Symbol Alphabets from the Landau Singular Locus

Georgios Papathanasiou

City, University of London \& DESY

Seminar on Motives in Quantum Field and String Theory May 15, 2024

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

Collider Experiments

- Theoretical predictions for outcome of elementary particle collisions, central for experiments such as the LHC \& High-Luminosity upgrade

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

- Theoretical predictions for outcome of elementary particle collisions, central for experiments such as the LHC \& High-Luminosity upgrade
- Exhibit remarkably deep mathematical structures

Motivation: Feynman Graphs

Building blocks of perturbative calculations in coupling g,

$$
\mathcal{A}_{n}=g^{n-2} \sum_{L=0,1 \ldots} g^{2 L} \mathcal{A}_{n}^{(L)}
$$

Motivation: Feynman Graphs

Building blocks of perturbative calculations in coupling g,

$$
\mathcal{A}_{n}=g^{n-2} \sum_{L=0,1 \ldots} g^{2 L} \mathcal{A}_{n}^{(L)} .
$$

E.g. $n=4$ legs and $L=2$ loops,

where each graph $G \rightarrow$ integral $I_{G}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \prod_{i=1}^{E} \frac{1}{\left(-q_{i}^{2}+m_{i}^{2}\right)^{\nu_{i}}}$, for each loop l, internal edge i, in $D=D_{0}-2 \epsilon$ dimensions.

Motivation: Feynman Graphs and their Challenges

Building blocks of perturbative calculations in coupling g,

$$
\mathcal{A}_{n}=g^{n-2} \sum_{L=0,1 \ldots} g^{2 L} \mathcal{A}_{n}^{(L)}
$$

E.g. $n=4$ legs and $L=2$ loops,

where each graph $G \rightarrow$ integral $I_{G}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \prod_{i=1}^{E} \frac{1}{\left(-q_{i}^{2}+m_{i}^{2}\right)^{\nu_{i}}}$, for each loop l, internal edge i, in $D=D_{0}-2 \epsilon$ dimensions.

Serious bottlenecks

1. Eliminate huge number of linear (IBP) relations

Motivation: Feynman Graphs and their Challenges

Building blocks of perturbative calculations in coupling g,

$$
\mathcal{A}_{n}=g^{n-2} \sum_{L=0,1 \ldots} g^{2 L} \mathcal{A}_{n}^{(L)}
$$

E.g. $n=4$ legs and $L=2$ loops,

where each graph $G \rightarrow$ integral $I_{G}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \prod_{i=1}^{E} \frac{1}{\left(-q_{i}^{2}+m_{i}^{2}\right)^{\nu_{i}}}$, for each loop l, internal edge i, in $D=D_{0}-2 \epsilon$ dimensions.

Serious bottlenecks

1. Eliminate huge number of linear (IBP) relations
2. Evaluate basis \vec{f} of Feynman integrals (FI)

Evaluation of Feynman Integrals

State of the art: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99] [Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\tilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }}
$$

Evaluation of Feynman Integrals

State of the art: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99][Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\tilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }} .
$$

However still (increasingly) hard to compute

1. Initial basis \vec{f}
2. Transformation $\vec{g}=T \cdot \vec{f}$

Evaluation of Feynman Integrals

State of the art: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99] [Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \tilde{a}_{i} \quad \log \underbrace{W_{i}}_{\text {letters }} .
$$

However still (increasingly) hard to compute

1. Initial basis \vec{f}
2. Transformation $\vec{g}=T \cdot \vec{f}$

Could we predict kinematically dependent letters W_{i} beforehand?
Would reduce both steps to much easier, purely numeric problem!

Evaluation of Feynman Integrals

State of the art: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99] [Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\tilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }} .
$$

However still (increasingly) hard to compute

1. Initial basis \vec{f}
2. Transformation $\vec{g}=T \cdot \vec{f}$

Could we predict kinematically dependent letters W_{i} beforehand?
Would reduce both steps to much easier, purely numeric problem!

This strategy in line with e.g.
[Abreu,Ita,Moriello,Page,Tschernow,Zeng'20]

The Role of the Landau Equations

Yield specific values of (kinematic) parameters of any (Feynman) integral, for which it may become singular.

