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Motivation: Scattering Amplitudes An in Quantum Field Theory
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Motivation: Feynman Graphs

and their Challenges

Building blocks of perturbative calculations in coupling g,

An = gn−2 ∑
L=0,1...

g2LA(L)n .

E.g. n = 4 legs and L = 2 loops,

A(2)4 = c1 + c2 + . . .

where each graph G → integral IG = ∫
L

∏
l=1

dDkl
iπD/2

E

∏
i=1

1

(−q2i +m2
i )νi

,

for each loop l, internal edge i, in D =D0 − 2ϵ dimensions.

Serious bottlenecks

1. Eliminate huge number of linear (IBP) relations

2. Evaluate basis f⃗ of Feynman integrals (FI)
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Evaluation of Feynman Integrals
State of the art: Canonical differential equations

For polylogarithmic FI, find basis transformation g⃗ = T ⋅ f⃗ such that
[Gehrmann,Remiddi’99][Henn’13]

dg⃗ = ϵ dM̃ g⃗, M̃ ≡∑
i

constant matrices

³·µ
ãi log Wi´¸¶

letters

.

However still (increasingly) hard to compute

1. Initial basis f⃗

2. Transformation g⃗ = T ⋅ f⃗
Could we predict kinematically dependent letters Wi beforehand?

Would reduce both steps to much easier, purely numeric problem!

This strategy in line with e.g. [Abreu,Ita,Moriello,Page,Tschernow,Zeng’20]
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ãi log Wi´¸¶

letters

.

However still (increasingly) hard to compute

1. Initial basis f⃗

2. Transformation g⃗ = T ⋅ f⃗
Could we predict kinematically dependent letters Wi beforehand?

Would reduce both steps to much easier, purely numeric problem!

This strategy in line with e.g. [Abreu,Ita,Moriello,Page,Tschernow,Zeng’20]

G.Papathanasiou — Symbol Alphabets from Landau Singularities Introduction and Motivation 4/27



The Role of the Landau Equations

Yield specific values of (kinematic) parameters of any (Feynman) integral,
for which it may become singular. [Landau’59]

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). Recent revival of
their study, e.g. [Berghoff,Brown,Collins,Hannesdottir,Klausen,McLeod,Mizera,Panzer]

[Schwartz,Spradlin,Telen,Vergu,Volovich. . . ]

Believed for long to only provide information on where Wi = 0.
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This work

Evidence through two loops: Rational letters of polylogarithmic FI
captured by Landau equations, when recast as polynomial of the kine-
matic variables of integral, known as the principal A-determinant EA!

Example: ‘Two-mass easy’ box with p22 = p24 = 0, p21, p23 ≠ 0:

EA equipped with natural factorization, (s = (p1 + p2)2, t = (p1 + p4)2)
EA = (p21p23 − st)p21p23st(p21 + p23 − s − t)(p23 − t)(p23 − s)(p21 − t)(p21 − s).

where each factor is indeed a letter of the integral!
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Introduction and Motivation

Feynman integrals, Landau singularities & GKZ systems

One-loop principal A-determinants and symbol letters

Conclusions and Outlook
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Feynman Integrals in the Lee-Pomeransky Representation:

IG = Γ(D/2)
Γ((L + 1)D/2 −∑i νi) ∫

∞

0

E

∏
i=1

(x
νi−1dxi
Γ(νi) )

1

GD/2

where G = U +F is the sum of the 1st and 2nd Symanzik polynomials,

▸ Of degree L,L + 1 in the xi, respectively.

▸ Coefficients of U are numbers, of F depend on kinematic parameters

▸ Obtained easily from data of graph G.

.

