emerging relation between:

Feynman integrals⇔ Periods of algebraic varities
Planar Feynman graph Max. Cut Integrals Period - Geometry

1-loop rational functions Pts in Fano 1-fold
2-loop elliptic functions families of elliptic curve
3-loop fullfil 3 ord. hom diff eqs. families of K3
4-loop fullfil 4 ord. hom diff eqs. families of CY-3-fold
...

...
...

For the full Feynman integral the rational functions are

replaced by rational polylogarithms X and the elliptic

functions by elliptic polylogarithms (X) . I. Gel’fand, S. Bloch, P.

Vanhove, M.Kerr, C. Duran, S. Weinzierl, F. Brown, O. Schnetz, J. Bourjaily, A. Mc Leod, M. Hippel, M. Wilhelm, J.

Broedel, L Trancredi, S. Müller-Stach, . . . + 248 cits. in [3]
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For the Banana diagrams: this dictionary is worked out

to all loop orders [1,2]. The aim of this talk is to explain

the applications of the dictionary relating Feynman

integrals to families of Calabi-Yau motives and to extend

them to include the dimensional regularization parameter

[3] ε and comment on the extensions to other graphs as

e.g. in the calculation for the probability for e− e+ to

annihilate to two photons

P (e−e+→ γγ)∼|A(e−e+→ γγ)|2, α∼ 1
137
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Decisive part e.g. for e.g. the box integral: Propagators

(edge) → 1
q2−m2+i·0

Yields a function of masses and Lorentz invariant

products of the external momenta that we need to know!
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Master Integrals and integration by parts relations:

Consider l-loop Feynman integrals in general dimensions

D ∈ R+ of the form

Iν(x,D) :=

∫ l∏
r=1

dDkr

iπ
D
2

p∏
j=1

1

D
νj
j

(1)

Dj = q2
j −m2

j + i · 0 for j = 1, . . . , p are the propagators,

qj is the jth momenta through Dj, m
2
j ∈ R+ are masses,

i · 0 indicates the choice of contour/branchcut in C.

Subject to momentum conservation the pj are linear in

the external momenta p1, . . . , pE,
∑E

i=j pj = 0 and the
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loop momenta kr.

ε :=
D0 −D

2
describes the deviation from a critical dimension D0,

which depends on the graph.

The Feynman integral depends besides D on dot

products of pi and the masses m2
j, written compactly in a

vector x = (x1, . . . , xN) = (pi1 · pi2,m2
j).

Actually, dimensional analysis of Iν shows that it depends

only on the ratios of two parameters xi. In particular, we
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can chose

zk := xk/xN for 1 ≤ k < N

and label now the parameters of the integrals Iν by the

dimensionless parameters z.

The propagator exponents and D ∈ Z span a lattice

(ν,D) ∈ Zp+1. There is a finite set of integrals Iν(x,D)

so called master integrals, which yields all non-vanishing

integrals in this lattice.

A generating set of master integrals can be found by
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integration by parts (IBP) identities∫ l∏
r=1

dDkr

iπ
D
2

∂

∂kµk

qµl p∏
j=1

1

D
νj
j

 = 0 .

The IBP relations relate in particular master integrals

with different exponents ν.

Among the elements in the lattice Zp and, in particular,

for the master integrals one can define sectors and a

semi-ordering on the latter by defining a map

ν 7→ ϑ(ν) =: (θ(νj))1≤j≤p .
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where θ is the Heaviside step function. The semi-ordering

is then defined by ϑ(ν) ≤ ϑ(ν̃), iff θ(νj) ≤ θ(ν̃j), ∀j.

This defines an inclusive order on subgraphs with less

propagators and therefore simpler topology.

The important property is that there is a finite region in

the lattice that contains all non-vanishing master

integrals. Picking a basis one can can express derivatives

of this basis w.r.t. the zk as a linear combination of

master integrals with rational coefficients.
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Main Example: A very simple series of such Feynman

integrals with loop order l are the banana diagrams in

critical dimension D0 = 2:

p2 p2

m1

m2

m3

ml+1

Dj = k2
j −m2

j , 1 ≤ j ≤ l ,

Dl+1 = (k1 + . . .+ kl − p)2 −m2
l+1 ,

z = (m2
1/p

2, . . . ,m2
l+1/p

2) .
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Families of Calabi-Yau manifolds for the banana integral:

Using the graph polynomials U and F we can write the

integral generally as:

I1,...,1(p,m,D) =

∫
σl

(
l+1∏
k=1

x
δk
k

)
Uω−D2

F(p2,m2)ω
µl .

