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In this talk SUPERSYMMETRIC LOCALIZATION will be used in order to determine the precise
form of certain integrated correlation functions in A/ = 4 supersymmetric Yang-Mills (SYM) theory.

ALTHOUGH THE INTEGRATION AVERAGES OVER THE SPATIAL DEPENDENCE IT PROVIDES A GREAT DEAL OF INFORMATION:

* Makes S-duality (Montonen-Olive duality) manifest. MODULAR INVARIANCE.

* Predicts SYM perturbation theory results to all orders — BOTH PLANAR AND NON-PLANAR — FOR ALL VALUES OF V.

* |ncludes detailed form of infinite set of INSTANTON and ANTI-INSTANTON contributions.

* The large-)V expansion reproduces known facts about the low energy expansion of holographically dual IIB superstring.



THE MAIN RESULTS

—t |m+nT|
For SU(N) GAUGE GROUP Z By (t)dt
(m,n)€EZ?
tong
where Gy (!, ) ! Axi ({ X 1) "O2(X1)O02(X2)O2(x3)O2(X4)# is an integral of the correlator of four
i=1 !
superconformal primary operators of N =4, SU(N ) supersymmetric Yang-Mills.  (coupling constant | = 5+ ig )
Qn (?)

where Qy (t) is a rational polynomial of order (2N ! 1).

By (t) = (1+ ¢)2N+1

SATISFIES LAPLACE DIFFERENCE EQUATION — RELATES SU(N) 1O SU(N+1) AND SU(N-1I):

! 2&Q (B = N [Gua (1. B! 26 (1, 9+ Gur 1(1,B]! NGy (1, B! Gui (!, )]

— 12 " n2 n?2 . . .
where! 1 = !5 "7 + " s the hyperbolic laplacian.

T HIS IS AN EXACT FORMULA FOR ALL VALUES OF (!,N)

In this talk | will motivate these expressions and describe some of their remarkable properties.

and then describe the generalization to arbitrary classical gauge groups, SO(2N), SO(2N+1), USp(2N).



SUPERSYMMETRIC LOCALIZATION

N =2 supersymmetricYM! N =4 in the limit in which the mass of hypermultiplet in adjoint rep. vanishes
N=2"1 N=4

m" 0O

The N = 2! partition function on S* is determined by supersymmetric localization. [Pestun I"#$%&'()*+*,*-.]
P Yy Supersy

Localized partition function of N =2' with SU(N) gauge groupisa (N ! 1)-dimensional integral over
the Lie algebra SU(N ). SU(N) hermitian matrix model (integrate over VEV’s of coulomb branch vector multiplet).

gr 2 2

! #

’ R L . al
_ N An 2 . g2 1) 2
ZN (m1!1b)_ d a ( aI) (al| aj) € Srm Zpert (m1ai)|zin8t (m1al1l)|
/ ! <) Perturbative factor  Nekrasov instanton
mass parameter Vandermonde determinV /Partition function
Z pert (M, &;) is the one-loop determinant factor and is expressed Zinst (M, @j) describes Coulomb branch instantons at the
in terms of a standard function (the BARNES G=FUNCTION ) south pole and anti-instantons at the north pole ofS? .
(Express as a sum of Young diagrams)
[Nekrasov]
The partition function of N =4 SYM Zn (0,1, 0).=1

But the m = O limit of derivatives of Zn (M, !, ) with respect to 111 may be nontrivial as we will see.



THE N = 2° PARTITION FUNCTION

aj H?(a ) o 8!:21' iaflz ot .3 )2
H(a; | m)H(ay + m) PR

A

zZ(m, !, g = dV' iy

i<j
PERTURBATIVE INSTANTON TERMS:

H(z)= € (1+1)2° G(1+iz)G(1! iz) The Nekrasov instanton partition function:
contribution from instantons at North Pole

Barnes G-function ..
and anti-instantons at South Pole of §4

. NP
logG(L + 7) = ngz!! Z+(1;’ L 1)k:ﬁg<izk+l
k=2
I _
Zinst (M, !, 85) = e?! Ik Zi(r:;)t (m,a; ) Fourier sum (sum over instanton number)

k=0

Using Nekrasov’s result we have for k INSTANTONS:

) _1’ 2m?2 k#$<d!|$"(!l!al)2!m2$< !|2J(!|2J+4)(!|2J!m2)2
(m,alj)_ E m2 +1 =1 2" 21 (||| ai)2+l <3 (' |2J +1)((!|J I r~n)2_|.:|_)((!|‘J +m)2+1)

2 (k)

Inst

where the integration contour circles the poles in a particular (and complicated) manner (sum of Young diagrams).