In this form, IG is special case1 of A-hypergeometric function as defined
by Gelfand, Graev, Kapranov & Zelevinsky (GKZ). [de la Cruz’19][Klausen’19]

Very active field of research, e.g.
[Ananthanarayan,Banik,Bera,Chang,Chen,Datta, Feng,Klemm,Nega,Safari,Vanhove,Walther,Zhang]

1Generic case: All G polynomial coefficients are variables, different from each other.
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Singularities of GKZ-systems

Let G =
m

∑
j=1

cj
E

∏
i=1

x
aij
i , cj all independent.

GKZ-system singular for ci values solving

EA(G) = 0
Principal A-determinant of G: Polynomial in cj with integer coefficients,
that vanishes whenever equations

G = x1 ∂G
∂x1
= . . . = xE ∂G

∂xE
= 0 have solution .

In practice, compute via theorem factorizing it into contributions from
each face Γ of polytope with vertices (a1j , . . . , aEj),

EA(G) =∏
Γ

∆Γ(GΓ)

A-discriminant: Polynomial in ci, that vanishes when GΓ = G∣xmj=0,mj/∈Γ

GΓ = ∂GΓ
∂xm1

= . . . = ∂GΓ
∂xmk

= 0 have solution .
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Example: Principal A-determinant of bubble

(Newton) polytope of G polynomial
exponents, Newt(G)

G = x1 + x2 + (m2
1 +m2

2 − p2)x1x2 +m2
1x

2
1 +m2

2x
2
2 ,

EA(G) =∆α4∆α5∆α4α5∆α1α2α4α5

=m2
1m

2
2(p4 +m4

1 +m4
2 − 2p2m2

1 − 2p2m2
2 − 2m2

1m
2
2)p2 ,
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Interpretation of EA(G) polytope
Newt(EA(G)), built out of exponents of EA(G) polynomial: Keeps track
of triangulations of Newt(G).

Cluster algebras also describe triangulations of geometric spaces
[Fomin,Zelevinsky’01][Felikson,Shapiro,Tumarkin’11]

First-principle derivation of observed cluster-algebraic structure of
Feynman integrals? [Chicherin,Henn,Papathanasiou’20]. . . [He,Liu,Tang,Yang’22]
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Generic n-point 1-loop integrals
All mi, p

2
i ≠ 0 and different from each other

A-discriminants reduce to usual determinants ⇒
Modified Cayley matrix Y,[Melrose’65]

Y =
⎛
⎜⎜⎜
⎝

0 1 1 ⋯ 1
1 Y11 Y12 ⋯ Y1n

1 Y12 Y22 ⋯ Y2n

⋮ ⋮ ⋮ ⋮
1 Y1n Y2n ⋯ Ynn

⎞
⎟⎟⎟
⎠

Yii = 2m2
i

Yij =m2
i +m2

j − sij−1
sij = (pi + . . . + pj)2

captures all Landau singularity information.

▸ ∆(F) = detY : Leading Landau singularity of type I

▸ ∆(G) = detY: Leading1 Landau singularity of type II2

▸ Subleading Landau singularity where xi1 , . . . , xim = 0 ∼ Leading
singularity of subgraph where internal edges i1, . . . , im removed
[Klausen’21]
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1-loop Subleading Landau Singularities=Subdeterminants

For any matrix A with elements amn, let (j, k)-th minor of A be

A

where shading indicates removal of row and column. Similarly A [i1 . . . ik
j1 . . . jk

],
A [⋅⋅] = detA.

Y [3
3
]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Y [⋅⋅]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Principal A-determinant of generic 1-loop graphs

Gathering previous bits of information, arrive at

EA(G) = Y [⋅⋅]
n+1

∏
i=1

Y [ i
i
] . . .

n+1

∏
in−1>...>i1=1

Y [ i1 . . . in−1
i1 . . . in−1

]
n+1

∏
i=2

Yii .

Contains all diagonal k-dimensional minors of Y, 1 ≤ k ≤ n+1, but Y11 = 0.

2n+1 − n − 2 factors, e.g. 1,4,11,26,57,120 factors for n = 1, . . . ,6 .