• νi = 1 + δi, ω :=
∑l+1

i=1 νi − lD
2 − 1 + lε+

∑
i δi

• σn−1 = {[x1 : . . . : xn] ∈ Pn−1|xi ∈ R≥0 ∀ 1 ≤ i ≤ n} an

open domain,

• µl=
∑n
k=1(−)k+1xkdx1 ∧ .. ∧ d̂xk ∧ .. ∧ dxn measure on Pl.
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The two Symanzik polynomials for the banana graph are
given by:

U =

(
l+1∏
i=1

xi

)(
l+1∑
i=1

1

xi

)
=

l+1∑
i=1

l+1∏
j=1
j 6=i

xj ,

F(p2,m2) = −p2

(
l+1∏
i=1

xi

)
+

(
l+1∑
i=1

m2
ixi

)
U .

In the critical dimension D0 = 2 one gets a maximal cut
integral

J
ΓT
l,0 (z; 0) =

∫
T l

µl
F(1, z)

=

∫
T l−1

∮
S1

µl
F(1, z)

= 2πi

∫
ΓT=T l−1

Ωl−1(z) ,

over the cycle T l defined as

T l := {[x1 : . . . : xl+1] ∈ Pl | |xi| = 1 for all 1 ≤ i ≤ l+1} .
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Here we used the Griffiths residue form for the

holomorphic n-form Ω for complete intersections

Ω(z) =
1

(2πi)r

∮
S1

1

. . .

∮
S1
r

∧mi=1µni
P1 · · ·Pr

,

where S1
k encircles the constraints Pk = 0 in the ambient

space. The crucial point is that the integral over the S1

cycle of T l leads to a closed period integral over

T = T l−1 on

MHS
l−1 = {x ∈ Pl|F(1, z;x) = 0} .
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Performing all l residua integrals one gets

J
ΓT
l,0 (z; 0) = (2πi)l

∞∑
n=0

∑
|k|=n

(
n

k1 . . . kl+1

)2 l+1∏
i=1

zkii ,

with |k| =
∑l+1

i=1 ki.

The hypersurface MHS
l−1 defines a singular family of

Calabi-Yau motives with l + 1 complex parameters. To

get a workable smooth model one could deform

F (1, z;x) (toric resolution). However, one needs l2

(complex) moduli to achieve that. This leads to a highly

redundant model that is very hard to solve. We provide a
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better CY motive latter.

Master Integrals for the banana integrals: The banana

graph has 2l+1 − 1 master integrals in l + 2 sectors:

l + 1 sectors correspond to ϑ(ν) = (1, . . . , 1, 0, 1 . . . 1).
These sectors correspond all to l-loop tadpole integrals

Jl,i(z; ε)=
(−1)l+1(p2)lεεl

Γ(1 + lε)
I1..1,0,1..1(x;D)=−Γ(1 + ε)l

Γ(1 + lε)

l+1∏
j=1
j 6=i

z−εj .

2l+1 − l − 2 master integrals come from the sector
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ϑ(ν) = (1, . . . , 1), k ∈ {0, 1}l+1, 1 ≤ |k| ≤ l − 1,

Jl,0(z; ε) =
(−1)l+1

Γ(1 + lε)
(p2)1+lε I1,...,1(x; 2− 2ε) ,

Jl,k(z; ε) = (1 + 2ε) · · · (1 + |k|ε)∂kzJl,0(z; ε) .

Here |k| =
∑l+1

j=1 kj and ∂kz =:
∏l+1

i=1 ∂
ki
zi

.

The number of master integrals changes discontinuosly,

when x, ε changes:

• E.g. if m2
i = m2, the equal-mass case yields only l + 1
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master integrals

Jl,0(z; ε) =
(−1)l+1

Γ(1 + lε)
(m2)lεεl I1,...,1,0(p2,m2; 2− 2ε) = −Γ(1 + ε)l

Γ(1 + lε)
,

Jl,1(z; ε) =
(−1)l+1

Γ(1 + lε)
(m2)1+lε I1,...,1(p2,m2; 2− 2ε) ,

Jl,k(z; ε) = (1 + 2ε) · · · (1 + kε) ∂k−1
z Jl,1(z; ε) , for 2 ≤ k ≤ l ,

• In the critical dimension, i.e. ε = 0, we have only
2l+1 −

( l+2
bl+2

2 c

)
+ 1 independent master integrals. This

was shown in [2] by analyzing the horizontal cohomology
of a complete intersection Calabi-Yau geometry MCI