INTEGRATED FOUR-POINT CORRELATION FUNCTIONS

Superconformal primary of N = 4 stress tensor multiplet.
Ou(x,Y) = tr(! 1, ! |2)Y'l AL l1,12=1,..., 6 Yay =0 Encodes SU(4) quantum numbers

Four-point correlator of superconformal primaries,

102(X1) O2(X2) O2(X3) O2(X4)" = 102(x1) O2(X2) O2(X3) O2(X4)"tree +14(Xi,Yi)Tn (U, V,!, 1)
_— t

free correlator determined by symmetries /01234.5267894.:,<9=2"64.:87!6;<

Correlator is not supersymmetric but integrated correlator is [Binder, Chester, Pufu, Wang]

G (1,8 = dudvy (U,V)Th (U, V!B = XEXBs - XiaXs

2 o2 2 u2
X13X24 X13X24

cross ratios

where the measure |1' (U, V) is designed to preserve supersymmetry,

_ g ! o in2 #
G(,B=12  dr ol#rSL'J”2 T (U,V,1,B)  U=1+ 21 2rcosl, V= r2
Two examples of measures — ;O | ;0 |
) 9% L rsint#
GN (I ’ b) = ' n dr d# UZ yllll(uiv) (TN (U’V1I ’ b) + Tfree (Ulv))
- 0 0

box diagram



RELATION TO LOCALISED N =2' PARTITION FUNCTION

« Correlators are obtained by four derivatives acting on Zy (m, !, &) the partition function of the N = 2' theory on 54

GN(' ) = '2" ! "2 logZn (M, !, B)|m=0 Considered in this talk

GN (! , b) - ";11 |Og ZN (m, I, b)lm:O NOT Considered in this talk

 Equality with integrated correlators on R*shown in [Binder, Chester, Pufu, Wang, arXiv:1902.06263]
Uses supersymmetric Ward identities and accounts for operator mixing on $*

* Analysis of Gy | G is complicated.
* Consider the for many values of N.

* Consider the exact for many values of N.

* Generalise to the

Only Young diagrams in the Nekrasov partition function with a single rectangular k = p! ¢
block contribute (up to “partial transpositions”).[Chester, MBG, Pufu, Wang, Wen]

* Leads to a remarkably simple conjectured expression for Gy (!, @)



2 DIM. LATTICE REPRESENTATION

= Y (/i —mtEE g (de

(m,n)€Z?
where By (t) = Qu(?) d Qy (t) is a rational polynomial of order (2N ! 1).
(1 —I—t)ZN"'l
: . : : al +b a,b,c,d! Z
« SL(2,Z) invariance is manifest: I
cl +d ad! bc=1

[Montonen-Olive]

Relates theories at different values of coupling constant — holographic image of S-duality in type |IB superstring.

1 o N(N! 1 - 1
* Itisimportant that By (t) = — By (1/t), as well as By (t)dt = ( ) and By (t)l=dt =0,
P t . 4 0 t
ot31 302 + 9t 1821 99t* + 126t3 ! 992 + 18t
2. : Bo(t) = : B =
e General N :
1 . ' 3t21 8Nt! 3 .
QN =!GNV DAL OV A O @ BN 43t P @ TP @

a nd P( ")(2) is a Jacobi polynomial.

h _1
where z = 1|t2



PERTURBATION EXPANSION

2 N N First non-planar contribution
I_

Y M 1!
2 /

a=

41 2
3"(3)a. 75"(5)a® 735"(7)a® 6615"(9) 1+ 2N'?2 a4
1,)=(N?1 1 [ e A ! !

