Iterated integrals over Riemann surfaces, flat connections and polylogarithms

Federico Zerbini

IPhT (CEA-Saclay)

Based on joint work with B. Enriquez arXiv:2110.09341, ...

January 19, 2022

Outline

Iterated integrals

2 Iterated integrals on Riemann surfaces

3 Higher-genus KZB-connections

Iterated integrals

- M complex manifold.
- $\mathcal{A}^1(M)$ \mathbb{C} -vector-space of smooth 1-forms on M.

Definition

The **iterated integral** of $\omega_1, \dots, \omega_n \in \mathcal{A}^1(M)$ along a smooth path $\gamma : [0,1] \to M$ is given by

$$\int_{\gamma} \omega_1 \cdots \omega_n := \int_{0 \le t_1 \le \cdots \le t_n \le 1} \gamma^* \omega_1(t_1) \cdots \gamma^* \omega_n(t_n).$$

- Two paths γ and η are **homotopic** if $\gamma(0)=\eta(0)$, $\gamma(1)=\eta(1)$, and can "deform γ onto η continuosly".
- An iterated integral is homotopy invariant if its value is the same on paths which are homotopic.
- If ω is **closed**, i.e. $d\omega = 0$, then $\int_{\bullet} \omega$ is homotopy invariant (Stokes).
- If $\omega_1, \ldots, \omega_n$ are **holomorphic** then $\int_{\bullet} \omega_1 \cdots \omega_n$ homotopy invariant.

An example

- $U=\mathbb{C}\setminus (-\infty,0]\cup [1,\infty)$ simply connected, i.e. $\pi_1(U;x,y)=1$ $\forall x,y\in U.$
- $ullet z \in U$, γ_z any path contained in U from 0 to z.

The dilogarithm

$$\operatorname{Li}_{2}(z) := \int_{\gamma_{z}} \frac{dt}{1-t} \cdot \frac{dt}{t}. \tag{1}$$

Rmk 1: $\text{Li}_2(z)$ well-defined on U, because $\frac{dt}{1-t}$ and $\frac{dt}{t}$ are holomorphic on U, and U simply connected.

Rmk 2: If $|z| < 1 \text{ Li}_2(z) = \sum_{n \ge 1} \frac{z^n}{n^2}$, and $\text{Li}_2(1) = \zeta(2)$.

Rmk 3: Let $M:=\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$ (not simply-connected!)

RHS of (1) defines function of z and of homot. class of γ_z in M, and induces well-defined function on **fundamental cover** \tilde{M} of M.

We say it's a **multi-valued function** on M.

Rmk 4: $\text{Li}_2(z)$ is a period function, $\zeta(2)$ is the period of a **mixed** motive.

Motivating examples

Multiple polylogarithms

Multi-valued fcts on $M=\mathrm{Conf}_n(\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\})$ (conf. space of n points on $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$) induced by homotopy-inv. iterated integrals.

Elliptic multiple polylogarithms

Multi-valued functions on $M=\mathrm{Conf}_n((\mathbb{C}/\mathbb{Z}+\tau\mathbb{Z})\setminus\{0\})$ induced by homotopy-invariant iterated integrals.

String theory amplitudes

Genus-zero amplitudes ← MZVs Genus-one amplitudes ← elliptic MZVs.

Feynman integrals

Basis of master integrals satisfies 1st-order linear diff. eq. \rightsquigarrow iterated integrals as coefficients ϵ -expansion (MPLs, elliptic MPLs, iterated integrals of modular forms, much more?).

