
Attractor Points and Modular CY Threefolds

Mohamed Elmi

NHETC, Rutgers University

8 December, 2021

“A One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two”,

Philip Candelas, Xenia de la Ossa, ME and Duco van Straten

(hep-th/1912.96146)

Mohamed Elmi Attractors and Modular CY 8 December, 2021 1 / 30



Overview

1 Attractor Mechanism
Review of Attractor Mechanism
Rank - 2 Attractors

2 Zeta Functions
Review of Zeta Functions
Examples of Zeta Functions

3 Examples of Rank 2 Attractors
Persistent Factorisations
Fixed Points of Involutions

4 Periods and L-Function Values
Bekenstein - Hawking Entropy

Mohamed Elmi Attractors and Modular CY 8 December, 2021 2 / 30



Review of Attractor Mechanism

Attractor Mechanism
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Review of Attractor Mechanism

Consider IIB supergravity with BPS black hole in 4 dimensions and a CY
3-fold X in the remaining 6.

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + r2dθ2 + r2sin2θdϕ2)

Black hole has charge vector (dual to homology class wrapped by D3
brane)

Γ = paαa − qaβ
a ∈ H3(X ,Z)

and central charge given by

Z (Γ, φ) = e
K
2

∫
X
Γ ∧ Ω(φ)

where Ω is the holomorphic 3-form and φ a coordinate on CS moduli
space. We’re assuming h2,1(X ) = 1 so a, b,∈ {0, 1}.
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Review of Attractor Mechanism

Preservation of SUSY requires that

dU(ρ)

dρ
= −eU(ρ)|Z (Γ, φ)|

dφ(ρ)

dρ
= −2eU(ρ)Gφφ∂φ|Z (Γ, φ)|

where ρ is inverse of distance from horizon, φ is a coordinate on CS
moduli space and Gφφ is the metric on CS moduli space. Can solve this
after computing periods Π of Ω.
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Review of Attractor Mechanism

Each component of

Π(φ) =

(∫
Aa Ω(φ)∫
Bb

Ω(φ)

)
is the solution of an ODE (Picard-Fuchs equation) LΠ = 0. This follows
from the fact that

{Ω, ∂φΩ, ∂2φΩ, ∂3φΩ, ∂4φΩ}

is linearly dependent in cohomology.
For example, operator AESZ 34 (math/0507430) is given by

L = S4θ
4 + S3θ

3 + S2θ
2 + S1θ + S0

where θ = φ d
dφ and Si are polynomials in φ.
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Review of Attractor Mechanism

Aside:
The Picard-Fuchs equation AESZ 34 appears in the study of Feynman
integrals. For example,

∫
B1

Ω is the maximally cut four loop banana graph

integral with m2
i = 1 and p2 = 1

φ

Figure: Four-loop banana graph.

At large p2, this integral is given by∫
B1

Ω(φ) =
∞∑

m=0

amφ
m where am =

∑
n1+n2+n3+n4+n5=m

(
m!

n1!n2!n3!n4!n5!

)2

.
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Rank - 2 Attractors
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Figure: Flow in φ plane for Q = (0, 0, 2, 1)T (left) and Q = (−4, 15, 5, 0)T (right)
leading to attractor point at φ = −1/7. Singularities are indicated in black.
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Rank - 2 Attractors

An attractor point is characterised by

Γ ∈ H3,0 ⊕ H0,3

at the attractor point. It’s helpful to visualise this as follows.
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Rank - 2 Attractors

We find that

Q =

(
− 4

5
p0 +

8

5
p1, 3p0 − 6p1, p0, p1

)T

leads to the attractor point φ = −1
7 for AESZ 34 ∀p0, p1 ∈ Z.

Another way of saying this is

H3
(
X− 1

7
,Z

)
⊃ Λ⊕ Λ⊥

where

Λ⊗ C = H3,0 ⊕ H0,3 and Λ⊥ ⊗ C = H2,1 ⊕ H1,2.
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Review of Zeta Functions

Zeta Functions
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Review of Zeta Functions

Consider the following polynomial defined over Q

x50 + x51 + x52 + x53 + x54 − 5ψ x0x1x2x3x4.

Can count number of points Npr over Fpr and define Artin-Weil Congruent
Zeta Function

Zp(T ) = exp

( ∞∑
r=1

Npr

r
T r

)
.

