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Introduction

What Feynman integrals evaluate to?

In 1963 Regge conjectured that the convergent Feynman integrals form a
new class of special functions satisfying certain differential equations. He
called them generalized hypergeometric functions. His justification for this

V A Golubeva, 1976 Russ.Math.Surv.31 139

o Answer from Mellin-Barnes™°05 Pavydyehev, 190 tachniques: pEy, Appell,

Lauricella, etc. Horn-type multivariable hypergeometric functions
Kalmykov-Bytev-Kniehl-Ward-Yost, '09

° |BPsChetyrkin—Tkachov, 181+Differentia| EquationsGehrmannfRemiddi, 199+e—form
Henn, 13 Goncharov polylogarithms and related elliptic structures
o Gelfand-Kapranov-Zelevinsky (GKZ) observation: A-hypergeometric functions

with integral representations. We only note that among the Euler type integrals associated
with systems of the form (0.2) there are the integrals SIIPi (TP L7 t:"dtl LL.dty

where Pj are polynmfléa}.s, Vi.s., Vpractrically all i)::tegtals which arise in quantum field theory.

Remarks
@ All the above answers expressible as infinite sums
@ State of the art based on the most popular answer — efficiency

@ Precise answer to this question not only of mathematical relevance
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Introduction

Invitation to GKZ: Bubble

@ Suppose we want to study the Feynman integral T
p
Toubble = / d’k 1 U
bubble — ﬂ-d/2 [(k)z]nl [(k‘ _ p)2 + m2]<x2
R
o Lee-Pomeransky (8 = d/2)

Toubble/ér, = I4(a, B) :/
R

(o3 (3
211257 dz; dzg

(214 22+ (M2 + 8) 2120 + m222)8 21 2

2
+

o GKZ approach: consider the more general version of this integral

Iap.o) = [

ar o
N dz1 dzp
Q ((1121 + o290 + 321292 + (‘,,12%)5 21 %2

o Consider the matrix of exponents of g(c, z)

g(c,z) = (c121 + caza + c32120 + c473) = A =

O = =
—_ O =
—
N O =
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Introduction

Invitation to GKZ: Bubble

o Integral satisfies the system of PDEs (9; := 9/0¢;)

(0203 — 8184) (o, B,¢) =0,
(101 + €202 + €303 + 404 + )1 (e, B, ¢) =0,
(c101 + ¢305 + an)I (e, B, ¢) =0,
(coOs + 303 + 2¢404 + a2)I (v, B, ¢) =0.
@ Canonical series solutions (Saito-Sturmfels-Takayama) (5 := d/2)

coc
¢1 =c" ok <01,6¥1+042 — B;2a1 + g — 28+ 1; = 3>7

C1C4
P2 =c?2 1 (25 —a1 —ag,f—a1;26 - 201 —az + 1; ??) .
1C4

@ ~; roots of a system of polynomial equations obtained from A
@ General solution is

I{a,c) = K11 + Koo

e Feynman integral is the restriction of I(a,c) — ¢1 = co = 1, e3 = (s + m?),
Cq = M2
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GKZ systems and A-hypergeometric functions

@® GKZ systems and A-hypergeometric functions
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GKZ systems and A-hypergeometric functions GKZ systems

A-philosophy |

o GKZ (Discriminants, Resultants and Multidimensional Determinants): “ The
study of many problems becomes more transparent if we consider not
individual polynomials but polynomials with indeterminate coefficients'

e Multi-index notation (o € Z")

«

e Q1 anN
2% =2yt 2NN

@ Laurent polynomials in N variables of the form
g
bi(z) =Y iz, ey €Co=C\{0}, i=1,....¢
j=1

@ For each b;(z), we have the N x n; configuration matrix
N
Ai=(an o+ i o Qing),s Qi € Z

@ Each column of A; associated with a monomial term in b;(z)
® n =mny + -+ ng is the total number of monomials
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GKZ systems and A-hypergeometric functions GKZ systems

A-philosophy |l

@ Product of Laurent polynomials

b(z) == bi(2) -+ by(2)
@ Define the (N + ¢) X n matrix

1 0 0
0 1 0
A= o o
o o0 ... 1
A As ... A,

@ Here 0= (0,...,0) and 1 = (1,...,1) are row vectors of length |A;]|.
co(A):=n—N —q.