Homotopy invariance and multi-valued functions

- ullet ${\mathcal P}$ space of all smooth paths on M.
- Iterated integration map $\int_{\bullet} : T\mathcal{A}^1(M) \to \operatorname{Fun}(\mathcal{P}, \mathbb{C})$ given by $\omega_1 \otimes \cdots \otimes \omega_r \mapsto (\gamma \to \int_{\gamma} \omega_1 \cdots \omega_r)$
- ullet p: ilde M
 ightarrow M universal cover, and $\Gamma:=\mathrm{Aut}(ilde M/M)\simeq \pi_1(M,x)$
- $\bullet \ \ \text{Group action of} \ \Gamma \ \text{on} \ C^{\infty}(\tilde{M}^2,\mathbb{C}) \ \text{via} \ \gamma \cdot f: (\tilde{x},\tilde{y}) \mapsto f(\gamma(\tilde{x}),\gamma(\tilde{y}))$

Subalgebra $Z\mathcal{A}^1(M)\subset T\mathcal{A}^1(M)$ which gives rise to homotopy-invariant iterated integrals is the pullback

$$T\mathcal{A}^{1}(M) \xrightarrow{\int_{\bullet}} \operatorname{Fun}(\mathcal{P}, \mathbb{C})$$

$$\uparrow \qquad \qquad \uparrow$$

$$Z\mathcal{A}^{1}(M) \xrightarrow{\int_{\bullet}} C^{\infty}(\tilde{M}^{2}, \mathbb{C})^{\Gamma}$$

Chen: Description of elements of $ZA^1(M)$ (bar complex).

Homotopy invariance and Chen's theorem

- $\mathcal{P}_{x,y}$ space of all smooth paths on M from x to y.
- Iterated integration map $\int_{x \bullet_y} : T\mathcal{A}^1(M) \to \operatorname{Fun}(\mathcal{P}_{x,y}, \mathbb{C})$ given by $\omega_1 \otimes \cdots \otimes \omega_r \mapsto ({}_x\gamma_y \to \int_{x\gamma_y} \omega_1 \cdots \omega_r)$
- $\tilde{M}_x := p^{-1}(x)$

Subalgebra $Z_{x,y}\mathcal{A}^1(M)\subset T\mathcal{A}^1(M)$ which give rise to homotopy-invariant iterated integrals from x to y is the pullback

$$T\mathcal{A}^{1}(M) \xrightarrow{\int_{x \bullet y}} \operatorname{Fun}(\mathcal{P}_{x,y}, \mathbb{C})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Z_{x,y}\mathcal{A}^{1}(M) \xrightarrow{\int_{x \bullet y}} \operatorname{Fun}(\tilde{M}_{x} \times \tilde{M}_{y}, \mathbb{C})^{\Gamma}$$

Theorem (Chen): $Z_{x,y}\mathcal{A}^1(M)/\mathrm{Ker}(\int_{x\bullet_y})\simeq \mathbb{C}[\pi_1^{\mathrm{un}}(M;x,y))].$

The holomorphic case

 $\Omega^1(M)\subset \mathcal{A}^1(M)$ \mathbb{C} -vector-space of **holomorphic** 1-forms on M

$$T\Omega^{1}(M) \xrightarrow{\int_{\bullet}} \operatorname{Fun}(\mathcal{P}, \mathbb{C}) \qquad T\Omega^{1}(M) \xrightarrow{\int_{x \bullet y}} \operatorname{Fun}(\mathcal{P}_{x,y}, \mathbb{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

Rmk: $T\Omega^1(M) \hookrightarrow Z_{x,y} \mathcal{A}^1(M)$, and therefore $T\Omega^1(M)/\text{Ker}(\int_{x \bullet x}) \hookrightarrow \mathbb{C}[\pi_1^{\text{un}}(M; x, y)].$

This is not an isomorphism in general, but it is in special cases of interest:

- $M = \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\} \rightsquigarrow \mathsf{MPLs}$ and MZVs
- \bullet $M=(\mathbb{C}/\mathbb{Z}+\tau\mathbb{Z})\setminus\{0\}$ \leadsto elliptic MPLs and elliptic MZVs

Question: describe $\operatorname{Im}(\int_{\bullet}) \subset \operatorname{Hol}(\tilde{M}^2)^{\Gamma}$ (space of multi-valued fcts induced by homotopy inv. iterated integrals of holomorphic 1-forms).