This was the subject of the Weil Conjectures.
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Review of Zeta Functions

Zp(T ) = exp

( ∞∑
r=1

Npr

r
T r

)
.

Theorem (Weil Conjectures)

1 Rationality:

Zp(T ) =
P
(p)
1 (T )...P

(p)
2n−1(T )

P
(p)
0 (T )...P

(p)
2n (T )

for integral polynomials P
(p)
i (T ) with (if p is a prime of good

recuction) deg(P
(p)
i (T )) = bi where bi is the i th Betti number.

P
(p)
i = det

(
I − TFrobp

)
; Frobp : H i (X )→ H i (X )
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Examples

Can define the related Hasse-Weil L-function for each polynomial e.g. for
middle cohomology

L(X , s) =
∏

good p

1

P
(p)
n (p−s)

.

Example 1 - a point
Let X be a point.

Zp(T ) = exp

( ∞∑
r=1

Npr

r
T r

)
=

1

1− T

=⇒ L(X , s) =
∏
p

(
1− 1

ps

)−1

=
∞∑
n=1

1

ns
= ζ(s).
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Examples

Example 2 - an elliptic curve

Similarly, we can study the Zeta/L-function of an elliptic curve (defined
over Q). Can show that

Zp(E ,T ) =
(1− apT + pT 2)

(1− T )(1− pT )
and L(E , s) =

∏
good p

1

1− app−s + p1−2s
.

The ap’s are the Fourier coefficients of a modular form f i.e.

f (τ) =
∞∑
n=1

anq
n; q = e2πiτ

that satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ);

(
a b
c d

)
∈ SL(2,Z)

for some k ∈ N known as the weight of the modular form.
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Examples

Example 2 - an elliptic curve

Similarly, we can study the Zeta/L-function of an elliptic curve (defined
over Q). Can show that

Zp(E ,T ) =
(1− apT + pT 2)

(1− T )(1− pT )
and L(E , s) =

∏
good p

1

1− app−s + p1−2s
.

Modularity Theorem

Let E be an elliptic curve defined over Q then, for all but finitely many
primes p, ap is the pth Fourier coefficient of a weight 2 cusp form for a
congruence subgroup Γ0(N).
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Examples

Example 3 - a one-parameter CY
Expect that the zeta function takes the form

Zp(X ,T ) =
1 + apT + bppT

2 + app
3T 2 + p6T 4

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )
. (1)

Recall that, at a rank - 2 attractor φ⋆, we can find

H3
(
Xφ⋆ ,Z

)
⊃ Λ⊕ Λ⊥

where

Λ⊗ C = H3,0 ⊕ H0,3 and Λ⊥ ⊗ C = H2,1 ⊕ H1,2.

This would be visibile in the zeta function which would take the form

Zp

(
Xφ⋆ ,T

)
=

(1− αppT + p3T 2)(1− βpT + p3T 2)

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )

and the αp’s and βp’s would come from weight - 2 and weight - 4 modular
forms respectively (arXiv:0902.1466).
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Persistent Factorisations

Zeta-functions have been computed for one-parameter CY 3-folds by
Candelas, de la Ossa, Thorne, van Straten, Villegas,...
Strategy:
Look for polynomials

G (φ) = cnφ
n + cn−1φ

n−1 + ...+ c0; ci ∈ Z

such that the zeta function factors as above for G (φ) = 0 mod p.
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Persistent Factorisations
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Figure: Number of φ ∈ Fp such that the Frobenius polynomial factorises for each
prime 7 ≤ p ≤ 3583. AESZ 34 is plotted above and the mirror quintic below.

Mohamed Elmi Attractors and Modular CY 8 December, 2021 19 / 30



Persistent Factorisations

We find that the zeta function of AESZ 34 factorises over Z

G (φ) = (7φ+ 1)(φ2 − 66φ+ 1) = 0 mod p

so there are rank two attractors at

φ ∈
{
− 1

7
, 33± 8

√
17

}
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Modularity of AESZ 34 at φ = −1
7

As expected, at φ = −1
7 , αp appears in weight 2 form for

Γ0(14) ⊂ SL(2,Z) with Fourier expansion

q−q2−2q3+q4+2q6+q7−q8+q9−2q12−4q13−q14+q16+6q17−q18+...