Comment

One can associate a polytope to the matrix A and study its combinatorial
properties. In this talk we will not follow this approach.
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GKZ systems and A-hypergeometric functions GKZ systems

Example: o F}

@ Single polynomial ny =4, N =2,¢=1

0

blc,z) = c1 + caz1 + 320 + Cuz120 = A = <0 01

—
o
— =
~_

1 1 1 1
A=(10 1 0 1
0 011

@ Product of polynomials ny =2, no =2, N=1,¢=2

1100
b(2)? =005 = (¢) 4 c22)" (cs+es2) —=A=[0 0 1 1
010 1
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GKZ systems and A-hypergeometric functions GKZ systems

Gel'fand-Kapranov-Zelevinsky systems

Defined by the following data

@ (N + gq) x n matrix A such that the vector (1,...,1) lies in its row span
b(z) = b1(2) - by(2).
@ A vector of parameters kK = (K1,...,KN+q), ki € C

© A system of partial differential equations(PDEs) associated with A. Let
u,v € N™ and consider

(8“ - GU)F(C) =0, where Au=Av,
n
Zaijﬁj—m F(C)ZO, i=1,....,N+gq
j=1

0j = Cja/acj' and 0% = 8;“ 6;;"

A-hypergeometric functions

A holomorphic function F(c) or formal series is called A-hypergeometric if it
satisfies the system of PDEs

L. de la Cruz 7 February 2024 11 /36



GKZ systems and A-hypergeometric functions GKZ systems

GKZ and D-modules

@ GKZ systems as holonomic ideals in the Weyl algebra D
e D=C/{ci,...,¢n,01,...,0n) modulo commutation rules beetwen ¢;, 9;

D >p(z,0) = Zaagc

o Toric ideal of A
Ipn = (0" —0": Au=Av, wu,veN")CC[d,...,0,]
o Ideal generated by k* and 6 = (0y,...,0,)7
(A0 — k1) C C[hy,...,0,]
o Ha(k) is the left ideal on D generated by I and (A0 — xk7T)

A-hypergeometric functions

A holomorphic function F'(c¢) or formal series is A-hypergeometric of degree « if
Ha(k)® F(c) =0, rank(Ha(k)) > vol(A)

Generic k: rank(Ha(k)) = vol(A) = degree(Ia)
7 February 2024




GKZ systems and A-hypergeometric functions GKZ systems

Euler type solutions

@ Vector of parameters  := (—f3, —a), 3 € C4, a € CV
2% dz1  dzo dzn
I = ——dny, d =— A— A A —)
o(%) /Qb(c, z)P N N 21 29 ZN

e Cycle Q C (C,)M\V(b) usually assumed to be compact
@ Set of zeros of b(c, ) is the algebraic variety V(b)

o CKZ 90 f the integral I, (k) converges and defines a germ of analytic
functions in the variables z, then it represents a solution of the
A-hypergeometric system Ha (k)

o Also “%% 90 if all b; have real coefficients one can take the integral also
over some connected component of RV \ V(b)

@ Non-compact cycles for A-hypergeometric functions (Coamoeba)
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GKZ systems and A-hypergeometric functions GKZ systems

Non compact cycles: Euler-Mellin integrals

Berkesh-Forsgard-Passare(BFP), 13 Eyler-Mellin integral is an integral of the form

of I,(r) taken over a cycle Q = Arg™*(f), related to coameba of V(b)

Amoeba and Coamoeba of an algebraic variety
Ay :=Log(V(D)), Log(z) = (log |z1],...,log|zn])
b :=Arg(V(b)), Arg(z) = (arg(z1),...,arg(zn))