l−1,
i.e. the derivatives of the holomorphic Ωl−1 form,
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modulo the Griffith reduction relations or the vertical
cohomology of its mirror W CI

l−1

hl−1−k,k
hor (MCI

l−1) =


(
l+1
k

)
if k ≤

⌈
l
2

⌉
− 1(

l+1
l−1−k

)
otherwise
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First order IBP and Gauss-Manin connection: Physics

experience shows that one can recast the IBP relations as

dI(x; ε) = A(x; ε) I(x; ε) ,

where d =
∑N

k=1 dxk ∂xk and A(x; ε) is a matrix of

rational one-forms. In this first order form one can

identify the master integrals dI(x; ε) as the Hodge

bundle over x, ε and the first order differential form as its

flat Gauss-Manin connection.
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To provide an iterative solution scheme one searches for

a new basis I(x; ε) = M(x; ε)J(z; ε)

dJ(z; ε) = Ã(z; ε)J(z; ε) ,

Ã(z; ε) = M(x; ε)−1 [A(x; ε)M(x; ε)− dM(x; ε)] ,

so that

• Ji,0(z; ε) = limε→0 Ji(z; ε) are finite and non-zero

• A0(z) := limε→0 Ã(z; ε) regular
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and one composes the master integrals into its sectors

J(z; ε) = (J1(z; ε)
T , . . . , Js(z; ε)

T)T ,

so that Ã(z; ε) becomes block-diagonal and the master

integrals in each sector satisfy an inhomogeneous

differential equation

dJ r(z; ε) = Br(z; ε) J r(z; ε) +N r(z; ε) , 1 ≤ r ≤ s .

where the inhomogeneity N r(z; ε) = Wl(z)
−1Ñl(z; ε)

contains integrals from lower sectors, which should have

been characterized analytically in previous steps of the

iterative scheme.
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The special role of the banana integrals in this program:

• The lower sectors are all tadpoles yielding already

analytic expressions.

• Banana integrals do occur in the iterative procedure
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within each more complicated Feynman diagram.

• The homogenous solutions or maximal cuts correspond

in the critical dimension or said differently in leading

order in ε→ 0 the period integrals of families of Calabi-

Yau (n = l − 1)-folds.
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The dictionary between maximal cut integrals
and families of Calabi-Yau motives:

l = (n + 1)-loop banana Calabi-Yau (CY) geometry
integrals in D = 2 dimensions

1 Maximal cut integrals (n, 0)-form periods of CY
in D = 2 dimensions manifolds or CY motives

2 Dimensionless ratios zi = mi
2/p2 Unobstructed compl. moduli of Mn, or

equi’ly Kähler moduli of the mirror Wn

3 Integrand-basis for maximal cuts of Middle (hyper) cohomology Hn(Mn)
of master integrals in D = 2 Mn

4 Quadratic relations among Quadratic relations from
maximal cut integrals Griffiths transversality

5 Integration-by-parts (IBP) reduction Griffiths reduction method
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6 Complete set of differential Homogeneous Picard-Fuchs
operators annihilating a given differential ideal (PFI) /

maximal cut in D = 2 dimensions Gauss-Manin (GM) connection

7 (Non-)maximal cut contours (Relative) homology of CY
geometry Hn(Mn) (Hn+1(Fn+1, ∂σn+1))

8 Contributions from subtopologies Extensions of the PFI
to the differential equations or the GM connection

9 Full banana integrals Chain integrals in CY geometry or
in D = 2 dimensions extensions of Calabi-Yau motive

10 Degenerate kinematics Critical divisors
(e.g., m2

i = 0 or p2/m2
i → 0) of the moduli space

11 Large-momentum regime Point of maximal unipotent

p2 � m2
i monodromy & Γ̂-classes of Wn
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12 General logarithmic degenerations Limiting mixed Hodge structure
from monodromy weight filtration

13 Analytic structure and Monodromy of the CY motive
analytic continuation and its extension

14 Special values of the integrals Reducibility of Galois action
for special values of the zi & L-function values

15 (Generalized?) modularity of Global O(Σ,Z)-monodromy, integrality
Feynman integrals of mirror map & instantons expansion

Status of this program for the banana integrals:

• For the banana graphs the PFI is a Gel′fand-Kapranov-

Zelevinsk̆ı ideal and the program for ε → 0 has been
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completed [1,2].

