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Einstein’s General Relativity works well

How different could it be, 
if world is causal+unitary ?
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We are interested in graviton-graviton 
scattering below Mhigher-spin
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We’ll look for effects suppressed by that scale: 
 
          ,      ,…


 How large can #’s be ?

g3 ∼
#

M4
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≫
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M4
pl

g4 ∼
#′ 

M6
higher−spin

≫
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M6
pl

⇒
How small: [Guerrieri, Penedones& Vieira ‘21]



1. The question: What modifications can we bound? 
- Graviton scattering 
- causality+unitarity 
- CEMZ constraints


2. The method: Dispersive sum rules 
- axioms 
- scalar scattering 
- gravity


3. Results 
- what can hide from the SM?

SCH, Mazac,Rastelli& Simmons-Duffin ‘20 
SCH& van Duong ’20 
SCH, Mazac,Rastelli& Simmons-Duffin ‘21 
SCH, Mazac,Rastelli& Simmons-Duffin ’21 
SCH, Li, Parra Martinez& Simmons-Duffin '22
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Low energy graviton scattering
Mhigher-spin<<Mpl : neglect loops. 
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We don’t bound:

•      (  Einstein + scalar field : no imprint in graviton scattering)


• Any term with Ricci tensor/scalar: removable by field redefinition (no imprint)


• Scalar potentials (don’t grow with energy)


• Torsion etc: treat as extra matter fields / non-minimal couplings to matter

f(R) ≃



Causality

• Why waves, fields
time

speed of

light

measured 
force

📱

"signals can't travel faster than light"
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Causality

• Why waves, fields


• Why particles


• Why antiparticles


• ...


• Why EFTs have to work


• Why gravity is attractive


• ...

time

speed of

light

measured 
force

📱

"signals can't travel faster than light"



• Experimentally tested to exquisite accuracy 
 
        same limiting velocity for all species, antiparticle vs particle properties, ...


• Doesn't mean it's an exact property of Nature 
 
        theoretically unknown how to define causality sharply for bulk observers, like us


• We assume 'relativistic causality' because we see no real alternative

simplest 'quantum gravity':   H = ∑
i

⃗p 2
i

2mi
− ∑

i<j

Vij, Vij =
−Gmimj

| ⃗x i − ⃗x j
+?



Causality vs. gravity:  some known results

0) at long distances, any Lorentz-invariant S-matrix of a massless spin-2 
particle must agree with GR [Weinberg]



Causality vs. gravity:  corrections?

[Camanho,Edelstein,Maldacena& Zhiboedov ’14]

M(s, b) ∼ 8πGs
log(1/bμIR)

g3

b4

g3

b4 log(1/bμIR)

eigenvalue = time delay  Causality requires low cutoff   ⇒ ⇒ |g3 | <
log
b4

min
∼

log
M4

higher−spin

Contacts: forward limit (!) of Kramers-Kronig dispersion relations

1)

2)

g4 = ∫
∞

M2
heavy

ds
s

Im f(s, t = 0) ≥ 0
[Adams,Arkani-Hamed,Dubovsky,Nicolis&Rattazzi ’06]

[Bellazzini,Cheung& Remmen ’15]

Our approach will merge these two.

±±

±±

X

X̄
Vertices: large impact-parameter scattering



• We live in 4d. S-matrix doesn’t exist. (IR divergences) 
 
  divergent scattering phase has simple physical origin (Newton potential). 
      if you can remove it, we'll just get stronger bounds! 
        

• We live in an expanding universe. S-matrix doesn’t exist. 
 
   Curvature / thermal effects?    .... 
 
 
   energy limit ?   I can’t conceptualize its effects.


• Others?

⇒

⇒ H ≪ Mhigher−spin

⇒ E < M2
pl/H ∼ 1080GeV

Common complaints            and why we won't worry today

[de Rham, Grall, Melville, Jazayeri, Payer, Stefanyszyn; Dvali,…]



Why spin 4 states drive corrections to GR ?≥

Light spin 2’s are natural in Kaluza-Klein reductions. 
 
But they don’t easily decay to massless gravitons.