@ BFP consider the Euler-Mellin integral

I A ey
ble) = / i = [ s

@ Simplest case is {2 € Rf which covers Feynman integrals

@ The convergence of these integrals is controlled by a theorem due to Berkesh,
Forsgérd and Passare (BFP).
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GKZ systems and A-hypergeometric functions GKZ systems

Amoebas and coamoebas

Amoeba(shaded)[—4, 4] x [—4, 4] Coamoeba(shaded)[—7, 7] x [—, 7]
b(z1,22) =1+ 242 2i 4222 =0
[Credit: Jens Forsgdrd mathematica package]

@ Noncompact cycle is given by a representative 6 € © of a connected
component of R \ A}
QO =Arg '
@ For a Feynman integral we should choose 6 such that © € RY, in other
words such that 0 € RY \ A



GKZ systems and A-hypergeometric functions GKZ systems

BFP: From Euler-Mellin to GKZ

@ Let us consider the weighted Newton polytopes of b; TA, = 23':1 (I TAVIS
e I(k) converges and defines and analytic funcion with parameters
k = (=B, —«) on the tube domain

{(e, ) € CNT9|7:=Re B € RY, 0 :=Re acint(tAy)},

o If the polynomials b(z) vanish on the positive orthant we can take a

— —
connected component © of RV\ A, where A, denotes the closure of the
coamoeba of b and consider the integral

PR e (z+i0)

I = 7(1
o) = /9 (2P N = J ey AT

o Promoting the coefficients of b(z) to mdetermmates

PR
I = ——=d
b(67 ’Q) /,’:\rg_le b(C, Z)ﬂ W

represents an A-hypergeometric function (Theorem 4.2 in BFP)

@ For generic parameters k provides a basis of solutions of Ha (k)

o Each integral is evaluated on a representative of © for each connected
component of RN\Z;



GKZ systems and A-hypergeometric functions  Canonical series

Formal series Solutions

o L:={ueZ":Au=0}
o Foru € L, we can write u = uy — u_, where uyx € N” have disjoint support
@ For v € C™ we define (falling factorials)

—u;

W= TT T[Gi—i+v =TI D™ (..
i <0 j*l iy <0
e, = ] H%Jruz—JJrl 11 H%+J IT (u+1),,
wu, >0 j=1 iu; >0 j=1 :u; >0

(a), are Pochhammer symbols

@ Series solution

Dy ZZZ [’Lu_ Ot
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GKZ systems and A-hypergeometric functions  Canonical series

Canonical series algorithm (Saito-Sturmfels-Takayama)

Frobenious method Ceopities]] S
d?y 9
T2 Twy=0 Ha(k)® F(c) =0
@ Try series solution @ Formal solution
S = Dl )
n=0
@ |Indicial equation @ Fake indicial ideal
k(k—1)=0 find,, (Ha(k)) |

Convergence

Weight vector w chooses a region of convergence: representative of the Grobner
fan of Ia

L. de la Cruz 7 February 2024 18 /36



GKZ systems and A-hypergeometric functions  Canonical series

Canonical series algorithm (Saito-Sturmfels-Takayama)

2F1 two integral
= s~ A={{1, 1, 1, 1}, {0, 1, 0, 1}, {0, 0, 1, 1}};
in Mar kerfromM2[A]
o finwIA[A, {0, 1, 1, 1}, {-B, -al1], -a[2]}]
A i, fakeExp[%, Table[@[i], {i, 1, 4}]]
Mutsumi Saito
e ene colres[A, {0, 1, 1, 1}, {-B, -a[1], -a[2]}]
Nobuki Takayama oussl- {{1}, {-1}, {-1}, {1}}
Grobner L
Deformations A oussi- {6[2] - 6[3], B+ 6[1]+ (2] + 6[3] + 6[4], a[1]+ 6[2] + 6[4], a[2]+
of Hypergeometric ous7- {{-B +al1], -a[1]+al2], 0, -a[2]}, {-B+al2], 0, a[1]-a[2],
Differential
w Equations outa- {t=n, m, n, =n, (-, ), (6121 - 6131, B+ (1] + 6121 + 6131 + ¢
{-B+al1], -a[1]+a[2], 0, -a[2]}, {-B +a[2], 0, a[1]-a[2
& e {( (B-a(), (a(znn) ((ﬁ—a(znn (@),
(—a(@)+a@)+1), (@), / L)n (@@)-a2)+1),