• In this work [3] we further generalize that to include the

general ε dependence.
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Definition: A Calabi -Yau n-fold M is a Kähler manifold

of complex dimension n with the following additional

equivalent properties

• a.) The Ricci curvature vanishes Rī = 0

• b.) The canonical class is trivial KM = c1(TM) = 0

• c.) It has a no-where vanishing holomorphic (n, 0)-form

Ω (and a type (1, 1) Kähler form ω)

• d.) It has SU(n) holonomy

• e.) It has two covariant constants spinors . . .
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Constructions: Trick make c1(M) = 0 by adjunction

formula: Take any Fano variety F , i.e. a Kähler variety

with c1(F ) > 0 and

• a). take a section of KF (compact)

• b). take the complement of a section of KF in F

(non-compact)

• c) take the total space of the anti-canonical line bundle

O(−KF)→ F (non-compact)
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Examples:

• a.) F = P2, KF = 3H, i.e. a section of KF is a

homogenous cubic, often written in Weierstrass form

wy2 = 4x3 − g2(z)xw
2 − g3(z)w

3

Using the Weierstrass P(τ(z), ζ)-function this is

identified with a 2-torus with complex structure

τ(z) ∼loc z, which is (Ricci) flat. Note Ω = dx/y

• b.) F = P1 ∼ S2, KF = 2H. The section x2 + y2 = 0

defines two Pts. A sphere minus 2 Pts is 2-cylinder
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which is (Ricci) flat

• c.) F = P1: O(−2) → P1 is the local neighbourhood

of a two sphere in K3, which is flat by the adjunction

formula . . ..

Main properties:

• Their complex moduli spaces Mcs are unobstructed.

This leads to families of CY n-folds over Mcs.

• Periods Π(z) =
∫

Γ Ω(z) parametrize locally faithfully

the Mcs (local) Torelli Theorem



32

• Periods are completly characterized by homogenous

linear differential equations called Gauss-Manin– or

Picard-Fuchs system.

• CY manifolds come generically in mirror pairs

(M,W ) for which the complex deformations and the

complexified Kähler deformations are exchanged

• Periods fulfill Griffths transversality conditions that leads

to a special geometric structure on Mcs

Periods and Calabi-Yau motives:
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• Period integrals for geometric families of Calabi-Yau

n-folds Mn

Πij(z) =

∫
Γi

γj(z) ,

are pairings

Π : Hn(Mn,Z)×Hn(Mn,C)→ C .

• Here Γi is a fixed basis of homology Hn(Mn,Z) and

γj(z) a basis of cohomology Hn(Mn,C) varying with

the complex structure z.

• One can made a fix choice γ̃j ∈ Hn(Mn,Z) so that
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Γi
γ̃j = δji and

∫
Mn
γ̃i ∧ γ̃j = Σij yields the intersection

form Σ.

• Σ is an even lattice form or an odd integer symplectic

form if n is even or odd,respectively.

• The periods are solution to a homogenous Gauss-Manin-

System and correspond for fixed Γi to the maximal cut

integrals.

• Maximal cut integrals are characterized either by being

homogeneous solutions of the GM-System or that the

corresponding contours enclose all propagator poles.
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• For families of Calabi-Yau manifolds (motives) the first

order Gauss-Manin system is equivalent to the Picard-

Fuchs differential ideal (PFI).

• For l = 1 the periods are rational — for l = 2 elliptic

functions.

• For higher l they generalise to periods of (weight or)

dimension n = l − 1 families of Calabi-Yau manifold

(motives).
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• Calabi-Yau motives are characterized by their Picard-

Fuchs differential ideal, the intersection form Σ and

monodromies in O(Σ,Z).

• The inhomogenous solutions for ε → 0 correspond to

the extension of these Calabi-Yau motives by chain

integrals.

• Both structures can be analytically solved everywhere in

the parameter space using the PFI, the Γ̂ class and its

extension.

• Connecting graphs of different topologies using the
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symmetry preseriving ε regularisation resembles strongly

the unification of topologies using the α′ regularisation

and string/QFT correspondence principle.

A better Calabi-Yau motive: A very elegant way to

circumvent this problem was proposed in [2]. Consider

the complete intersection of two polynomials of degree



38

(1, . . . , 1) in

Pl+1 :=

l+1⊗
i=1

P1
(i) ,

i.e., we have after an étale map to mirror coordinates

MCI
l−1 =

{(
w

(i)
1 : w

(i)
2

)
∈ P̂1

(i),∀i
∣∣∣∣

P1 :=
∑l+1
i=1 a

(i)w
(i)
1 + b(i)w

(i)
2 =

∑l+1
i=1 c

(i)w
(i)
1 + d(i)w

(i)
2 =:P2 =0

}
.