" # " #
N 114345'(11) 1+ N' ? @& . 3864861'(13) 1+ SN2+ IN' 4 QS

128, ' " 1024

1 + 55 I 2 + 332! 4 7
, 32207175 (15) 1+ 22N Nt al o) .
2048

» Coefficients are RATIONAL MULTIPLES OF ODD ZETA VALUES.

* Recall the UNINTEGRATED CORRELATOR has very complicated dependence on cross ratios involving polylogs,

(2L —
eg L=1,2  fH(z2) Z (r!(L " 1og(22) (Lo (2) — Ling—1(2))  s2=v (1-2)(1-2)=V

— r)IL!

* The INTEGRATED CORRELATOR is much simpler. The coefficients of terms up to O(a>) can be compared with
calculations from Feynman diagrams. [?2@879"8%.!31.ABC97$3!4.)D/ABC97$3!4.)DD)>

Higher order coefficients are predicted by the above expansion.

* INON-=PLANAR CORRECTIONS BEGIN AT FOUR LOOPS — as is known from Feynman perturbation theory.

Interesting pattern of non-planarity determined to arbitrary order.
/01234.G2B@8H4.18",<2JB7C4.:87'6,9282@B4.13$2<@4.K!" B8%4H@RASC.131.52"2$"1>



INTEGRATED PERTURBATIVE (LADDER) DIAGRAMS

2 2 2 2
. X7-X
Cross-ratios U= 2223%=174 121 2r cos! V = X%ZX%4: 2
X13X24 X53X54
. L, Ty (U, V) ! _ v
Integrated correlation function dr d r3sin?) N2 "7 Ty (U, V) = Ty (U, V) ¥
0 0 UvVv
P?=1+ r?! 2rcosl= U
I:)U
4' PZ=(P! P,)? P 4 P
P2=1
PV
PZ=r2=V
| - loop ladder diagram (! +1) - loop ladder diagram
unintegrated correlator integrated correlator
= rational ! gY4“;' 5 "(2#+ 1)

Calculation of ladder diagrams at arbitrary order. "#$%&'(%)*+,-*./0'&1,+2*34562*./0'&1,+2*34437



DIFFERENTIAL RECURRENCE RELATION

Using the differential recurrence relation of Jacobi functions we find that

2

dt2

o |m+m\
recall Gn(7,7) Z / ! By (t)dt

(m,n)€Z?

From which one can show that the integrated correlator satisfies a

— (BN (1) = N(N! 1)By+r(t)! 2(N2! DBy (t)+ N(N +1) By 1(t)

LAPLACE DIFFERENCE EQUATION:

! &G, B) = N2 [Gy1 (1, B) ! 2G4 (1, B) + Gur (1, B)]! N [Guar (1, 9) !

GN! 1(|1b)]

— 12 n2 n2 . . .
where! 1 = !5 "7 + " s the hyperbolic laplacian.

Since G, = 0 this equation determines Gy (!, @) for all N > 2 In terms of G (!, ).

Solutions can be expressed in terms of NON-HOLOMORPHIC EISENSTEIN SERIES




SL(2,Z) MODULAR FORMS AND NON-HOLOMORPHIC EISENSTEIN SERIES

A MODULAR FORM transforms as

Holomorphic  anti-holomorphic

(W,6) (| ! | + )V + d)@ f (W, @) (| ~
f .9 SL(2,2) (et + )" {co+ ) ¢.5 weights — (\, \§)

* When W = ! w the pre-factor is a phase. U(1) transformation charge qu = 2Ww.
* Operators in the stress tensor multiplet have specific U(1) charges: e.g. g, =0,