Interface: Macaulay2+Mathematica
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Feynman integrals as A-hypergeometric functions

© Feynman integrals as A-hypergeometric functions
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Feynman integrals as A-hypergeometric functions

Lee-Pomeransky representation of Feynman integrals

@ Factor independent of the kinematics

&r, =

T((L+1)d/2 = Y% o) TTis; D)

Symanzik polynomials
@ Dimensionless (scaling in F assumed)
e Euclidean kinematics: invariants —(p; 4+ p;)* > 0
@ U homogeneous polynomial of degree L
@ F homogeneous polynomial of degree L + 1
@ U, F positive functions of their parameters
@ kinematic dependence is in F

@ U and F can only vanish on the boundaries of the integration region




Feynman integrals as A-hypergeometric functions

Proposal based on canonical series

Idea

Consider Feynman integrals as special points of A-hypergeometric functions. A
Feynman integral is A-hypergeometric whenever we can compute its canonical
series ¢;.

Ip(k) = Kigr + -+ + K, ¢,

Feynman integrals

o Consider the coefficients in g(z) = U + F as indeterminate
9(2) = g(z,¢) =U(c) + F(c) = A

@ In general we add a deformation to g(z,c) to ensure canonical series when
co(A) =0, g(z,¢) = gr(z,¢) :=71(2) + g(z,¢)

@ Feynman integrals are obtained from the restriction of canonical series to
kinematics values.

@ Designed for algorithmic evaluation of Feynman integrals

o

L. de la Cruz 7 February 2024 22/36




Feynman integrals as A-hypergeometric functions

Proposal based on canonical series

Theorem
Let

- 1 1 ... 1
(¢, 2) = 2% = A = )
g (C Z) ;cz <a1 as ... an>

The Euler-Mellin integral

Z(X
Lo, () = /Q gr(c, a4

is a solution of the A-hypergeometric system Ha (k) of degree k = (—d/2, —a).
Noncompact cycles €2 considering the coamoeba of of V(g (c,2)) and choosing
representatives 6 € © in RV\ A/, .

Proof.

Show that I, (k) satisfies the GKZ system. Validity for non-compact cycles
demonstrated by as we discussed before 577 13

V.
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Feynman integrals as A-hypergeometric functions

Relation to other proposals and methods

@ Maximal cuts and n-loop bananas, fixed dimensions, compact cycles:
Vanhove, '18 Klemm-Nega-Safari, '19 Bonish-Fischbach-Klemm-Nega-Safari, '20

o Full massive sunset with emphasis on triangulations of polytopes: /@tsen 19

@ Feynman Integrals satysfying GKZ differential equations also in
Nasrollahpoursamami, '16

Remark

@ Above approaches emphasize triangulations of Convex Polytopes — Gamma
series representations

@ Canonical series through Grobner bases for some w and triangulations of

polytopes are intimately connected
Sturmfels, Grobner bases and convex polytopes, '95
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Feynman integrals as A-hypergeometric functions

More recent developments

o Cohen-Macaulay property '©/l2nder-telmer21

iN(w,—w) (Ha(K)) = (A0 — k) +iny(Ia)

@ Choice of w can simplify sum representation

o Kinematic singularities of Feynman integrals through A-determinants
Klausen '21, Mizera-Telen'21, Fevola-Mizera-Tellen, '23

9(z) =U+F
@ Banana Feynman integrals from series representation (Frobenius
method)Bénisch—Duhr—Fischbach—KIemm—Nega'21

° Analytic continuation tool Ananthanarayan-Bera-Friot-Pathak'21

FeynGKZ

Ananthanarayan-Banik, Souvik Bera-Datta, '22 A Mathematica package for solving

Feynman integrals using GKZ hypergeometric systems
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Feynman integrals as A-hypergeometric functions Example