= 0    in GR by orthogonality of modes.M
0

0

∝ ∫M
g(1)(1)(ψ)

 even if , anticipate couplings suppressed by ⇒ MKK ≪ Mhigher−spin 1/M#
higher−spin



Mhigher-spin: What do we know?

SM

~0 1/RdS

photon, 
graviton

~100GeV

Mhigher spin

Mpl~1019GeV

???????

1. LHC: string-like resonances M> ~7TeV 
     only because of non-grav couplings to SM!

(a)

?)

(b)

or

(c)

or

(d)

Figure 14: Production of a quark jet plus missing energy from a collision of a quark with a

gluon; wavy lines denote graviton and dashed line higher-spin particles. The rapid high-energy

growth of (a) could be softened by modifying its various ingredients: opening up the upper

vertex by making the higher-spin particle composite, or softening the vertical or horizontal

lines by exchanging new particles. Each option opens new processes: (b) the composite’s

components could be produced with M ⇠ (Mpl)�2 (c) direct gravitational-strength coupling

to Standard Model fields M ⇠ (Mpl)�1 (d) non-gravitational exchanges ⇠ (Mpl)0.

10�20 from GR’s prediction, corresponding to higher-derivative terms with size

bg3 ⇠ 10�20

(10�11eV)4
or

bg4

16⇡G
⇠ 10�20

(10�11eV)6
. (4.15)

The latter is only relevant if the former vanishes (g5 and higher-derivative couplings can

never dominate over g4, by (2.42)). The bounds 4.4 indicate that light higher-spin states

with M < 10�8eV or M < 10�6eV would then have to exist, depending on whether bg3 or bg4

dominates, respectively.7 Could this compatible with null results from collider searches?

Temporarily treating a higher-spin state as a point-like particle (left-panel of figure 14),

there are two possible tensor structure for its couplings to two gravitons. Its production

cross-section in association with a jet and graviton depends on whether the same-helicity one

is present, or vanishes:

|M|2pp!jet+/E |(a) ⇠

8
<

:
↵s

bs16

M4
plM

12 , if |c++
J=4|2 6= 0,

↵s
bs8

M4
plM

4 , if |c++
J=4|2 = 0.

(4.16)

Here we have included a factor of ↵s to create the jet, and bs is the partonic center of mass

energy. For crude estimates, we will consider that missing-energy searches [] exclude amplitude

that are |M| ⇠> 1 when
p

bs ⇠ TeV. Thus, despite the suppression by the Planck mass

Mpl ⇠ 1015TeV, in the first scenario any M ⇠< MeV is clearly ruled out, while in the absence

of same-helicity couplings (as in a supersymmetric spectrum), existing experiments still rule

out M ⇠< 10�3eV. Thus for a point-like higher-spin particle, colliders and our bounds easily

exclude e↵ects of the size (4.15); corrections at larger distances will be even smaller than

10�20.
7 Here we are conservatively treating infrared logarithms as O(1), since even for the largest logarithm we

can think of, (log RUniverseMPl
)

1/4 � 3.
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Figure 14: Production of a quark jet plus missing energy from a collision of a quark with a

gluon; wavy lines denote graviton and dashed line higher-spin particles. The rapid high-energy

growth of (a) could be softened by modifying its various vertices or propagators, however each

option opens new processes: (b) if the higher-spin states are composite their components can

be produced directly with M ⇠ (Mpl)�2 (c) if other vertical exchanges cancel the graviton

contribution they can be produced directly with M ⇠ (Mpl)�1 (d) new horizontal exchanges

would lead to resonances with M ⇠ (Mpl)0.

more slowly than other constraints. Given the tendency of higher-derivative coe�cients to

grow geometrically, we expect even more dramatic reductions in the allowed volume at higher

derivative orders, although we have not studied those systematically.

4.5 Can higher-spin states be hidden from the Standard Model?

This subsection is less rigorous than the rest of this paper; we limit ourselves to non-exhaustive

arguments and order-of-magnitude estimates.

What do collider searches tell us about higher spin particles, of the kind that can lead

to modifications of GR? Heuristically, because gravity is universal and couples to all matter,

one might expect that modifications to it also couple to everything. Indeed, many specific

scenarios of modified gravity, such as string theory models, predict resonances that couple

directly to Standard Model matter. The non-observation of such resonances impose strong

constraints on the string scale: M ⇠>7.7 TeV, and on many other scenarios as well [68, 69].