Formulated as conditions for the contour of integration $(A \rightarrow B)$ to become trapped between two poles of integrand (\times). Recent revival of their study, e.g. [Berghoff,Brown,Collins,Hannesdottir, Klausen,McLeod,Mizera,Panzer]
[Schwartz,Spradlin, Telen, Vergu,Volovich. . .]

Believed for long to only provide information on where $W_{i}=0$.

This work

Evidence through two loops: Rational letters of polylogarithmic FI captured by Landau equations, when recast as polynomial of the kinematic variables of integral, known as the principal A-determinant E_{A} !

This work

Evidence through two loops: Rational letters of polylogarithmic FI captured by Landau equations, when recast as polynomial of the kinematic variables of integral, known as the principal A-determinant E_{A} !

Example: 'Two-mass easy' box with $p_{2}^{2}=p_{4}^{2}=0, p_{1}^{2}, p_{3}^{2} \neq 0$:

E_{A} equipped with natural factorization, $\left(s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}+p_{4}\right)^{2}\right)$

$$
E_{A}=\left(p_{1}^{2} p_{3}^{2}-s t\right) p_{1}^{2} p_{3}^{2} s t\left(p_{1}^{2}+p_{3}^{2}-s-t\right)\left(p_{3}^{2}-t\right)\left(p_{3}^{2}-s\right)\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)
$$

where each factor is indeed a letter of the integral!

Outline

Introduction and Motivation

Feynman integrals, Landau singularities \& GKZ systems

One-loop principal A-determinants and symbol letters

Conclusions and Outlook

Outline

Introduction and Motivation

Feynman integrals, Landau singularities \& GKZ systems

One-loop principal A-determinants and symbol letters

Conclusions and Outlook

Feynman Integrals in the Lee-Pomeransky Representation:

$$
I_{G}=\frac{\Gamma(D / 2)}{\Gamma\left((L+1) D / 2-\sum_{i} \nu_{i}\right)} \int_{0}^{\infty} \prod_{i=1}^{E}\left(\frac{x^{\nu_{i}-1} d x_{i}}{\Gamma\left(\nu_{i}\right)}\right) \frac{1}{\mathcal{G}^{D / 2}}
$$

where $\mathcal{G}=\mathcal{U}+\mathcal{F}$ is the sum of the $1^{\text {st }}$ and $2^{\text {nd }}$ Symanzik polynomials,

- Of degree $L, L+1$ in the x_{i}, respectively.
- Coefficients of \mathcal{U} are numbers, of \mathcal{F} depend on kinematic parameters
- Obtained easily from data of graph G.

In this form, I_{G} is special case ${ }^{1}$ of \mathcal{A}-hypergeometric function as defined by Gelfand, Graev, Kapranov \& Zelevinsky (GKZ).

Very active field of research, e.g.
[Ananthanarayan,Banik,Bera, Chang,Chen,Datta, Feng,Klemm,Nega,Safari, Vanhove, Walther, Zhang]
${ }^{1}$ Generic case: All \mathcal{G} polynomial coefficients are variables, different from each other.

Singularities of GKZ-systems

Let $\mathcal{G}=\sum_{j=1}^{m} c_{j} \prod_{i=1}^{E} x_{i}^{a_{i j}}, c_{j}$ all independent.
GKZ-system singular for c_{i} values solving

$$
E_{A}(\mathcal{G})=0
$$

Principal A-determinant of \mathcal{G} : Polynomial in c_{j} with integer coefficients, that vanishes whenever equations

$$
\mathcal{G}=x_{1} \frac{\partial \mathcal{G}}{\partial x_{1}}=\ldots=x_{E} \frac{\partial \mathcal{G}}{\partial x_{E}}=0 \text { have solution. }
$$

Singularities of GKZ-systems

Let $\mathcal{G}=\sum_{j=1}^{m} c_{j} \prod_{i=1}^{E} x_{i}^{a_{i j}}, c_{j}$ all independent.
GKZ-system singular for c_{i} values solving

$$
E_{A}(\mathcal{G})=0
$$

Principal A-determinant of \mathcal{G} : Polynomial in c_{j} with integer coefficients, that vanishes whenever equations

$$
\mathcal{G}=x_{1} \frac{\partial \mathcal{G}}{\partial x_{1}}=\ldots=x_{E} \frac{\partial \mathcal{G}}{\partial x_{E}}=0 \text { have solution. }
$$