A space of multi-valued functions

- $M := \mathbb{P}^1(\mathbb{C}) \setminus \{\sigma_0, \sigma_1, \dots, \sigma_N, \infty\}$ punctured Riemann sphere.
- $\bullet \ \mathcal{O}(M) = \mathbb{C}\big[z, \big(\frac{1}{z-\sigma_i}\big)_i\big]$ ring of regular fcts.
- Abstract alphabet $\Sigma = \{\sigma_0, \sigma_1, \dots, \sigma_N\}$, Σ^* non-commut. words.
- ullet Fix $p: \tilde{M} \to M$, and pre-image $\tilde{0}$ of 0.
- ullet Hyperlogarithms $\{L_w\}_{w\in\Sigma^*}$ are family of fcts in $\operatorname{Hol}(\tilde{M})$ def. by

$$L_{\sigma_{i_1}\cdots\sigma_{i_n}}(z) := \int_{\tilde{\mathfrak{o}}\gamma_z} \frac{dt}{t - \sigma_{i_1}} \cdots \frac{dt}{t - \sigma_{i_n}}.$$

• $\mathcal{H} := \mathcal{O}(M)[\{L_w\}_{w \in \Sigma^*}]$ differential algebra.

Brown: \mathcal{H} is the smallest diff. algebra of $\operatorname{Hol}(\tilde{M})$ which contains $\mathcal{O}(M)$ and is closed under taking primitives.

Fact:
$$\mathcal{H} = \operatorname{Im} \left(\int_{\tilde{a}^{\bullet}} : T\Omega^{1}(M) \to \operatorname{Hol}(\tilde{M}) \right)$$
.

Outline

1 Iterated integrals

2 Iterated integrals on Riemann surfaces

3 Higher-genus KZB-connections

Riemann surfaces

- C compact Riemann surface of genus $g \ge 1$ (donuts).
- $\bullet \ S \subset C \ \text{finite non-empty set of pts} \leadsto C \setminus S \ \text{affine}.$
- $\bullet \ H^1_{\mathrm{sing}}(C,\mathbb{Q}) \simeq \mathbb{Q}^{2g}, \ H^1_{\mathrm{sing}}(C \setminus S,\mathbb{Q}) \simeq \mathbb{Q}^{2g+|S|-1}.$
- $\bullet \ \omega \in \Omega^1(C) \ {\rm called} \ {\rm ``1st \ kind'' \ differential \ } (\leadsto H^{1,0}(C) \simeq \mathbb{C}^g).$
- $\Omega^1_{\mathrm{2nd}}(C,S)$ "2nd kind" differentials (with poles in S), consists of $\omega \in \Omega^1(C \setminus S)$ s.t. $\operatorname{Res}_P \omega = 0 \ \forall \, P \in S$.
- Fact 1: $\frac{\Omega^1(C \setminus S)}{d\mathcal{O}(C \setminus S)} \tilde{\to} H^1_{\mathrm{Sing}}(C \setminus S, \mathbb{Q}) \otimes \mathbb{C}$ via integration.
- Fact 2: $\forall S \ \frac{\Omega^1_{\mathrm{2nd}}(C,S)}{d\mathcal{O}(C\backslash S)} \tilde{\to} H^1_{\mathrm{Sing}}(C,\mathbb{Q}) \otimes \mathbb{C}$ via integration $(\int \omega : \sigma \to \int_{\sigma} \omega \text{ well-defined by residue theorem!})$
- Fact 3: $T\Omega^1(C\setminus S)/\mathrm{Ker}(\int_{x^{\bullet_y}}) \tilde{\to} \mathbb{C}[\pi_1^{\mathrm{un}}(C\setminus S;x,y)].$
- Fact 4: $T\Omega^1(C)/\mathrm{Ker}(\int_{x \bullet_y}) \hookrightarrow \mathbb{C}[\pi_1^{\mathrm{un}}(C; x, y)].$