(2)
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This is transversal dP1 ∧ dP2 6= 0 when P1 = P2 = 0 iff

det

(
a(i) b(i)

c(i) d(i)

)
6= 0

for all i = 1, . . . , l + 1. On every P1
(i) there is a natural

SLi(2,C) action which allows to make the choices

a(i) = −m
2
i

p2
= −zi, d(i) = x, i = 1, . . . , l + 1,

b(1) =
x

w
(1)
2

, c(1) =
1

w
(1)
1

,

b(i) = c(i) = 0, i = 2, . . . , l + 1,
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One can construct a birational map from the smooth
complete intersection geometry to the singular
hypersurface geometry by solving for P1 = 0 such that
one gets x =

∑l+1
i=1

m2
i

p2 w
(i)
1 . P2 becomes P2 = 1− x

∑l+1
i=1w

(i)
2 .

Passing to C∗ coordinates w
(i)
1 = Wi and w

(i)
2 = 1/Wi,

for i = 1, . . . , l + 1, we find

P2 = p2 −

(
l+1∑
i=1

m2
i Wi

)(
l+1∑
i=1

1

Wi

)
.

This is the hypersurface written in C∗ coordinates!
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Remarks on Calabi-Yau motives:

• The smooth hypersurface geometry MHS
n and MCI

n have

not the same topology. Indeed it is easy to check that

χ(MHS
3 ) = 20 , χ(MHS

4 ) = 540 , . . . ,

χ(MCI
3 ) = −80 , χ(MCI

4 ) = 720 , . . . .

• They are related by a singular transition. E.g. for n = 3

we have

X16,26
u → Xsing

a → X̂5,45 . (3)

Here X16,26
u is our deformed space MHS

3 with χ(MHS
3 ) =
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20. The superscripts are h21 and h11, respectively. Xsing
a

is the singular five-parameter space in the physical slice

written in torus variables, and X̂5,45 is a small resolution

of Xsing
a . Xsing

a has 30 nodes, where S3-spheres are

shrinking. Replacing each singular loci by P1 resolved

them small. Each resolution adds χ(P1) = 2 to the

Euler number leading the topology X̂5,45, which mirror

to MCI
3 !

• Indeed, MCI
n is self mirror in the following sense:

Consider the l + 1 deformations of (2). By taking
deriviatives of Ωn w.r.t. these parameters modulo the
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Griffiths partial integration relation

∑
k 6=j

mk

mj − 1

Pj
Pk

q∂xiPk∏r
l=1P

ml
l

µ =
1

mj − 1

Pj∂xiq∏r
l=1P

ml
l

µ−
q∂xiPj∏r
l=1P

ml
l

µ ,

we can define Hhor
n (MCI

l−1). The latter is mirror to the

vertical cohomology Hk,k
vert(W

CI
n ) that is inherited from

Pl+1. Similar remarks hold for the associated homology

groups. If we restrict ourselves to these vertical– and

horizontal subspaces, then the geometries for the banana

graphs are self mirrors

MCI, res
l−1 = W CI, res

l−1 .
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The mirror picture:

The vertical quantum cohomology of W CI
l−1 relates

natural to the banana graph

p2 p2

m1

m2

m3

ml+1

←→W CI
l−1 =

 P1
1
...

P1
l+1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 1
...

...
1 1

 ⊂
 P1

1
...

P1
l+1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
...
1

 = Fl .
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In particular, in the high energy regime we get a

one-to-one identification of the complexified (large

volume) Kähler parameters tk of the l + 1 rational curves

P1
k with the physical parameters m2

i/p
2

tk ' 1

2πi

∫
P1
k

(iω − b) +O(e−t
k
) =

log

2πi

(
m2
k

p2

)
=

log(zk)

2πi

for k = 1, . . . , l + 1. Away from the limit the mirror

symmetry for complete intersections and, in particular,

the associated GKZ system provides the exact answer,

including the exponentially suppressed O(e−t
k
)

corrections.
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The fiberation Structure: E =

 P1
1

P2

P1
3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1
1 1
1 1

 is the elliptic

curve associated to the two-loop graph. The K3

associated to the three-loop graph K3 =


P1

1
P1

2
P1

3
P1

4

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 1

1 1
1 1
1 1

 is

fibered in four ways by E over each of its P1
k. The K3

fibres the Calabi-Yau three-fold W CI
3 in five ways and so

on.
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The Γ̂-classes: A powerful application of the geometric

realization W CI
l−1 is the Γ̂-class formalism. It relates the

Frobenius Q-basis of solutions at the point of maximal

unipotent monodromy (MUM) to an integral Z-basis of

solutions to the PFI.