Can model-independent constraints be made on potential low-scale modifications to GR?

To orient the discussion, let us imagine a (very hypothetical) scenario where the dynamics

of a 10M� black hole, of size L ⇠ 30km⇠ 1/(10�11eV), were somehow observed to di↵er by

more than 10�20 from GR’s prediction. (Such a signal strength is orders-of-magnitude weaker

than considered in either LIGO or EHT contexts [70, 71], but has been chosen to illustrate

collider constraints.) An e↵ective field theorist might try to attribute this to higher-derivative

terms of size:13

bg3 ⇠ 10�20

(10�11eV)4
or

bg4

16⇡G
⇠ 10�20

(10�11eV)6
, (4.15)

13We recall from the introduction that “fifth forces” which do not grow with energy, involving for example

direct couplings of matter to new spin 0 and spin 1 particles, are unconstrained by our arguments. We thus

omit this possibility here.
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spin-4

2. LIGO, EHT, neutron stars, solar system... 
    test GR below M~(1km)-1 ~ 10-10eV

3. Cavendish-type experiments probe M ~ (10-5m)-1~ 102eV
note: static 'fifth forces'  'gravity' in our language≠

What is interplay between collider and 
astrophysical constraints ?



Do we really know that Mhigher spin >> 10-10eV ?  



REALLY?



Method



2-72 scattering
comments :

i) fixed angle scattering can Show timeadvances
[ Giddings 1- Puto '09]"

.

.

,ç3¥.

"

↳
causait contacts Regge limit (

"•ftimo tonb fixed)
in) stxongest statements invite Crossing :

Particle ↳ 3 = antipouliche 3-71
2

f use Analyticity (causatifs)ÉÏn~€Ï←÷Ï¥¥ÏËËÊ::::::.üï*-
i)Analyticity ofMkp) out.side (¥ ✗ (real axis with s>n' a u >ma

+ a Crossing pathfrom 5-ma toum')
mlps.tt?Sddhbei%fe(s@iilBoundedness:/MaG)/s/ e- const as ls/→•

EI
where Ufp) = wanepaeket { compact support

in nom . çtg €-1
fastdecay in impact panam

( m ~ gatàt inçt . )

(his is Stranger yet easier
toprove than

"

Froissart band
"

/Mbit)/sa/ →⑧ )
Rigorous /y valid in Ads

/CET ! .

[ SCH
,
Mienne

, Rastelli, Simmons -Muffin
'

H

Causality for 2->2 scattering

i)  Fixed angle scattering can show time advances


        causality controls Regge limit
⇒

[Giddings+Porto ’09]

s → ∞
t or b fixed
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        causality controls Regge limit


ii) Strongest statement involves crossing: 
 
            

⇒

particle 1 → 3 ≃ antiparticle 3 → 1

[Giddings+Porto ’09]

s → ∞
t or b fixed
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Minimal axioms:

i) Analyticity of M(s,t) in {t ∈ (−M2,0)} × {real s > M2 ∪ real u > M2}∪ upper-half-plane connecting them

ii) Boundedness   |Mψ(s)/s | ≤ const as  |s | → ∞

for smeared amplitude: Mψ(s) = ∫
M

0
ψ(p)M(s, − p2) : compact support in p, 

     fast decay in b
ψ

holds for AdS gravity / large-N large-gap CFTs: [SCH,Mazac,Rastelli& Simmons-Duffin ’21]

Assume: Mlow(s,t) has a causal+unitary (relativistic) UV completion



Axioms ensure Kramers-Kronig 
dispersive sum rules
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Relate IR and UV:

0 = ∮
|s|=∞

ds
Mψ(s)
sk+1

⇒ (k > 1)∮
EFT

(⋯) = ∫
heavy

ds
sk+1

ImMψ(s)

=

(low-energy couplings) = (sums of high-energy unknowns)

∑
J

|cJ |2 PJ(1 − 2p2/s)ψ (Im M = sum of Legendre’s 
with positive coefficients)

positive



Warm-up: non-gravitational real scalar

- weakly coupled EFT below M

- anything above M, just causal and unitary 

4

31

2

M

R

Figure 1: The 2 ! 2 scattering process studied in this paper. For di↵erent choices of
four-momenta, time can flow either horizontally or vertically (or diagonally).