Whereas, βp appears in Fourier expansion of weight 4 form for
Γ0(14) ⊂ SL(2,Z) with Fourier expansion

q−2q2+8q3+4q4−14q5−16q6−7q7−8q8+37q9+28q10−28q11+32q12+...

The weight 2 and weight 4 modular forms have LMFDB labels 14.2.a.a
and 14.4.a.a respectively..
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Modularity of AESZ 34 φ = 33± 8
√
17

Find that αp and βp appear as Fourier coefficients of modular form for
Γ1(34) ⊂ SL(2,Z).
As expected, αp appears in weight 2 form with Fourier expansion

q − q2 + 2
√
−2q3 + q4 − 2

√
−2q5 − 2

√
−2q6 − q8 − 5q9 + 2

√
−2q10 + ...

Whereas, βp appears in Fourier expansion of weight 4 form with Fourier
expansion

q−2q2+2iq3+4q4+8iq5−4iq6+34iq7−8q8+23q9−16iq10−30iq11+ ...

The weight 2 and weight 4 modular forms have LMFDB labels 34.2.b.a
and 34.4.b.a respectively..
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Fixed Points of Involutions

Fixed Points of Involutions
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Fixed Points of Involutions

Sometimes, the splitting of Hodge structure is due to a symmetry of the
moduli space e.g. AESZ 101 with Riemann symbol

P


−1 0 1

2(123− 55
√
5) 1 1

2(123 + 55
√
5) ∞

0 0 0 0 0 1
1 0 1 1 1 1
1 0 1 3 1 1
2 0 2 4 2 1

φ


admits the involution

1

φ
Π

(
1

φ

)
= AΠ(φ) where A =


−4 0 0 15
7 4 −15 0
0 1 −4 7
−1 0 0 4

 ∈ Sp(4,Z) .
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Fixed Points of Involutions

1

φ
Π

(
1

φ

)
= AΠ(φ) where A =


−4 0 0 15
7 4 −15 0
0 1 −4 7
−1 0 0 4

 ∈ Sp(4,Z) .

A has eigenvalues (1, 1,−1,−1) and, at the fixed point φ = 1, its
eigenvectors span Λ± ⊂ H3(X ,Z). We confirm that the fixed point is a
rank two attractor i.e.

Λ+ ⊗ C = H3,0 ⊕ H0,3 and Λ− ⊗ C = H2,1 ⊕ H1,2

by numerically checking that the following hold to high precision∫
X
Γ+ ∧ DφΩ = QT

+ΣDφΠ = 0 and

∫
X
Γ− ∧ Ω = QT

−ΣΠ = 0
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Periods and L-Function Values

Periods and L-Function Values
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Periods and L-Function Values

Can compute L-function of modular form via Mellin transform

f (τ) =
∞∑
n=1

anq
n ←→ L(s) =

∞∑
n=1

an
ns
.

We find that

Π

(
−1

7

)
= −1

2

L4(1)

2πi


8

−30
0

5

− 14
L4(2)

(2πi)2


0

0

2

1

 .

where L4 is the L-function associated to the weight - 4 modular form.
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Periods and L-Function Values

Consider AESZ 34 at φ = −1
7 . The periods of the harmonic (2, 1)-form

are given by

DφΠ
(
− 1

7

)
= −147

8

L2(1)

(2πi)2


−7
14

−10
−5

+
147

16

L2(1)

(2πi)2
1

i Im τ


−3
6

0

−1

 .

where τ is the parameter of the elliptic curve associated to the weight - 2
form and L2 is it’s Mellin transform.
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Bekenstein - Hawking Entropy

Let
Qk,l = k(4,−15,−5, 0)T + l(0, 0, 2, 1)T k , l ∈ Z.

A black hole with charge Qk,l will have horizon area

A(Qk,l)

4
=
π(5k − 2l)2

8

(
πL4(1)

L4(2)

)
+

49πk2

2

(
πL4(1)

L4(2)

)−1

This implies that the growth of black hole degeneracies nk,l is controlled
by L-values i.e.

log(nk,l) ∼
π(5k − 2l)2

8

(
πL4(1)

L4(2)

)
+

49πk2

2

(
πL4(1)

L4(2)

)−1
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Thank You!
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