The latter contains the maximal cut integral that

corresponds to the unique period ΠS over a Sl−1 =: S

that vanishes at the nearest conifold and describes the

imaginary part of the banana integral above threshold.

An extension of the Γ̂-class also yields the full Feynman

integral in the critical dimension. Note that S ∩T = 1
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and both cycles play a crucial role in homological mirror

symmetry.

Let Ip an index set of order |Ip| = p and define the
Frobenius basis at the MUM point:

S(p),k(z) =
1

(2πi)pp!

∑
Ip

κ
i1,...,ip
(p),k $0(z) log(zi1) · · · log(zip) +O(z1+α) .

Here |S(p)(z)| denotes the total number of solutions

which are of leading order p in log(zi) and κ
i1,...,ip
(p),k are

intersection numbers of the mirror W CI
l−1.
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In particular, the Kähler parameters tk are given by the

mirror map

tk(z) =
S(1),k(z)

S(0),0(z)
=

1

2πi

(
log(zk) +

Σk(z)

$0(z)

)
,

for k = 1, . . . , h11(Wn) = hn−1,1(Mn).

Homological mirror symmetry predicts then a maximal

cut integral

ΠS(t(z)) =

∫
Wl−1

eω·t Γ̂(TWl−1) +O(e−t) (4)
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and an extension also yields the full Feynman integral

Jl,0(z, 0) =

∫
Fl

eω·t Γ̂Fl(TFl) +O(e−t) . (5)

Here the extended Γ̂-class is given by

Γ̂F(TF ) =
Â(TF )

Γ̂2(TF )
=

Γ(1− c1)

Γ(1 + c1)
cos(πc1) .

By comparing the powers of tk ∼ log(zk) on both sides

of (4),(5) using the mirror map these formulas determine

uniquely the exact boundary conditions for the integrals
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in terms of topological intersection calculations on W CI
l−1

or the Fano variety Fl and the Frobenius basis for the

banana graph [2]. Let us give an example for

Il,1(p,m,D = 2) up to five loops

l S(0),1 S(1),1 S(2),1 S(3),1 S(4),1

1 −2πi

2 18ζ(2) 6πi

3 −16ζ(3) + 24iπζ(2) −72ζ(2) −12πi

4 −450ζ(4)− 80iπζ(3) 80ζ(3)− 120πiζ(2) 180ζ(2) 20πi

5
−288ζ(5) + 1440ζ(2)ζ(3)−

540iπζ(4)
2700ζ(4)+
480iπζ(3)

−240ζ(3)+
360πiζ(2)

−360ζ(2) −30πi
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Roadmap to the physical moduli space:

s = 1/t ∈Mcs(Ml−1) = P1 \
(⋃bl+1

2 c
j=0

{
1

(l+1−2j)2

}
∪ {0}

)

s = 0

MUM pt.

s = 1
(l+1)2

conifold

s = 1
(l−1)2

conifold

· · ·
s = 1

pure Torsion

conifold

s = 33 + 8
√

17

s =∞

Bessel pt.

rBI
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Comparison with a Barnes integral representations:

Using the indentity

1

(A+B)λ
=

∫ c+i∞

c−i∞

dξ

2πi
AξB−ξ−λ

Γ(−ξ)Γ(ξ + λ)

Γ(λ)
,

one can rewrite F(p2,m2)−ω as

Ĩ =

∫
dξ0
2πi

Γ(−ξ0)Γ(ξ0 + ω)

Γ(ω)
(−p2)ξ0

×
∫

[0,∞)l
dx1 . . . dxl

(
l+1∏
i=1

xξ0+δi
i

) l+1∑
i=1

l+1∏
j=1
j 6=i

xj


−ξ0−d2(

l+1∑
i=1

m2
ixi

)−ξ0−ω
.