2nd-kind iterated integrals

Idea: Let $\gamma, \eta: [0,1] \to C \setminus S$ be homotopic as paths on C, but not as paths on $C \setminus S$. In general, if $\omega_1, \ldots, \omega_n \in \Omega^1(C \setminus S)$ then $\int_{\gamma} \omega_1 \cdots \omega_n \neq \int_{\eta} \omega_1 \cdots \omega_n$.

Definition (Hain)

An iterated integral of meromorphic differential forms with poles in S is a **2nd-kind iterated integral** if its value is the same on paths on $C\setminus S$ which are homotopic as paths in C.

Length 1: $\int_{\bullet} \omega$ 2nd-kind $\Leftrightarrow \omega \in \Omega^1_{2nd}(C,S)$.

Length 2 (Hain)

Suppose that $\omega_1, \omega_2 \in \Omega^1_{2\mathrm{nd}}(C,S) \leadsto \text{locally at any } P \in S \ \exists f_1^{(P)} \ \text{s.t.}$ $\omega_1 = df_1^{(P)}$, and $\int_P \omega_1 \omega_2 = \int_P f_1^{(P)} \omega_2 = \mathrm{Res}_P(f_1^{(P)} \omega_2) \neq 0$ in general. But if $\sum_{P \in S} \mathrm{Res}_P(f_1^{(P)} \omega_2) = 0$ then $\exists \alpha \in \Omega^1(C \setminus S)$ s.t. $\mathrm{Res}_P(f_1^{(P)} \omega_2) = -\mathrm{Res}_P(\alpha)$, and therefore $\int_{\bullet} \omega_1 \omega_2 + \alpha$ is 2nd-kind.

Hain's theorem

- Fix $x, y \in C \setminus S$.
- Fix $p: \tilde{C} \to C$ and $\pi: C \setminus S \to C \setminus S$ universal covers.
- $\tilde{C}_x := p^{-1}(x), \ \widetilde{C \setminus S}_x := \pi^{-1}(x).$
- $\Gamma_C := \operatorname{Aut}(\tilde{C}/C), \ \Gamma_{C \setminus S} := \operatorname{Aut}(\tilde{C} \setminus S/C \setminus S).$

The subalgebra $Z_{x,y}\Omega^1(C\setminus S)\subset T\Omega^1(C\setminus S)$ giving rise to 2nd-kind iterated integrals from x to y is the pullback

$$T\Omega^{1}(C \setminus S) \xrightarrow{\int_{x \bullet y}} \operatorname{Hol}(\widetilde{C \setminus S_{x}} \times \widetilde{C \setminus S_{y}})^{\Gamma_{C \setminus S}}$$

$$\uparrow \qquad \qquad \uparrow$$

$$Z_{x,y}\Omega^{1}(C \setminus S) \xrightarrow{\int_{x \bullet y}} \operatorname{Hol}(\tilde{C}_{x} \times \tilde{C}_{y})^{\Gamma_{C}}$$

Theorem (Hain): $Z_{x,y}\Omega^1(C\setminus S)/\mathrm{Ker}(\int_{x\bullet_y})\simeq \mathbb{C}[\pi_1^{\mathrm{un}}(C;x,y)].$

Multi-valued functions

- $\bullet \ \, {\sf Fix} \,\, p: \tilde{C} \to C \,\, {\sf and} \,\, \pi: \widetilde{C \setminus S} \to C \setminus S \,\, {\sf universal} \,\, {\sf covers}.$
- $\Gamma_C := \operatorname{Aut}(\tilde{C}/C), \ \Gamma_{C \setminus S} := \operatorname{Aut}(\tilde{C} \setminus S/C).$