Each factor = polynomial symbol letter Wi!

Polylogarithmic integral singular for Wi = 0⇒ EA(G) = 0
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From 1-loop polynomial to square-root letters

Square-root letters often present. How to obtain them?

Re-factorize EA with Jacobi determinant identities of the form

p ⋅ q = f2 − g = (f −√g)(f +√g) ,

.

Idea

1. where p, q factors of EA, i.e. polynomial letters.

2. f ±√g contain leading singularity of FI in 2nd term. [Cachazo’08]

Motivation: 1-loop integrals = volumes of spherical simplices.
[Davydychev,Delbourgo’99]

Crucial for their computation are the Jacobi identities,

A [⋅⋅]A [
i j
i j
] = A [i

i
]A [j

j
] −A [i

j
]A [j

i
] A=AT= A [i

i
]A [j

j
] −A [i

j
]
2

.

Point 2 adopts widely observed pattern in 1- and 2-loop computations.
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]A [j

j
] −A [i

j
]
2

.

Point 2 adopts widely observed pattern in 1- and 2-loop computations.
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All 1-loop letters I

Need only ratio
f−
√
g

f+
√
g , as product already contained in polynomial

alphabet. Letting D =D0 − 2ϵ, obtain N letters of type,

W1,...,(i−1),...,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y
⎡⎢⎢⎢⎢⎣
i

1

⎤⎥⎥⎥⎥⎦
−
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
⋅
⋅
⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1 i

1 i

⎤⎥⎥⎥⎥⎦

Y
⎡⎢⎢⎢⎢⎣
i

1

⎤⎥⎥⎥⎥⎦
+
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
⋅
⋅
⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1 i

1 i

⎤⎥⎥⎥⎥⎦

, D0 + n odd,

Y
⎡⎢⎢⎢⎢⎣
i

1

⎤⎥⎥⎥⎥⎦
−
¿
ÁÁÁÀY

⎡⎢⎢⎢⎢⎣
i

i

⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦

Y
⎡⎢⎢⎢⎢⎣
i

1

⎤⎥⎥⎥⎥⎦
+
¿
ÁÁÁÀY

⎡⎢⎢⎢⎢⎣
i

i

⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦

, D0 + n even.
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All 1-loop letters II

In addition, n(n − 1)/2 letters of type,

W1,...,(i−1),...,(j−1),...,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y
⎡⎢⎢⎢⎢⎣
i

j

⎤⎥⎥⎥⎥⎦
−
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
⋅
⋅
⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
i j

i j

⎤⎥⎥⎥⎥⎦

Y
⎡⎢⎢⎢⎢⎣
i

j

⎤⎥⎥⎥⎥⎦
+
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
⋅
⋅
⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
i j

i j

⎤⎥⎥⎥⎥⎦

, D0 + n odd,

Y
⎡⎢⎢⎢⎢⎣
1 j

1 i

⎤⎥⎥⎥⎥⎦
−
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1 i j

1 i j

⎤⎥⎥⎥⎥⎦

Y
⎡⎢⎢⎢⎢⎣
1 j

1 i

⎤⎥⎥⎥⎥⎦
+
¿
ÁÁÁÀ−Y

⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦
Y
⎡⎢⎢⎢⎢⎣
1 i j

1 i j

⎤⎥⎥⎥⎥⎦

, D0 + n even,
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All 1-loop letters III

Our procedure also predicts Y [ ⋅⋅ ] and Y [ 11 ] as individual rational letters,
but in fact only the ratio

W1,2,...,n =
Y [⋅⋅]

Y [1
1
]
,

appears, as we’ll get back to in next slide.

Finally, obtain remaining letters of n-point graph by applying above
formulas to all of its subgraphs.