Modular function

REAL ANALYTIC (NON- HOLOMORPHIC) EISENSTEIN SERIES

w=w=0
! | S ! . m+nt|? - PR
E(S’!,b): "1 -2 — i e#t!| r | tS#ldt — Fk(s,|2)82' ik "1 sl C
> [m + nl s 1(s) o
(m,n )E(0 ,0) (m,n )¥E(0 ,0) k! Z T
. Zero mode Fusiiy = 2@ s, 2 FIE" D@8 1) s Fourier modes
(perturbative) . #= TZ #S! (s) )
two perturbative terms (4! /g7 )° (g7, /4)s' !
divisor sum Bessel
* Non-zero modes 4 st 1 --‘/ = w T
, Fr(sitz) = =< K™ 2" wos(k]) T2 Ky 1 (2#]K|t2), k=0 ‘(= d
(instantons) 1 (s) ’ dlk
4 (.)e? k]! >
|, "4 T characteristic of instanton or anti-instanton

I LAPLACE EIGENVALUE EQUATION (! ! s(s! 1))E(s;!,) =0



EXPRESSION FOR INTEGRATED CORRELATOR

Formal Infinite sum of N(N! 1) 1"
| = — |
Eisenstein series Gt ) 8 T3 . Cn (S) E(s, !, b)
(with integer-index) -
I s" 1 1
where the coefficients are given by By (t) = cn (S) ;[ B with By (t) = ‘ Bn (1/t)
'S
52 See Collier and Perlmutter
(! 1)° ) for a general discussion
e.g.for SU(2) Co(S) = 5 (s! 1)(A! 29)°!(s+1)

S

. n . . ! — L1} H
»  PERTURBATIVETERMS.: Infinite sum of ! 5 = (4"/g? )®terms = infinite sum of !;" ° = (g’ /4")* "terms!

after Borel resummation

* INSTANTON CONTRIBUTIONS

eg k=11in SU(2) _ )
Gi=1 ()= 2 1?1 3 TeVyY2(1+8y) IV LGY)

# $ = 1", = 4'2
i 3 9 135 315 . y="ra= @

F 8 187 3y Biaz " 10247 ¢ 294 M
gYM!

General k = thn and N

1 ! S # H o P " 78 o T
Guk (1, )= = e (" Ikl"2+ik ™) exp ! ol | In| t ", ZBy(t)dt.
| 2rt'x!=0,n!:0 0 t t

in =k




LARGE-\ EXPANSION

I!
' I =¢g? N=4"%,"N

‘t Hooft Expansion G (!, D! N2 20 G9 (") :
: ‘t Hooft coupling
Suppresses instantons so g=0
duality is not manifest y . 32
> I 1)n*L +1)! + 3 , "
I. Small-! expansion GO (1) = 4t 1) S 1(2(n ) 1() n) 2_gn Radius of convergence |! | ! "2
#en 2 (n)! (n+3
Proportional toN 2 n=1
PLANAR DIAGRAMS . N
. . w
Py (52,4, —252)

BOREL SUM = )\/ dw w* 5
0 472 sinh”(w)

I! n 37 3" "
i1 - I'n" 5! n+ 35! (2n+1)"(2n +1) Not Borel summable

: 0
2. Large-! expansion G (!)! 2" 220" 241 ()21 n+1/2

Asymptotic series that is not Borel summable. Requjres non-perturbative completion (resurgence)

Tors (oo 18Li;(e=2V™)  117Lig(e=2V>)  489Lis(e~2VX
AGOM) = Z[SLIO(G )+ )51/2 ) + i)\ | * 16&3/2 ) T ]

* The behaviour ¢~ 2V* is characteristic of a WORLD-SHEET INSTANTON in string theory since ¢~ 2V — ¢—2L%/¢/

* Similar analysis for terms with higher powers of 1/N 2



LARGE=-\ EXPANSION
Fixed -ng Expansion

instantons not suppressed — S-duality is manifest.

The /N expansion is holographically related to the low energy expansion of the dual |IB superstring amplitude
in AdSs ! S°.

Substitute the large-N expansion of By (t) (determined by the differential recurrence relation) :

Supergravity
d*R*
3N 2
& ’ m.