The subalgebra $Z\Omega^1(C\setminus S)\subset T\Omega^1(C\setminus S)$ giving rise to 2nd-kind iterated integrals is the pullback

$$T\Omega^{1}(C \setminus S) \xrightarrow{\int_{\bullet}} \operatorname{Hol}(\widetilde{C \setminus S}^{2})^{\Gamma_{C \setminus S}}$$

$$\uparrow \qquad \qquad \uparrow$$

$$Z\Omega^{1}(C \setminus S) \xrightarrow{\int_{\bullet}} \operatorname{Hol}((\tilde{C} \setminus p^{-1}(S))^{2})^{\Gamma_{C}}$$

- Description of elements of $Z\Omega^1(C \setminus S)$ and of $\operatorname{Im}(\int_{\bullet} : Z\Omega^1(C \setminus S) \to \operatorname{Hol}((\tilde{C} \setminus p^{-1}(S))^2))$?
- Configuration space analogues?
- Relation with string amplitudes?
- Smooth case: use flat connections! (Brown-Levin, elliptic MPLs).

Outline

1 Iterated integrals

2 Iterated integrals on Riemann surfaces

3 Higher-genus KZB-connections

Maurer-Cartan elements

- g (pro-)nilpotent Lie algebra.
- $J \in \Omega^1(C \setminus S) \otimes \mathfrak{g}$ is a Maurer-Cartan element if dJ + [J,J]/2 = 0.
- A Maurer-Cartan element rise to a (flat) connection d+J on the trivial $\exp(\mathfrak{g})$ -principal bundle over $C\setminus S$.
- Let $MC(C, S, \mathfrak{g}) = \text{set of Maurer-Cartan elements s.t. } d + J \text{ has no monodromy at points of } S.$

Fact 1: The "coefficients" of $\sum_{n\geq 0} \underbrace{J\otimes \cdots \otimes J} \in T\Omega^1(C\setminus S)\otimes \exp(\mathfrak{g})$

belong to $Z\Omega^1(C\setminus S)$, and so the "coefficients" of $\sum_{n\geq 0}\int_{\bullet}\underbrace{J\cdots J}_n$ are

2nd-kind iterated integrals.

Fact 2: If $\mathfrak g$ is the (pro-nilpotent) Lie algebra of $\pi_1^{\mathrm{un}}(C,x)$, then the existence of an element $J\in\mathrm{MC}(C,S,\mathfrak g)$ implies Hain's theorem.

Bezrukavnikov: constructs explicit pro-nilpotent Lie algebra $\mathfrak{t}_{g,n}$ s.t. $\pi_1^{\mathrm{un}}(\mathrm{Conf}_n(C),x)\simeq \exp(\mathfrak{t}_{g,n}).$

The genus-one KZB-connection

Let $\tau \in \mathbb{H}$, $\mathbb{T}_{\tau} := \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ (genus-1 compact RS), $\mathbb{T}_{\tau}^* := \mathbb{T}_{\tau} \setminus \{0\}$

The Kronecker function

For $z \in \mathbb{T}_{\tau}^*$, α formal variable, define $F(z,\alpha;\tau) := \frac{\theta'(0,\tau)\theta(z+\alpha,\tau)}{\theta(z,\tau)\theta(\alpha,\tau)}$

- $F(z, \alpha; \tau) \frac{1}{z} \frac{1}{\alpha} \in \mathbb{C}[[z, \alpha]]$
- $F(z+1,\alpha;\tau) = F(z,\alpha;\tau), F(z+\tau,\alpha;\tau) = \exp(-2\pi i\alpha)F(z,\alpha;\tau)$

Fact: $\operatorname{Lie}(\pi_1^{\operatorname{un}}(\mathbb{T}_{\tau}^*, x)) \simeq \operatorname{Lie}(a, b)^{\wedge}$.