The first line accounts for �3 and �4 relevant interactions, while the remaining terms sim-
ply list the most general symmetric polynomials in s, t, u, to account for higher-dimension
operators in the EFT. The subscript denotes the degree in Mandelstam invariants. Symmet-
ric polynomials are easy to enumerate since their ring is freely generated by two elements:
s
2 + t

2 + u2 and stu (given that s+ t+ u = 0).
A short exercise shows that the preceding amplitude is obtained from the following ef-

fective Lagrangian in the tree approximation:

Llow = �
1

2
(@µ�)

2
�

g

3!
�
3
�

�

4!
�
4

+
g2

2

⇥
(@µ�)

2
⇤2

+
g3

3
(@µ@⌫�)

2(@��)
2 + 4g4

⇥
(@µ@⌫�)

2
⇤2

+ · · ·

(2.4)

As is well known, Lagrangian densities are not unique: they are defined modulo integration-
by-parts and field redefinitions. One can cast any e↵ective Lagrangian for a real scalar field
into the form (2.4) by using field redefinitions to eliminate, order by order in the derivative
expansion, corrections to the kinetic and cubic terms as well as appearances of @2

�. See
for example [15] for a discussion in the Standard Model context. The amplitude (2.3) is a
physical observable una↵ected by such ambiguities, which is why we choose to parameterize
the coe�cients in terms of it.

Our goal is to constrain the EFT parameters gk assuming existence of an high-energy
completion which is causal and unitary, but not necessarily weakly coupled. Low-energy
interactions involving five or more powers of � will not be constrained by our methods, since
they are not detected by (tree-level) 2 ! 2 scattering. When low-energy loop corrections are
included, the detailed form of eq. (2.3) will be modified, but we do not expect the number of
independent EFT parameters that we can constrain to increase. A precise definition of the

– 4 –

the allowed space, including two kinks, can be understood from simple analytic scattering

amplitudes.

The relation between dimensional analysis scaling and causality resonates with many

previous studies, for example [8–12]. Our new observation will be the seemingly universal

existence of two-sided bounds.

This paper is organized as follows. In section 2 we review the general principles satisfied

by scattering amplitudes, introducing a family of “Bk” sum rules expressing EFT coe�cients

as averages over high-energy probabilities. In section 3, we provide a general numerical opti-

mization strategy to rule-out candidate EFTs by making use of the averaging technology. In

section 4, numerical results are presented along with remarks. Section 5 bridges the numerics

with the analytic results. We conclude in section 6 with a discussion about the potential

use cases of the numerical framework presented and the further implications of the numerical

results.

Note added: When this manuscript was being completed, the works [13] and then [14]

appeared with partial overlap in the results. The second paper in particular gave a two-sided

bound on the stu interaction which agrees with our eq. (3.6). Further comparisons will be

interesting.

2 Preliminaries: Scattering amplitudes and dispersion relations

2.1 Low energy: e↵ective field theory

We consider 2 ! 2 scattering of massless identical real scalars in a Poincaré invariant theory

(fig. 1). Treating all momenta as incoming, the amplitude is a function of Mandelstam

invariants:

s = �(p1 + p2)
2
, t = �(p2 + p3)

2
, u = �(p1 + p3)

2 (2.1)

which satisfy s+ t+u = 0. By crossing symmetry, it is invariant under all permutations (this

holds with appropriate i0’s in the discontinuity, as further discussed below):

M(s, t) = M(t, s) = M(s, u) = . . . (2.2)

Our first step is to parameterize the amplitude at low energies in terms of a specific e↵ective

field theory. Generally, the form of the amplitude depends on the couplings of the theory. It

becomes particularly simple if the theory is weakly coupled and we restrict ourselves to the

tree approximation. We thus use the tree approximation here and until subsection 2.4 In this

case, the amplitude has no low-energy branch-cuts, so the EFT expansion is simply a series

in small s, t, u:

Mlow(s, t) = � g
2


1

s
+

1

t
+

1

u

�
� �

+ g2(s
2 + t

2 + u
2) + g3(stu) + g4(s

2 + t
2 + u

2)2 + g5(s
2 + t

2 + u
2)(stu)