3 1575 225 441 "

t E(Z;! " E l Rk =Y . .
N% 2 (21 ’ 213 (21 ’ N% 218 (21 ’ )" 216 (2, ) )
63 ' 389812 . 44625 73 i
NE 277 SE(Z"’ o) " o E(5il.B)+ E(3ilB) + O(N' ),

Extends the earlier analysis in [Chester, MBG, Pufu, Wang, Wen]
* Series of /2=integer index Eisenstein series.
Close connection to well-established BPS terms in low energy expansion of IIB superstring in flat space.

* Note the absence of terms with integer powers of 1/N , such as the term of order d°R*.
Such terms arise in the 1/N expansion of G (!, ="mlogZy(m,!,8)|m=o .



INTEGRATED CORRELATORS FOR SO(N), USP(N) [Dorigoni, MBG, Wen,

arXiv:2202.05784]]
(See Alday, Chester and Hansen)
GODDARD-NUYTS-OLIVE duality of magnetic monopoles and electric charges (c.f. LANGLANDS)

(Correlators are not sensitive to global factors)

1
°* SIMPL-LACED  Self-duality SU(N), SO(@2N) S: !!I" - T: ' 1+1
enerate S| (2.7) : || al +b a,b,c,dl Z
: (2,2) cl +d ad! bc=1
. |
e NON SIMPLY-LACED SO(2N +1), USp@2N) 8: ! o T: 1 1+1
o long roots 2_2
9T9 and T generate !o(2): c=0mod?2 short roots

maps SO(2N +1) ! SO(2N +1) and USp(2N)! USp2N)

9 maps USp2N)! SO(@2N +1)
Previously Gy (!, )
™

INTEGRATED CORRELATOR ZCGN (=" ,"2109Zc, (M, B)|m: o

RESULTS: BEAUTIFUL EXTENSION OF THE SU(N) CASE
*  GNO duality explicit.

Large-N limit gives results consistent with expected string theory results.

Set of Laplace difference equations highly constrain results fo all N.



CORRELATORS WITH GENERAL CLASSICAL GAUGE GRouP Gn

! " : Im+n1 |2 |m+2n!|2‘r
CGN (l ’ b) - dt BéN (t)e#tl '2 -+ BC2;N (t)e#tl 2! 5
With : (m,n)! Z2 0
1
« SU(N), SO(2N) Invariance under SL(2,Z) generatedby S: ! !" —  T:I1 1 +1

BéU(N)(S) = B§O(2N)(S) =0

* SO(2N +1), USp2N),Invariance under! o(2) generated by 9T9 and T, where

Q11" zil T:11 1 +1 not | SL(2,2)
BéO(2N+1) (t) = BLZJSp(ZN)(t)v Bl]_-JSp(ZN)(t) = B§O(2N+1) (t)
i Q Interchanges BéN with BC25N GNO duality —_— CSO(ZN +1) I Cysp (2N)

- FORMAL EXPANSION |Cg, (!,8) = ! bs, (0)+ "b};N (S)E(s;!, B+ g (s)E(s; 2 ,2'.@)#

s=2 \\ .

: 1 , I
noting that E(s;!',9)! E s;" —," — = E(s;2!,20 BL, (1) =
Q :




YANG=-MILLS PERTURBATION EXPANSION

Expansion - _ NgJ, 4 _ (n! 27, Aen i = (n+2)g;, n=2Nor2N +1
parameters SUN) 412 SO(n) 4! 2 ’ Usp(n) gl 2

- " 2 " 3 " 4

2 8 16 ' 32
, 114345'(11) (1 + Pg, 2) 8, | 3864861 (13)(1+ Ps, ) ag,
128 ' . 1024
32207175 (15) (1 + Pg,, 4) a&
+ ! N + 8
2048 O@,)
2 1
Psumn 1T aNz Pumn2 T Nz Frc.
_ 25N %2 +4 _ 605N 2+332
I:)SU(N),GB - 1IN4 PSU(N),4 - 143N 4

 The “planar” pieces are identical for all gauge groups.

* Non-planar terms first enter at four loops.