(6)
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The actual specifications of the contours in this integral
is very complicated. But one can correctly close in the
large momentum region and here also with δi = 0 for all
i the contours to find

I1,...,1(p2,m2; 2− 2ε) =
1

Γ(1 + lε)

(
1

−p2 − i0

)1+lε∑
j∈{0,1}l+1

Γ(−ε)j Γ(ε)l+1−jΓ(1 + (j − 1)ε)

Γ(−jε)

×

l+1∏
i=1

(
m2
i

−p2 − i0

)(ji−1)ε ∑
n∈Nl+1

0

(1 + jε)n (1 + (j − 1)ε)n∏l+1
i=1(1 + (−1)ji+1ε)ni

l+1∏
i=1

1

ni!

(
m2
i

p2

)ni
(7)

and infer the leading asymptotic behavior at large

momentum.
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Letting n = (0, . . . , 0) in eq. (7), we can extract the
leading behavior of the banana integrals at large
momentum, e.g. for the generic-mass case

I1,...,1(p2,m2; 2− 2ε) = − 1

Γ(1 + lε)
eiπlε

(
1

p2

)1+lε

×
∑

j∈{0,1}l+1

eiπ(j−1)εΓ(−ε)j Γ(ε)l+1−j Γ(1 + (j − 1)ε)

Γ(−jε)

l+1∏
i=1

z
(ji−1)ε
i +O

(
z2
i

)
.

(8)

This gives the leading asymptotics of
I1,...,1(p

2,m2; 2− 2ε) and can be used as a boundary
condition to solve the differential equations for the
banana graphs. In particular, in the equal-mass case the
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expression further simplifies to

Jl,1(z; ε) = −
l+1∑
k=1

(l + 1

k

)Γ(−ε)k Γ(ε)l+1−k

Γ(−kε)
Γ(1 + (k − 1)ε)

Γ(1 + lε)
e

(k−1)iπε
z

1+(k−1)ε
+O

(
z

2
)
.

Expanding this around ε = 0, one obtains

Jl,1(z; ε) =

∞∑
n=0

J
(n)
l,1 (z) εn . (9)

The leading order in ε, i.e. J
(0)
l,1 , precisely reproduces the

logarithmic structure of the l-loop banana Feynman

integral in D = 2 spacetime dimensions!
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The homogeneous differential operators Ll,ε that

annihilate the maximal cuts of the banana integrals in

D = 2− 2ε dimensions (the inhomogeniety is −Γ(1+ε)l

Γ(1+lε)):

Loop order l Differential operator Ll,ε

1 1 + ε− 2z − (1− 4z)θ

2 (1 + 2ε)(1 + ε− 3z+ zε) +
(
−2− 3ε+ 10z + 10zε+ 9z2ε

)
θ+ (1− z)(1− 9z)θ2

3 (1 + 2ε)(1 + 3ε)(1 + ε− 4z + 2zε) + (−3− 12ε+ 18z + 60zε− 11ε2 + 28zε2

+ 64z2ε2)θ − 3(−1 + 10z)(1 + 2ε)θ2 − (1− 4z)(1− 16z)θ3

4 (1 + 2ε)(1 + 3ε)(1 + 4ε)(1 + ε− 5z + 3zε) + (−4− 30ε+ 28z + 189zε
+ 26z2ε− 225z3ε− 70ε2 + 343zε2 − 225z3ε2 − 50ε3 + 84zε3 + 414z2ε3)θ
+ (6− 63z + 26z2 − 225z3 + 30ε− 315zε− 675z3ε+ 35ε2 − 343zε2 − 363z2ε2

− 225z3ε2)θ2 − 2
(

2− 35z + 225z3 + 5ε− 105zε+ 259z2ε+ 225z3ε
)
θ3

+ (1− z)(1− 9z)(1− 25z)θ4
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Figure 1: The banana integrals J
(n)
l,1 for l = 2, 3, 4 (blue, orange, green)

and n = 0, 1, 2 (upper, middle and lower panels) against 1/z.The solid: real part,

dashed lines: imaginary part.
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Properties of Calabi-Yau motives and their

significances for Feynman integrals:

• Griffiths transversality: Let Π(z) =
(∫

Γ1
Ω, . . . ,

∫
Γr

Ω
)T

the period vector. Then one gets as a generalization of
the observations of Bryant and Griffiths for Calabi-Yau
n-folds:

Π(z)T Σ ∂kzΠ(z)=

∫
Mn

Ω ∧ ∂kzΩ=

{
0 for 0 ≤ r < n
Ck(z) for |k| = n

,

where the Ck(z) are rational functions in the complex

structure parameters. For the first equality, expand
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Ω in an integer symplectic basis of cohomology. The

second equality follows from Griffiths transversality and

consideration of the Hodge type. Note an arbitrary local

basis Π̃(z) corresponding to an (implicit) choice of a

basis of cycles Γ̃i ∈ Hn(Mn,C), obtained as independent

local solutions of the Picard-Fuchs differential ideal, one

can find a Σ̃ and write down the corresponding relations

Π̃(z)T Σ̃ ∂kz Π̃(z) among the solutions very explicitly. It

implies that there are quadratic relations among the

maximal cut integrals. For the banana graphs we

checked explicitly that these are the only ones.
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In particular Wl(z)
−1 = ΣWl(z)C(z)−1.