In practice, compute via theorem factorizing it into contributions from each face Γ of polytope with vertices $\left(a_{1 j}, \ldots, a_{E j}\right)$,

$$
E_{A}(\mathcal{G})=\prod_{\Gamma} \Delta_{\Gamma}\left(\mathcal{G}_{\Gamma}\right)
$$

A-discriminant: Polynomial in c_{i}, that vanishes when $\mathcal{G}_{\Gamma}=\left.\mathcal{G}\right|_{x_{m_{j}}=0, m_{j} \notin \Gamma}$

$$
\mathcal{G}_{\Gamma}=\frac{\partial \mathcal{G}_{\Gamma}}{\partial x_{m_{1}}}=\ldots=\frac{\partial \mathcal{G}_{\Gamma}}{\partial x_{m_{k}}}=0 \text { have solution. }
$$

Example: Principal A-determinant of bubble

Interpretation of $E_{A}(\mathcal{G})$ polytope

$\operatorname{Newt}\left(E_{A}(\mathcal{G})\right)$, built out of exponents of $E_{A}(\mathcal{G})$ polynomial: Keeps track of triangulations of $\operatorname{Newt}(\mathcal{G})$.

Interpretation of $E_{A}(\mathcal{G})$ polytope
$\operatorname{Newt}\left(E_{A}(\mathcal{G})\right)$, built out of exponents of $E_{A}(\mathcal{G})$ polynomial: Keeps track of triangulations of $\operatorname{Newt}(\mathcal{G})$.

Cluster algebras also describe triangulations of geometric spaces
[Fomin,Zelevinsky'01] [Felikson,Shapiro,Tumarkin'11]
First-principle derivation of observed cluster-algebraic structure of Feynman integrals? [Chicherin,Henn,Papathanasiou'20] ... [He,Liiu,Tang,Yang' 22]

Outline

Introduction and Motivation

Feynman integrals, Landau singularities \& GKZ systems

One-loop principal A-determinants and symbol letters

Conclusions and Outlook

Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other

Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other

A-discriminants reduce to usual determinants

Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other

A-discriminants reduce to usual determinants \Rightarrow Modified Cayley matrix \mathcal{Y}, ${ }^{\text {[Melrose' } 65]}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

captures all Landau singularity information.

Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other
A-discriminants reduce to usual determinants \Rightarrow Modified Cayley matrix \mathcal{Y}, ${ }^{\text {[Melrose' } 65]}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

captures all Landau singularity information.

- $\Delta(\mathcal{F})=\operatorname{det} Y:$ Leading 1 Landau singularity of type I^{2}

[^0]
Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other
A-discriminants reduce to usual determinants \Rightarrow Modified Cayley matrix \mathcal{Y}, ${ }^{\text {[Melrose' } 65]}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

captures all Landau singularity information.

- $\Delta(\mathcal{F})=\operatorname{det} Y:$ Leading ${ }^{1}$ Landau singularity of type I^{2}
- $\Delta(\mathcal{G})=\operatorname{det} \mathcal{Y}:$ Leading ${ }^{1}$ Landau singularity of type II^{2}

[^1]
Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other
A-discriminants reduce to usual determinants \Rightarrow Modified Cayley matrix \mathcal{Y}, ${ }^{\text {[Melrose'65] }}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

captures all Landau singularity information.