Total letter count: Assuming n ≤ d+ 1 for external kinematics dimension d,

∣W ∣ = 2n−3 (n2 + 3n + 8) − 1

6
(n3 + 5n + 6) ,

e.g. ∣W ∣ = 1,5,18,57,166 for n = 1, . . . ,5 and D0 even.
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Verification through differential equations & comparison with literature

From letter prediction, derived canonical differential equations through
numeric IBP relations ⇒ confirmation.

By explicit computation up to n = 10, infer general form, e.g. n+D0 even:

dJ1...n =ϵ d logW1...n J1...n
+ ϵ ∑

1≤i≤n

(−1)i+⌊n2 ⌋d logW1...(i)...n J1...̂i...n

+ ϵ ∑
1≤i<j≤n

(−1)i+j+⌊n2 ⌋d logW1...(i)...(j)...n J1...̂i...̂j...n.

Furthermore, compared to previous results for D0 even based on

1. the diagrammatic coaction [Abreu,Britto,Duhr,Gardi’17]

2. the Baikov representation [Chen,Ma,Yang’22]

Agreement in form of CDE, as well as in letters for orientations presented
in 2, see also. [Jiang,Yang’23]
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Limits of generic to non-generic graphs

Proved that EA has well-defined limit when any m2
i , p

2
j → 0

(unique regardless of order with which we send them to zero).

Define limit of EA when single parameter x takes value a as

lim
x→a

EA = ∂lẼA

∂xl
∣
x=a

≠ 0 , with ∂l′EA

∂xl′
∣
x=a

= 0 for l′ = 0, . . . , l − 1 ,

Multivariate generalization straightforward, but highly nontrivial that limit
does not depend on order. E.g. triangle Cayley in limit p2i → 0:

detY = 0 + 2
3

∑
i=1

p2i (m2
i −m2

i−1)(m2
i+1 −m2

i−1) +O(p2jp2k) ,

While limits of individual factors in EA depend on limit order, EA as a
whole does not, since different orders produce factors it already contains.

Strong evidence that non-generic FI alphabet obtained as limit.
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Mathematica Notebook
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Two-loop example of principal A-determinant-alphabet relation

1-mass slashed box,

p21 ≠ 0, p22 = p23 = p24 = 0

EA(G) = (p21 − t)(p21 − s)(p21 − s − t)(s + t)stp21.
Agrees precisely with (2dHPL) alphabet known to describe 2-loop master
integrals with these kinematics! [Gehrmann,Remiddi’00]
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Further mathematical properties of Feynman integrals: Cohen-Macauley

Guarantees that

# master integrals = volume of Newt(G)
Proved it for currently largest known class of 1-loop integrals, including
completely on-shell/massless. For earlier work, see [Tellander,Helmer’21][Walther’22]

Relation to other properties:
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Further mathematical properties of Feynman integrals
:Generalized permutohedron (GP) property

A polytope P ⊂ Rn is GP if and only if every edge is parallel to ei − ej ,
where ei is unit vector on coordinate axis, for some i, j ∈ {1, . . . , n}. E.g.

Practical utility: This property facilitates new methods for fast Monte
Carlo evaluation of Feynman integrals. [Borinsky’20][Borinsky,Munch,Tellander’23]

Previously proven for generic kinematics. [Schultka’18] Here: Generalized to
any graph where all external vertices joined by massive path.
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Conclusions and Outlook

Evidence that rational letters of polylogarithmic FI captured by polyno-
mial form of Landau equations in terms of principal A-determinant EA!

▸ Through 2 loops

▸ 1 loop: Also obtain square-root letters from Jacobi identities + CDE

▸ Strong evidence for well-defined limits to non-generic kinematics

▸ Easy-to-use Mathematica file with our results

Next Stage

1. More efficient evaluation of EA + more 2-loop checks
[Helmer, GP,Tellander’24]

2. New predictions for pheno, e.g. letters for 2→ 3 with 2 massive legs
[Les Houches Standard Model Precision Wishlist’21]

3. Explore implications for beyond-polylogarithmic case
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