* The transformation (N ’gYZM )t ("N sfM ) Symmetry of Csuynn)(!2)

Interchanges Csoen)(!2) and Cuspen)(!2)



LAPLACE DIFFERENCE EQUATIONS

Central charges

Csu(N) = Nzi L 1 Csom) (18! 2Cso(n) Csom+2) (18! 2Csom (M, B) + Csomi 2(!, B)
Cso(n) = n(né 1)’ n= N or2N ! nCSu(n! 1)(!,b)+(n! 1)CSU(n)(|,b):O
_n(n+1) '
Cusp(n) = ) ' L CUSp(n)(! , ) ! 2CUSp(n) CUSp(n+2) (!, o) ! 2CUSp(n)(! , ) + CUSp(n! 2)(! , D)
+ NCsypn+y (21,29 ! (n+1) Csyny(2!,29 =0
* lIdentities  Cso) (!, 9) = Csypp (!, 9), Csow (!,9) =2 Csy) (!, 9), Csoe) (!,9) = Csu (!, 9)
 All integrated correlators can be related to SU(N) correlators, and hence to the SU(2) case.
'8 12 3 4
eg Csom(l,9)= BCSU(Z) (1, ! gCSU(s) (', + gCSU(4) (I, )+ BCSU(S) (!, o)

l
3 12 8
+ ECSU(Z) (2!,2) ! gCSU(s) (2!,2\9) + ECSU(4) (2!,29)

* Invariance under (N ,ng ) ("N, QYZM )

Instanton sectors confirm these equations



LARGE=-\N EXPANSIONS

E i I‘@ :N |\@ :El 1- I\@US (n):E'l'} nN=2Nor2N +1
Xpansion parameters SU(N) SO (n) 5" 1 p 2 4
I ) .
t Hooft expansion Co, (1)! (N, )? 29f((39’3 (s )
o 1 ' 1
2 2 n 2 n
where suiny == 97, N, l'som) == O, 5! M)—QYM)ZJf 2
= gY I RAMOND-RAMOND FLUX
in HOLOGRAPHICALLY DUAL STRING THEORY in AdSs ! S°/Z , (orientifold)
Fixed- ng
2Nsony)? . 3(2Nso(n))? 45(2Ns0(n))' 2
ZCSO(n)(!1b): 4(n) ! 24(ﬂ) E(%;!,b)+ 2|8(n) E(s;!,9) ”
' 4725 111 99225 3825
+@Nso(m) * S EGLB)! SHEGLE +@Nsom) T SEE(L 9! SR E(5L D)
7 ! 24558187 1074937 40239
+(2I‘@SO(n))' - 155(2,_,b)l T%(%;!’b)+ ) +O(|‘@SO(n))

Furthermore Cusp(m) (1,8 ! Csom) (21,29 with MNsom) ! Nuspm

Coefficients of highest-index Eisenstein series at each order same as in Csy(n) (!, 9) expansion.



COMMENTS
We have determined the functional form of the integrated correlators

1

zlCGN (1,B)="1,"2logZg, (M !, B)|m: o

for all values of N and! = "/ 2# + i4#/9Y2M

Also generalization to Maximal U(1)-violating n-point correlators.
Integration over positions of operators washes out detailed information about the spatial dependence.

Extension to the second correlator G (!,8) = "1+ logZy (M, !, B)|m =0

This was considered in the large N expansion by [Chester, MBG, Pufu, VWang, Wen].
Involves integer powers of 1/N with coefficients that are “’generalised Eisenstein series” satisfying
(' r(r+1)E(r,s1,82;!,8) =1 E(s1,!, B9 E(s,!,D)

which arises in the discussion of the d°R* term [MBG and Pierre Vanhove] in the low energy expansion of type |IB string theor
gY €Xp YP g Y

These results add to our knowledge of superstring scattering amplitudes in AdSs ! S° expanded around the
large-radius (flat-space) and low energy limits.

But one more integrated correlator is needed in order to reproduce the three leading (BPS) terms in
flat space type IIB superstring amplitudes.

Try generalisation to squashed S* with squashing parameter b. [Chester, MBG, Pufu, Wang, Wenl].

Many possible extensions to other models such as ABJM and to exceptional gauge groups.



