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The grand picture is that any QFT amplitude is given by algebraic inte-
grals so that there should exist an isomorphism into the motivic ‘f -alphabet’
[3, 4, 6, 7],

ψ : amplitude −→ f -alphabet,

where the right hand side is a shuffle algebra with deconcatenation as motivic
coaction. Because the right hand side is free it can be considered as the
solution of the integral on the left hand side. A futuristic dream would be
to be able to construct ψ on any QFT amplitude.

Note that the f -alphabet is commonly used for pure numbers only. In
the case of multiple-zeta-values (MZVs) the f -alphabet consists of words in
letters of odd weights ≥ 3, one letter for each weight. One often chooses to
represent the numbers ζ(3), ζ(5), . . . by f3, f5, . . . while (by shuffle) ζ(3)ζ(5)
is represented by f3f5 + f5f3. The word f3f5 alone also exists and for
HyperlogProcedures it correspond to the MZV −ζ(3, 5)/5 (in general there
exists a Qπ8 ambiguity). A freedom in the construction of ψ comes from
the choice of an algebra basis of the considered numbers [4].

While, historically, the focus was on numbers (see e.g. [10] for first def-
initions), the f -alphabet should also exist for functions which are integrals
of rational forms (over rational domains) where some variables are left un-
integrated. These functions are called period functions, variations of periods,
or algebraic integrals. In QFT, amplitudes are exactly of this type.

Very little is known on the f -alphabet for functions (although algebra
bases are often evident). Let us be very specific and consider multiple poly-
logarithms Liw(z) for some words w in 0 and 1. An algebra basis of multiple
polylogarithms are Lis in Lyndon words. We call the ψ-image of multiple
polylogarithms (or hyperlogarithms) f -hyperlogs.

At weight 1 we have logarithms which we use as weight one letters z0, z1:

Li0(z) = log(z) → z0, Li1(z) = log(1− z) → z1.

With this definition the dilogarithm Li10(z) (writing words from left to right)
becomes in the f -alphabet

Li10(z) → z1z0.
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To derive the above result one may use F. Brown’s decomposition algorithm
[4]. (To be precise, the translation depends on the sheet of the multi-valued
polylogarithm.) In general, the translation is not so simple. We e.g. have
[12]

Li1010(z) → z1z0z1z0 − 2z1f3,

where we have the f -version of the zeta value ζ(3) on the right hand side.
It is important to notice that the word z1z0z1z0 alone does not stand for a
function. If one adds 2ζ(3) log(1− z) to the left hand side, then, by shuffle,
the sum translates into z1z0z1z0 + 2f3z1.

The origin of this complication is that the left hand side has a non-trivial
monodromy around 1 which involves ζ(3)

M1Li1010(z) = Li1010(z) + 2πiLi010(z)− 4πiζ(2)Li0(z)− 4πiζ(3).

While the monodromy is somewhat hidden in the multiple polylogarithm, it
is more explicit in the f -alphabet: Modulo ζ(2) the monodromy at 1 picks
words which begin in z1 and replaces this z1 by 2πi. This also holds for the
dilog:

M1Li10(z) = Li10(z) + 2πi log(z).

The general situation is as follows: For multiple polylogarithms analytic
differentiation is explicit (cut off the rightmost letter), monodromy is some-
what obscured. In the f -alphabet both are explicit: Monodromy is on the
Betti side (left) while analytic differentiation is on the deRham side (right).
The prize one has to pay is that one gets more terms in the f -alphabet. In
this sense, one converts complexity into a proliferation of terms.

To make the above statements precise, note that by unipotence the mon-
odromy can be written as the exponential of a ‘infinitesimal monodromy’

Ma = exp(2πima),

where (for any a ∈ C) the infinitesimal monodromy around a is a derivative.
Here, we need a deRham version of ma,

mdR
a = ma mod ζ(2)

which makes sense in the motivic context. The deRham infinitesimal mon-
odromy is the Betty analog of the analytic (deRham) derivative. In the
f -alphabet it translates into cutting off the weight 1 left letter za

mdR
a → δBza

while the analytic derivative translates into cutting off a weight 1 right letter
za

∂z →
∑

a

1

z − a
δdRza .

Here, we have introduced the shuffle differentials (for any letter x)

δBxw =

{

v , if w = xv
0 , otherwise
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Figure 1. The inductive construction of hyperlogarithms in
the f -alphabet by a commutative hexagon.
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∫
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∫
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Figure 2. The inductive construction of GSVHs by a com-
mutative hexagon. Here G is the space of GSVHs,

∫

sv
is

single-valued integration, and π∂ (π∂) is the projection onto
the (anti-)residue-free subspace (subtracting (anti-)residues).

and

δdRx w =

{

v , if w = vx
0 , otherwise.

This admixture of monodromy information leads to the problem that in-
tegration is non-trivial in the f -alphabet (in contrast to integrating hyper-
logarithms). The analogy between the infinitesimal (deRham) monodromy
and the differential can be used for an intrinsic construction of integration
of f -hyperlogs. There exists a commutative hexagon for (normal and f -)
hyperlogs, see Figure 1 (compare Figure 2).