- $\Delta(\mathcal{F})=\operatorname{det} Y:$ Leading ${ }^{1}$ Landau singularity of type I^{2}
- $\Delta(\mathcal{G})=\operatorname{det} \mathcal{Y}:$ Leading ${ }^{1}$ Landau singularity of type II^{2}
- Subleading Landau singularity where $x_{i_{1}}, \ldots, x_{i_{m}}=0 \sim$ Leading singularity of subgraph where internal edges i_{1}, \ldots, i_{m} removed [Klausen'21]

[^2]
1-loop Subleading Landau Singularities=Subdeterminants

For any matrix A with elements $a_{m n}$, let (j, k)-th minor of A be

$$
A\left[\begin{array}{l}
j \\
k
\end{array}\right] \equiv\left|\begin{array}{ccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, k-1} & k & a_{1, k+1} & \cdots & a_{1, N} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, k-1} & & a_{2, k+1} & \cdots & a_{2, N} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\
a_{j-1,1} & a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1, k-1} & a_{j-1, k+1} & \cdots & a_{j-1, N} \\
j & a_{j+1,1} & a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1, k-1} & a_{j+1, k+1} & \cdots & a_{j+1, N} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
a_{N, 1} & a_{N, 2} & a_{N, 3} & \cdots & a_{N, k-1} & a_{N, k+1} & \cdots & a_{N, N}
\end{array}\right|,
$$

where shading indicates removal of row and column. Similarly $A\left[\begin{array}{l}i_{1} \ldots i_{k} \\ j_{1} \ldots j_{k}\end{array}\right]$, $A[\cdot]=\operatorname{det} A$.

1-loop Subleading Landau Singularities=Subdeterminants

For any matrix A with elements $a_{m n}$, let (j, k)-th minor of A be

$$
A\left[\begin{array}{l}
j \\
k
\end{array}\right]=\left|\begin{array}{ccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, k-1} & k & a_{1, k+1} & \cdots & a_{1, N} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, k-1} & & a_{2, k+1} & \cdots & a_{2, N} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
a_{j-1,1} & a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1, k-1} & & a_{j-1, k+1} & \cdots & a_{j-1, N} \\
j & a_{j+1,1} & a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1, k-1} & a_{j+1, k+1} & \cdots & a_{j+1, N} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
a_{N, 1} & a_{N, 2} & a_{N, 3} & \cdots & a_{N, k-1} & a_{N, k+1} & \cdots & a_{N, N}
\end{array}\right|,
$$

where shading indicates removal of row and column. Similarly $A\left[\begin{array}{l}i_{1} \ldots i_{k} \\ j_{1} \ldots j_{k}\end{array}\right]$, $A[\cdot]=\operatorname{det} A$.

Principal A-determinant of generic 1-loop graphs
Gathering previous bits of information, arrive at

$$
E_{A}(\mathcal{G})=\mathcal{Y}\left[\cdot \cdot \cdot \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{c}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array}\right] \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

Contains all diagonal k-dimensional minors of $\mathcal{Y}, 1 \leq k \leq n+1$, but $\mathcal{Y}_{11}=0$.

$$
2^{n+1}-n-2 \text { factors, e.g. } 1,4,11,26,57,120 \text { factors for } n=1, \ldots, 6
$$

Each factor $=$ polynomial symbol letter W_{i} !

Polylogarithmic integral singular for $W_{i}=0 \Rightarrow E_{A}(\mathcal{G})=0$

From 1-loop polynomial to square-root letters

Square-root letters often present. How to obtain them?

From 1-loop polynomial to square-root letters
Square-root letters often present. How to obtain them?
Idea
Re-factorize E_{A} with Jacobi determinant identities of the form

$$
p \cdot q=f^{2}-g=(f-\sqrt{g})(f+\sqrt{g}),
$$

1. where p, q factors of E_{A}, i.e. polynomial letters.
2. $f \pm \sqrt{g}$ contain leading singularity of FI in $2^{\text {nd }}$ term.

From 1-loop polynomial to square-root letters
Square-root letters often present. How to obtain them?