The Knizhnik-Zamolodchikov-Bernard connection

 $K(z) := \operatorname{ad}_b F(z,\operatorname{ad}_b;\tau)(a)\,dz\,\operatorname{Lie}(a,b)^\wedge$ -valued 1-form (multi-valued) on $\mathbb{T}_{\tau}^* \leadsto d+K$ (flat) connection on principal $\exp(\operatorname{Lie}(a,b)^\wedge)$ -bundle over \mathbb{T}_{τ}^* , regular singularity at 0.

Define 1-forms ω_n by $K =: \sum_{n>0} \omega_n \operatorname{ad}_b^n(a)$ ($\operatorname{ad}_b^n(a) := [b, \dots, [b, a]]$).

Examples: $\omega_0(z,\tau) = dz$, $\omega_1(z,\tau) = (\zeta(z,\tau) - G_2(\tau)z)dz$. Iterated integrals $\int_0^z \omega_{i_1} \cdots \omega_{i_n}$ (over \mathbb{C}) $\leadsto \sum_{n \in \mathbb{Z}} \mathrm{Li}_k(e^{2\pi i(z+n\tau)})$.

Therefore $\int_0^\infty \omega_{i_1} = \omega_{i_n}$ (over \mathcal{C}) $\wedge \subseteq_n \in \mathbb{Z}$ if \mathcal{C}

Higher-genus KZB-connections

Fact:
$$\mathfrak{t}_{g,1} = (\operatorname{Lie}(a_1, \dots, a_g, b_1, \dots, b_g) / (\sum_i [a_i, b_i]))^{\wedge}$$

Enriquez

For C genus g compact RS, for any $P \in C$, there exists a $\mathrm{Lie}(a_1,\ldots,a_g,b_1,\ldots,b_g)^{\wedge}$ -valued holomorphic 1-form K_P (multi-valued) on $C \setminus P$, uniquely determined by:

- K_P has a simple pole at P with residue $\sum_i [b_i, a_i]$.
- $A_i^*K(z) = K(z), B_i^*K(z) = \exp(-2\pi i \operatorname{ad}_{b_i})K(z).$

 $\leadsto K_P$ holomorphic at P as a $\mathfrak{t}_{g,1}$ -valued form, induces (flat) connection d+K on principal $\exp(\mathfrak{t}_{g,1})$ -bundle $\mathcal P$ over C, independent of P.

Rmk 1: Analogous construction for $Conf_n(C)$.

Rmk 2: $K_P(z) =: \sum_n \sum_{i_1,\dots,i_n,j} \omega^P_{i_1\cdots i_n j}[b_{i_1}\cdots [b_{i_n},a_j]]$ is a generating function of multi-valued 1-forms $\omega^P_{i_1\cdots i_n j}$ which are higher-genus analogues of ω_n , but their construction is not explicit.

• Fix arbitrary point $\infty \in C$.

Fact: A *trivialisation* of the principal bundle $\mathcal P$ over $C\setminus\infty$ (i.e. an isomorphism with the trivial $\exp(\mathfrak t_{g,1})$ -bundle) is given by a holomorphic multi-valued function $g:C\setminus\infty\to\exp(\mathfrak t_{g,1})$ s.t. $\mathrm{Ad}_g(K)$ is single-valued on $C\setminus\infty$.

Enriquez, FZ (2021)

Explicit recursive construction of trivialisation g (in terms of 2nd kind iterated integrals over A and B cycles!).

Rmk: Analogous result for $Conf_n(C)$.

Main consequences

- $J:=gd(g^{-1})+\mathrm{Ad}_g(K)\in\mathrm{MC}(C,S,\mathfrak{g})$: single-valued, induces 2nd-kind iterated integrals (similar statement holds on $\mathrm{Conf}_n(C)$).
- Recursive explicit formulas for the multi-valued 1-forms $\omega_{i_1\cdots i_n j}^{\infty}$ (in terms of coeffs of g and fundamental form of 3rd kind).

THE END

Thanks!