The operation πm is the monodromy analog of subtracting residues in π0
while m−1 is the analog of integration.
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Theorem 1 (Schnetz 2021, [11]). The hexagons in Figures 1 and 2 com-

mute.

For the intrinsic construction of f -hyperlogs one needs the transition to
mdR by nullifying 2πi on the bottom and the right of Figure 1. It is easy to
see that the bottom right path in Figure 1 suffices to construct f -hyperlogs
if the integrand has no words with constant letters (f3, f5, . . .) on the left
hand side. This can always be achieved by un-shuffling constants.

Going from f -hyperlogs to single-valued f -hyperlogs is trivial. With the
Ihara action the single-valued map (sv-map) in the f -alphabet is [5]

(1) sv : w 7→
∑

w=uv

ũx v,

where ũ is u in reversed order, • is complex conjugation, and x is the
shuffle product. With the new letters z0 and z1 for log z and log(1 − z)
(respectively) we get in the above examples (also see [1, 2]):

svLi10(z) ≡ L10(z) = Li10(z) + Li1(z)Li0(z) + Li01(z)

→ z1z0 + z0z1 + z1z0 + z0z1 = (z0 + z0)z1 + (z1 + z1)z0

and

svLi1010(z) ≡ L1010(z) = Li1010(z) + Li1(z)Li010(z)

+Li01(z)Li10(z) + Li101(z)Li0(z) + Li0101(z)− 4ζ(3)Li1(z)

→ (z1 + z1)z0z1z0 + . . . + (z0 + z0)z1z0z1 − 2(z1 + z1)f3 − 4f3z1.

Again, we have a proliferation of terms in the f -alphabet that compensates
for structural simplicity. In the hyperlog case we had to do a non-trivial
calculation (e.g. using the commutative hexagon in Figure 2) to obtain the
ζ(3) contribution in L1010(z). In the f -hyperlog case we obtain the f3-terms
directly from applying the sv-map to −2z1f3:

sv(−2z1f3) = −2z1f3 − 2z1 x f3 − 2f3z1.

The single-valuedness of the expressions in the f -alphabet are evident from
the fact that the leftmost log letters can always be written as the single-
valued combinations

z0 + z0 = log(zz) and z1 + z1 = log((1 − z)(1− z)).

The situation, however, is non-trivial and not yet fully understood for
GSVHs which are not single-valued hyperlogarithms. One of the simplest
GSVHs which is not a single-valued hyperlogarithm is the single-valued
primitive of (log zz)/(z − z−1),

∫

sv

log(zz)

z − z−1
dz ≡ L0z−1(z) = Li0z−1(z) + Li0(z)Liz−1(z).

The GSVH-character of the above expression is evident from the letter z−1

in L or in the Lis with argument z. The f -version of Li0z−1(z) is

z0zz−1 − zz−1z0.
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while the f -version of L0z−1(z) is merely

(z0 + z0)zz−1 .

The latter cannot be derived from the first by using (1).
As second example, we take the single-valued primitive of the Bloch-

Wigner dilogarithm D over z − z [14, 9]. More conveniently,
∫

sv

4iD

z − z
dz = L10z(z)− L01z(z)

= Li10z(z)− Li01z(z) + Li1(z)Li0z(z)− Li0(z)Li1z(z)

+Li01(z)Liz(z)− Li10(z)Liz(z) + Li101(z)− Li100(z).

The f -version of Li10z(z)− Li01z(z) is

z1z0zz − z0z1zz + z1zzz0 − z0zzz1 + zzz1z0 − zzz0z1

+ z0z1z1 − z0z1z0 + z1z0z0 − z1z1z0.

The f -version of the single-valued L10z(z) − L01z(z) is

(z0 + z0)(−z1zz + z1zz + z1z1 − z1z0) + (z1 + z1)(z0zz − z0zz + z0z1 − z0z0).

Again, we cannot use (1) for the single-valued map.
In general, we need to derive an intrinsic algorithm for single-valued in-

tegration of f -hyperlogs. Is there something more efficient than a naive
combination of the two commutative hexagons? Does there exist a modified
Ihara action that works for all GSVHs?

With an integration prescription at hand one can use single-valued f -
hyperlogs to express graphical functions. So far, two possible formats for
GSVHs exist:

• The representation in terms of Li•(z)Li•(z). It is the simplest rep-
resentation and all operations of GSVHs are reasonably straight for-
ward here (using the commutative hexagon Figure 2).

• The representation in terms of the single-valued L•(z). This repre-
sentation is significantly shorter (as it is manifestly single-valued).
However, the frequently needed evaluation at certain values of z of-
ten requires a transform back to the previous representation in terms
of Lis. Still, this version is the one that is very efficiently used in
HyperlogProcedures.

The f -representation is the third option. Expressions will have more terms
but the terms are structurally simpler. Can an implementation of f -hyperlogs
be more efficient? Possibly not for an implementation in Maple or Mathe-
matica but maybe in a C++ or FORM transcript which can handle large
expressions much more efficiently.

In QFT hyperlogarithms do not suffice. In the end one has to handle
more complex structures. The c2 analysis done in 2012 with F. Brown [8]
and recently refined in [13] gives an impression which geometries are to
be expected in QFT. Is it possible to generalize the f -alphabet to these
geometries?
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