Idea

Re-factorize E_{A} with Jacobi determinant identities of the form

$$
p \cdot q=f^{2}-g=(f-\sqrt{g})(f+\sqrt{g}),
$$

1. where p, q factors of E_{A}, i.e. polynomial letters.
2. $f \pm \sqrt{g}$ contain leading singularity of FI in $2^{\text {nd }}$ term. ${ }^{[C a c h a z o}{ }^{\circ} 08$]

Motivation: 1-loop integrals $=$ volumes of spherical simplices.
[Davydychev,Delbourgo'99]
Crucial for their computation are the Jacobi identities,

$$
A[\cdot] A\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]=A\left[\begin{array}{l}
i \\
i
\end{array}\right] A\left[\begin{array}{l}
j \\
j
\end{array}\right]-A\left[\begin{array}{l}
i \\
j
\end{array}\right] A\left[\begin{array}{l}
j \\
i
\end{array}\right] \stackrel{A=A^{T}}{=} A\left[\begin{array}{l}
i \\
i
\end{array}\right] A\left[\begin{array}{l}
j \\
j
\end{array}\right]-A\left[\begin{array}{l}
i \\
j
\end{array}\right]^{2} .
$$

Point 2 adopts widely observed pattern in 1- and 2-loop computations.

All 1-loop letters I

Need only ratio $\frac{f-\sqrt{g}}{f+\sqrt{g}}$, as product already contained in polynomial alphabet. Letting $D=D_{0}-2 \epsilon$, obtain N letters of type,

$$
W_{1, \ldots,(i-1), \ldots, n}= \begin{cases}\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]-\sqrt{-\mathcal{Y}[\cdot] \cdot\left[\begin{array}{l}
\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right] \\
\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]+\sqrt{-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]}
\end{array}\right.} \begin{array}{l}
\\
\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]-\sqrt{\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]+\sqrt{\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]},
\end{array} & D_{0}+n \text { odd } \\
& \end{cases}
$$

All 1-loop letters II

In addition, $n(n-1) / 2$ letters of type,

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.
Finally, obtain remaining letters of n-point graph by applying above formulas to all of its subgraphs.

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.
Finally, obtain remaining letters of n-point graph by applying above formulas to all of its subgraphs.

Total letter count: Assuming $n \leq d+1$ for external kinematics dimension d,

$$
|W|=2^{n-3}\left(n^{2}+3 n+8\right)-\frac{1}{6}\left(n^{3}+5 n+6\right)
$$

e.g. $|W|=1,5,18,57,166$ for $n=1, \ldots, 5$ and D_{0} even.

Verification through differential equations \& comparison with literature
From letter prediction, derived canonical differential equations through numeric IBP relations \Rightarrow confirmation.

By explicit computation up to $n=10$, infer general form, e.g. $n+D_{0}$ even:

$$
\begin{aligned}
d \mathcal{J}_{1 \ldots n}= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i<j \leq n}(-1)^{i+j+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots j \ldots n} .
\end{aligned}
$$

Verification through differential equations \& comparison with literature

From letter prediction, derived canonical differential equations through numeric IBP relations \Rightarrow confirmation.

By explicit computation up to $n=10$, infer general form, e.g. $n+D_{0}$ even:

$$
\begin{aligned}
d \mathcal{J}_{1 \ldots n}= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i<j \leq n}(-1)^{i+j+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots \bar{j} \ldots n} .
\end{aligned}
$$

Furthermore, compared to previous results for D_{0} even based on

1. the diagrammatic coaction $\left.{ }^{[A b r e u, B r i t t o, D u h r, G a r d i 1 ~} 17\right]$
2. the Baikov representation ${ }^{[C h e n, M a, ~ Y a n g ' ~}{ }^{22]}$

Agreement in form of CDE, as well as in letters for orientations presented in 2, see also.
[Jiang,Yang'23]

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$ (unique regardless of order with which we send them to zero).

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$ (unique regardless of order with which we send them to zero).
Define limit of E_{A} when single parameter x takes value a as

$$
\lim _{x \rightarrow a} E_{A}=\left.\frac{\partial^{l} \widetilde{E_{A}}}{\partial x^{l}}\right|_{x=a} \neq 0, \text { with }\left.\frac{\partial^{l^{\prime}} E_{A}}{\partial x^{l^{\prime}}}\right|_{x=a}=0 \text { for } l^{\prime}=0, \ldots, l-1
$$

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$ (unique regardless of order with which we send them to zero).