Example: Triangle

s1=—pi, s2 = —p3, s3 = —(p1 + p2)°

o Polynomial

g(Z) = 21t29+23+832122+812123+822223 <= A=

(=Nl
o= O -
_ o O
O~ =
— O =
_ = O

@ co(A) = 2. Two variable hypergeometric function

L. de la Cruz 7 February 2024 26 /36



Feynman integrals as A-hypergeometric functions Example

Example: Triangle

o1 o (X3
%1 %2 %3

I, (k) = d
() /Q 13 (c121 + Coza + €323 + caz122 + C52123 + C2223)P

Macaulay 2 + Mathematica
@ Input: w = (0,0,1,0,0,0), A
o finw(Ha(K)) = (6205, 0504) + (A0 — kT)
o Output:

{71} = {(—Oq,C’—ﬂ,B—ﬂ,0,0,ﬂ—A),(az—ﬂ,C—ﬂ,O,B—B,O,—ag),
(Ol3—,B,O,B—,B,O,B—C,-CYQ),(A—QB,O,O,IB—B,ﬁ—C,Q’l _/6)}

A=qa;+as+a3, B=aj+as, and C = a; + as.
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Feynman integrals as A-hypergeometric functions Example

Example: Triangle

Mathematica

_.m (al)m+n (A - B)m+n mon
o= m%ez (=B+C+ 1) (-B+B+ 1)m(1)m(1)nm ¥
(/8 - a2)m+n (Oég)m+n n
—c2 m
2= mz%ez (=f+C+1),(1)m(B—B+ 1)m(1)n3: v
(ﬁ B a’3)m+n (a2>m+n
—c 3 m, n
73 = m%;ez Wn(-B+ B+ )mWm(B—C+ 1), " 7

4 (Qﬂ_A)m+n (ﬂ _al)m n m_ n
=" Y OBt

m>0,n€EZ

z = (czcq)/(c1c6) and y = (cac5)/(crco).
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Feynman integrals as A-hypergeometric functions Example

Example: Triangle

Integration constants from positions of zero's in roots

1 i
Kr = m HF(_’Y’I‘>

i#£0

Restriction to physical values

cp=cp=c3=1and ¢y = s3, c5 = 51, Cg = So

I(a,B) =

Kisy “Fy(on, A= B;—B+auz +1,—B + arz + L s3/50,51/52)

+ K285a35§73F4(6 —ag,a3;C — B+ 1,—B+ 8+ 1;s3/s2,51/82)

+ K3s2_a28f_cF4(6 —as,a;B—0+1,—C+ +1;83/52,81/92)

+ Kusy 53" Py TP RI(28 — A B —ars =B+ B+ 1,—C+ B+ Ly sy/s2,51/s2)

o Mellin-Barnes®00% Pavydychev. "913n4 negative dimension approach
Anastasiou-Glover-Oleari, '00

v
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Amplitudes

O Amplitudes
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Amplitudes

Holonomic properties of scattering amplitudes

o GKZ ideal Ha(k) is a holonomic D-ideal
HA(H) =1z U <A(9 — /*6)
o Key property of Feynman integrals: holonomicity

Kashiwara-Kawai, '77, Bitoun-Bogner-Klausen-Panzer '17

e Basic equation of generalized unitarity®en-Pixon-Dunbar-Kosower, 194

A, =Y (Ao [P | rational
i
o Coefficients ¢; can be computed from tree-level amplitudes (rational
functions of spinor variables)
@ More generally ¢; are algebraic functions

@ Algebraic functions are also holonomic hence amplitudes! Elementary
consequence of holonomic D-modules (See Chapter 20 of Coutinho's book)

@ Let us start with trees ...