• Self-adjointness: Let the Picard-Fuchs differential ideal
be generated by a single (normalized) differential
operator (as it is the case for one-parameter families),
i.e.

L(n+1) = ∂n+1
z +

n∑
i=0

ai(z) ∂
i
z .

Then the Yukawa coupling Cn fulfills the differential
equation

∂zCn(z)

Cn(z)
=

2

n+ 1
an(z) . (10)
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One can define the adjoint differential operator

L∗(n+1) =

n+1∑
i=0

(−∂z)i ai(z) .

An operator is called essentially self-adjoint if

L∗(n+1)A(z) = (−1)n+1A(z)L(n+1) ,

where A(z) satisfies the differential relation ∂zA(z)
A(z) =

2
n+1an(z). Note that A(z) is up to a multiplicative

constant given by the Yukawa coupling Cn(z).
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A one-paramter maximal cut Feynman integral has to be

annihilated by a self-adjoint linear differential operator

if it comes from a CY geometry!
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• Landman’s theorem: It states that all possible

monodromy matrices of an algebraic n-fold have to

obey

(Tk − 1)n+1 = 0 . (11)

Here k ∈ N0, implying that the indicial α has to be

a rational number. A monodromy matrix T can be

unipotent of lower order m < n, i.e., (Tk − 1)m+1 = 0.

It is clear that m is the size of the biggest Jordan block

in T. The maximal n that can appear is n = dim(M).

It is not too hard to see that the unipotency of order

m ≤ n implies that a period on an n-fold cannot

degenerate worse than with a logarithmic singularity of
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type log(∆)n. This has an important consequence for

Feynman integrals. Assume that we have a maximal

cut of a Feynman integral in integer dimensions that

degenerates in a dimensionless physical parameter ∆ (or,

more generally, some polynomial combination thereof)

as log(∆)m. Then it follows from Landman’s theorem

that the geometry associated to this maximal cut

integral cannot be an algebraic manifold of dimension

less than m, or a Calabi-Yau motive of weight less than

m!
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• The SL(2,C) theorem: This uses the limiting mixed

Hodge Structure to restrict the structure of the Jordan

Blocks further. For example, for a Calabi-Yau three-fold

the classification of one-parameter operators (known

under der name AESZ list) uses the fact that the only

possible degenerations are of the following types:

– The generic point F is characterized by generic local

exponents.

– The conifold point C has local exponents (a, b, b, c)

and a single 2× 2 Jordan block.
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– The K point has local exponents (a, a, b, b) and two

2× 2 Jordan blocks.

– Finally, the MUM-point M has local exponents

(a, a, a, a) and a 4× 4 Jordan block.

Here different characters stand for different rational
numbers and the limiting mixed Hodge diamond Hp,q

lim
for the different degenerations at F−, C−,K−,M−
points are depicted below:

F :

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

C :

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0
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K :

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

M :

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

.

For example, the previous considerations allow us to
completely classify the singular points of the Calabi-Yau
three-fold associated to the four-loop banana integral.
The complex moduli space is M4-loop = P1 \ {z =
0, 1/25, 1/9, 1,∞}. The local exponents of the singular
points are summarized in the Riemann Pl-symbol in
eq. (12) for ε → 0. In particular, using the list
of local exponents above, we see that z = 0 is a
M -point (MUM-point), z = 1/25, 1/9, 1 are C-points
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(conifolds), and z =∞ is a K-point.

P2


0 1

9 1 ∞
1 + ε −2ε −2ε 0
1 + 2ε 0 0 ε

 , P3


0 1

16
1
4 ∞

1 + ε 0 0 −ε
1 + 2ε 1

2 − 3ε 1
2 − 3ε 0

1 + 3ε 1 1 ε

 ,

P4


0 1

25
1
9 1 ∞

1 + ε 0 0 0 0
1 + 2ε 1− 4ε 1− 4ε 1− 4ε ε
1 + 3ε 1 1 1 1
1 + 4ε 2 2 2 1 + ε

 .

(12)