Define limit of E_{A} when single parameter x takes value a as

$$
\lim _{x \rightarrow a} E_{A}=\left.\frac{\partial^{l} \widetilde{E_{A}}}{\partial x^{l}}\right|_{x=a} \neq 0, \text { with }\left.\frac{\partial^{l^{\prime}} E_{A}}{\partial x^{l^{\prime}}}\right|_{x=a}=0 \text { for } l^{\prime}=0, \ldots, l-1
$$

Multivariate generalization straightforward, but highly nontrivial that limit does not depend on order. E.g. triangle Cayley in limit $p_{i}^{2} \rightarrow 0$:

$$
\operatorname{det} Y=0+2 \sum_{i=1}^{3} p_{i}^{2}\left(m_{i}^{2}-m_{i-1}^{2}\right)\left(m_{i+1}^{2}-m_{i-1}^{2}\right)+\mathcal{O}\left(p_{j}^{2} p_{k}^{2}\right)
$$

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$ (unique regardless of order with which we send them to zero).

Define limit of E_{A} when single parameter x takes value a as

$$
\lim _{x \rightarrow a} E_{A}=\left.\frac{\partial^{l} \widetilde{E_{A}}}{\partial x^{l}}\right|_{x=a} \neq 0, \text { with }\left.\frac{\partial^{l^{\prime}} E_{A}}{\partial x^{l^{\prime}}}\right|_{x=a}=0 \text { for } l^{\prime}=0, \ldots, l-1
$$

Multivariate generalization straightforward, but highly nontrivial that limit does not depend on order. E.g. triangle Cayley in limit $p_{i}^{2} \rightarrow 0$:

$$
\operatorname{det} Y=0+2 \sum_{i=1}^{3} p_{i}^{2}\left(m_{i}^{2}-m_{i-1}^{2}\right)\left(m_{i+1}^{2}-m_{i-1}^{2}\right)+\mathcal{O}\left(p_{j}^{2} p_{k}^{2}\right)
$$

While limits of individual factors in E_{A} depend on limit order, E_{A} as a whole does not, since different orders produce factors it already contains.

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$ (unique regardless of order with which we send them to zero).

Define limit of E_{A} when single parameter x takes value a as

$$
\lim _{x \rightarrow a} E_{A}=\left.\frac{\partial^{l} \widetilde{E_{A}}}{\partial x^{l}}\right|_{x=a} \neq 0, \text { with }\left.\frac{\partial^{l^{\prime}} E_{A}}{\partial x^{l^{\prime}}}\right|_{x=a}=0 \text { for } l^{\prime}=0, \ldots, l-1
$$

Multivariate generalization straightforward, but highly nontrivial that limit does not depend on order. E.g. triangle Cayley in limit $p_{i}^{2} \rightarrow 0$:

$$
\operatorname{det} Y=0+2 \sum_{i=1}^{3} p_{i}^{2}\left(m_{i}^{2}-m_{i-1}^{2}\right)\left(m_{i+1}^{2}-m_{i-1}^{2}\right)+\mathcal{O}\left(p_{j}^{2} p_{k}^{2}\right)
$$

While limits of individual factors in E_{A} depend on limit order, E_{A} as a whole does not, since different orders produce factors it already contains.

Strong evidence that non-generic FI alphabet obtained as limit.

Mathematica Notebook

(- Symbol alphabets*)
(- Generic Box in even dimension *)
$\mathrm{D} 日=4$;
EvaluateLetter [AllLettersList[4]] // Short
(- Two-mass easy box linit *)
Factor [PLimit [\%, ms [1] $\rightarrow \theta$, ms [2] $\rightarrow \theta$, $\mathrm{ms}[3] \rightarrow \theta, \mathrm{ms}[4] \rightarrow \theta, \mathrm{s}[1,3] \rightarrow \theta, \mathrm{ps}[2] \rightarrow \theta]]$;
(* In the limit the letters become multiplicatively dependent. Since all of them are rational, a basis may be found as follows *) dlExpand[dl/e*];