L. de la Cruz 7 February 2024 31/36



Amplitudes

Biadjoint scalars

o Biadjoint scalar amplitudes

1

A abe Fa
L= gauwaaaH@aa - gf b f B’Y@aa@bﬂipcv

@ Admit a recursive formula'2fr2. 16

¢w1,w2 = Z Z d)w a¢y,b - QS A y)] d)wl,wz =0, it wp \w2 7é €

Sw
1 zy=w1 ab=ws,

with the start of the recursion defined as ¢; ; = d;;. The n-point amplitude is

mp (win|wen) = (_1>(n_3)8w1 Puwy,wa
D2 Pn—1

b1 Pn
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Amplitudes

Weyl algebra

o Take win=12...n
@ Ring of Mandelstam invariants

Sijho. =i+ pj +pr+...)°
o Examples

1 1 1 1 1 1 1
+

) 5
S12 523 5125123 512534 5123523 5235234 5234534

o kinematic invariants S, = { s, | w € By, }, where |S,| = in(n—3) = N, so
its associated ring is C[S,].

@ We then define the corresponding set of operators by
0s, :={0s, | w € By, } so the associated Weyl algebra is

Dy = C[Sn] (s,.)

L. de la Cruz 7 February 2024 33/36



Amplitudes

Differential equations for biajoint scalars

@ Annihihilators of amplitudes (m, = f/g)

P, =gf0; + (f0;9g — 90if), i=1,...,N,

Hn:lz 95w+(n—3)]
weB,
<P1,"'7PN7H’VL>CDN'

e Canonical holonomic representation”®/Pereer, 90

I, = (Anbn — k) = subs, mn(S) = kw, Yw € B,
A, = mpdiag(si2,823,...), On = (0s,5,0s05,--- VI k= (0,(12),0(23),...) T,

for 2 < |w| < n — 2 and zero otherwise
@ Boundary condition my,|s, 00 = 0.



Summary and outlook

@® Summary and outlook
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Summary and outlook

Summary and Outlook

Summary

GKZ systems are the most general tools to study hypergeometric functions
Generalized Feynman integrals are A-hypergeometric,

SST canonical series provide the tool to evaluate Feynman integrals
Output of canonical series method equivalent to Mellin-Barnes

Holonomicity is key to extend the approach to scattering amplitudes

Outlook

@ Elephant in the room: efficiency and scaling (restriction of
D_modu|esHenn—Pratt—Sattererger—Zoia, ’23)

@ Relation between GKZ and PDEs from Griffiths-Dwork-P-C-Vanhove, 24

@ Generalized unitarity gives us hint to extend this approach to general
scattering amplitudes

Thanks!



Canonical series algorithm (Saito-Sturmfels-Takayama)

Input: Matrix A, weight vector w, and complex parameters . Output: Roots of
the fake indicial ideal fin,,(Ha(%)).
@ Compute the toric ideal associated with A

Ipn = (0" — 0" : Au = Av, u,v € N™).

@ Let w € R™ be a generic weight vector. Compute the initial ideal in,, (Ia)
with respect to w and obtain its standard pairs S(in,(14)).
© Use the standard pairs to construct the indicial ideal

indy, (Ia) = N ((0; —aj),j ¢ F) C C[01,02,...,0,),
(84, F)€S(inw (Ia))
@ Write the ideal (A0 — k1) C C[6;,0,...,0,].
@ The fake indicial ideal with respect to w is given by
finy (Ha(k)) :=ind,, (1) + (A0 — 7).

@ Compute the roots of fin,, (Ha(x)). These are called fake exponents and we
denote them by 7.

L. de la Cruz 7 February 2024 2/9



Standard Pairs

Let R = K[04,...,0,] and let I be a monomial ideal in R. Furthermore, let 9¢
be a monomial and F' C {1,...,n}, where & € N". A standard pair of a
monomial ideal I is a pair (0%, F') satisfying three conditions:

O qo;,=0forallieF,
@ for all choices of integers 3; > 0, the monomial 0¢ HjeF ij ¢1,
@ forall I ¢ F, there exist §; > 0 such that 6“"8[5[ HjeF afj el.

Let us denoted by S(I) the set of all standard pairs of I. The decomposition of T
into irreducible monomial ideals can be obtained from the identity.