Length [${ }^{2}$]
(* Product indeed yields corresponding limit of the principal. A-determinant *)
LS2meBox - Times ee a*
(* Differential equations *)
(*Box basis*)
basis ee Range [4]
(*Box canonical differential equations*)
CDEs [8] // MatrixForm
$\mathrm{ms}(1] \ll 24 \gg<\mathrm{ms}[3)^{2} \mathrm{ps}[1)^{2}-2 \mathrm{~ms}[3] \times \mathrm{ms}[4] \mathrm{ps}[1]^{2}+\mathrm{ms}[4]^{2} \mathrm{ps}[1]^{2}-2 \mathrm{~ms}[1] \times \mathrm{ms}[3] \quad \mathrm{ps}[1] \times \mathrm{ps}[2]+$
$2 \mathrm{~ms}[1]-\mathrm{ms}[4]$ ps $\left.[1] \mathrm{ps}[2]+\propto 172 x+\mathrm{ms}[3]^{2} \mathrm{~s}[2,3]^{2}-2 \mathrm{~ms}[1] \times s[1,2] \mathrm{s}[2,3]^{2}-2 \mathrm{~ms}[3] \mathrm{s}[1,2] \mathrm{s}[2,3]^{2}+\mathrm{s}[1,2]^{2} \mathrm{~s}[2,3]^{2}\right)$

Snori-

Oul| (100) $=10$

Two-loop example of principal A-determinant-alphabet relation

$$
\begin{aligned}
& \text { 1-mass slashed box, } \\
& p_{1}^{2} \neq 0, p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
\end{aligned}
$$

$$
E_{A}(\mathcal{G})=\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)\left(p_{1}^{2}-s-t\right)(s+t) s t p_{1}^{2}
$$

Agrees precisely with (2dHPL) alphabet known to describe 2-loop master integrals with these kinematics! [Gehrmann,Remiddi$\left.{ }^{\circ} 00\right]$

Further mathematical properties of Feynman integrals: Cohen-Macauley

Guarantees that

$$
\# \text { master integrals }=\text { volume of } \operatorname{Newt}(\mathcal{G})
$$

Proved it for currently largest known class of 1-loop integrals, including completely on-shell/massless. For earlier work, see $\left.{ }^{[T e l l a n d e r, H e l m e r}{ }^{2} 21\right][$ Walther 22]

Relation to other properties:

Further mathematical properties of Feynman integrals

 :Generalized permutohedron (GP) propertyA polytope $P \subset \mathbb{R}^{n}$ is GP if and only if every edge is parallel to $\mathbf{e}_{i}-\mathbf{e}_{j}$, where \mathbf{e}_{i} is unit vector on coordinate axis, for some $i, j \in\{1, \ldots, n\}$. E.g.

Practical utility: This property facilitates new methods for fast Monte Carlo evaluation of Feynman integrals. $\left.{ }^{\left[B o r i n s k y^{\prime} 20\right] ~[B o r i n s k y, M u n c h, T e l l a n d e r ' ~} 23\right]$

Previously proven for generic kinematics. ${ }^{\left[S c h u l t k a a^{18]}\right.}$ Here: Generalized to any graph where all external vertices joined by massive path.

Conclusions and Outlook

Evidence that rational letters of polylogarithmic FI captured by polynomial form of Landau equations in terms of principal A-determinant E_{A} !

- Through 2 loops
- 1 loop: Also obtain square-root letters from Jacobi identities + CDE
- Strong evidence for well-defined limits to non-generic kinematics
- Easy-to-use Mathematica file with our results

Next Stage

1. More efficient evaluation of $E_{A}+$ more 2-loop checks [Helmer, GP,Tellander'24]
2. New predictions for pheno, e.g. letters for $2 \rightarrow 3$ with 2 massive legs
[Les Houches Standard Model Precision Wishlist'21]
3. Explore implications for beyond-polylogarithmic case

[^0]: ${ }^{1}$ Where all $x_{i} \neq 0$
 ${ }^{2}$ Type I (II): Integration contour pinched at finite (∞) values of loop momentum k.

[^1]: ${ }^{1}$ Where all $x_{i} \neq 0$
 ${ }^{2}$ Type I (II): Integration contour pinched at finite (∞) values of loop momentum k.

[^2]: ${ }^{1}$ Where all $x_{i} \neq 0$
 ${ }^{2}$ Type I (II): Integration contour pinched at finite (∞) values of loop momentum k.