I= () (@t':iieF).
(0~,F)eS(I)

L. de la Cruz 7 February 2024 3/9



Example: Cantaloupe or dealing with deformation

L+l
/" N\\
e L S
’ L emm T T T Tl \
Phd SSon
l,l: _______________ :\\
P 4 R
WS~ -
W, Tt mmmmm = m T ,’,’
\\ ‘~____§ _____ ,/
\\\ ,/
-
L+1 L L+1
g(21,- -5 2041) ZHZJ+5HZ1’
i=1 j#i
where s = —p?. The integral to be computed reads

Zal .« ..
I(a) :/ Ay +— "L+
Ri+l gl\z

L. de la Cruz 7 February 2024 4/9



In order to perform such deformation systematically, let us introduce some
notation. Let 1; denote a sequence of 1's of length ¢ and similarly for 0;. We have
the relation i + j = L + 1. Furthermore, let

V= (].L,l,OQ).
At each loop, we set a deformation monomial
r(z) =¢12",

hence we have

L+1 L+1

gr(c,z) = 12" +ZCL+3 ZHZJ+CL+3HZZ,

J#i

where c¢r 13 = s. Let us give an example. For L =3, v = (1,1,0,0) and
r(2z) = ¢12122, then we have the deformed toric polynomial

gr(c, z) = C12129 + C2212923 + C3212224 + C4212324 + C5202324 + Cg21222324.

L. de la Cruz 7 February 2024 5/9



1 1 . 1 1
14 0 1,
1L 0 12
A =
13 0 1r4
0 1 0 1
0 O 1 1r
zal e ZQL+1
I - K) = / d'r’L 1&3
J ( ) Q " gr(c, Z)B
where kK = (—f, —a1,...,—ar4+1). Computing the kernel of the above matrix

leads to
L= Z(17 -1,-1,0p—1, 1)a

where by definition 0y := (). We choose w = (1,0r2), thus obtaining
finy, (Ha(k)) = (016L13) + (A6 — k7).
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The roots can be written as

L+1
{’Yi}:{<07aL+l _ﬂa sy 051_/87Lﬁ_zai> 5
=1

*

L L L+1
(Z%-Lﬁ, (L—l)ﬁ—zam (L—l)ﬂ—zai, —B+ar_1, ..
i=1 i=1

oy
- B+, 0)},

which lead to the canonical series

L+1
p1=c" o Fy (ﬂ—aLJrl, B—ar, LB — Zari-l;l’) ;

i=1
L L1 L

¢2 =" oFy | —(L— 1),3-1-20@‘, —(L — 1),34-20%;20@—[/54-1;96 )
i=1 L =1

where z = % The relevant integration constant reads

(- L/3+ZL+1 L+1

HF — ),
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Theorem

Let g,(c,z) be the deformed polynomial in N variables obtained from g(c,z) =
U(c) + F(c), where F(c) and U(c) are obtained by considering the coefficients
appearing in the Symanzik polynomials as variables. g,(c, z) is obtained by intro-
ducing a deformation r(c, z) demanding that its matrix satisfies co(A) > 0. Let
A = (a1 az- - ay) be the configuration matrix associated with g,.(c, z) and con-
sider the polynomial with indeterminate generic coefficients

n
gT(Cv Z) = Zcizaiv c; € (C*
i=1

Let A be its associated (N + 1) x n matrix
A— ( 11 ... 1 )
a; a2 ... Qp
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Theorem

The Euler-Mellin integral

P
Igr(n):/ggr(c,Z)d/anN

is a solution of the A-hypergeometric system Ha (k) of degree k = (—d/2, —a).
Noncompact cycles €2 can be obtained by taking the coamoeba of g,.(c, z) and
choosing representatives 6 of connected components © € RN\ A’, . Proof. Show
that the above integral satisfies GKZ system. Validity for non-compact cycles
demonstrated by Berkesh-Forsgd-Passare.

Remark on cycles

Noncompact cycles for A-hypergeometric functions from coamoebas of Aj simply
gives Q = RY thanks to positivity of coefficients in g(z).
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