+ g6(s
2 + t

2 + u
2)3 + g

0
6(stu)

2 + g7(s
2 + t

2 + u
2)2(stu) + · · ·

(2.3)

– 3 –

+…

Goal:  bound higher-derivative terms



First few sum rules: (k=2, 4, …)Let us record the first few two instances explicitly:

B2 : 2g2 � g3t+ 8g4t
2 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m2 (m2 + t)2

+
, (2.20)

B4 : 4g4 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m4 (m2 + t)3

+
. (2.21)

The left-hand side has a regular series in t, and the right-hand side involves Gegenbauers

PJ(1 + 2t
m2 ), which can be straightforwardly expanded at small t ⌧ M

2 using eq. (2.7) .

Recall that averages are taken over heavy states with m � M . Matching both sides order by

order in t generates a linear system in gn’s:

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, g4 =

⌧
1

2m8

�
,

g4 =

*
1 + 4�5d

2d(d�2)J
2 + 1

d(d�2)J
4

2m8

+
.

(2.22)

We introduced the spin Casimir J
2 = J(J + d � 3) for convenience. Note that we truncated

Mlow to order g4, but it is possible to work to higher orders and generate linear relations on

couplings such as g5 and so on.

The averaging notation immediately shows that g2, g4 > 0 since they are high-energy

averages of positive quantities 1
m4 and 1

2m8 , respectively. Furthermore, the inequalities g3 

3g2
M2 and g4 

g2
2M4 also follow readily since m � M inside the average. In contrast, the sign of

g3 is not immediate due to the presence of spinning particles – the magnitude of J
2 requires

a deeper investigation. This di�culty was noted in attempted proofs of the six-dimensional

a-theorem [25].

The key to calculating a lower bound for g3 will be the existence of two distinct averages

that output g4. Equating them yields the first example of what turns out to be an infinite

set of null constraints :

0 =
⌦
n4(m

2
, J)

↵
, n4(m

2
, J) ⌘

J
2
�
2J 2

� (5d � 4)
�

m8
. (2.23)

This is a constraint on the probabilities ⇢J(s) which define the average h·i. The subscript

indicates the degree in 1/m2. Physically this stems from crossing symmetry – since there is

a unique symmetric polynomial at degree 4, the coe�cients of s2t2 and s
4 must be related.

There are no lower-degree examples of this phenomenon: monomials with fewer than two

powers of s are killed by any double-subtracted sum rule, and odd powers of s are information-

free since fixed-t dispersion relations preserve the s $ �s � t symmetry of our problem.

Null constraints such as eq. (2.23) will be central to this work. They balance spin-two

states against higher spin states: as visible from fig. 5, the average vanishes for spin 0, is

negative for spin 2, and positive for all other spins. This implies that, as soon as one particle

– 10 –

m ≥ M

Instead of smearing, expand around t=0  (simpler, but requires Froissart)

3 Optimization framework

The Bk sum rules just introduced, coupled with positivity of high-energy averages h·i provide

a complete apparatus to establish potent self-consistency conditions on EFT coe�cients gk’s

(defined in eq. (2.3)). We recall our physical assumptions:

• Double-subtracted dispersion relations converge

• The low-energy amplitude is crossing symmetric

• The high-energy spectral density is positive

Since we are considering averages over heavy states (with m > M), the coe�cients (except

in subsection 3.5) are naturally normalized by g2 and the EFT cuto↵ M . We will therefore

be bounding dimensionless ratios:

g̃3 = g3
M

2

g2
, g̃4 = g4

M
4

g2
, g̃5 = g5

M
6

g2
, . . . (3.1)

Optimal bounds on these g̃k’s will be found by formulating a dual problem, in which we

combine the desired averages (such as 2.18) with null constraints (such as eq. (2.23)) to

obtain sign-definite sum rules. We first describe a simple example analytically, then describe a

systematic implementation as a semi-definite problem amenable to publicly available software

like SDPB [26].

3.1 Warm-up problem with three sum rules

As a warm-up, let us ask whether it is possible to lower-bound the g̃3 coe�cient using the

B2, B4 sum rules previously calculated. We consider the corresponding system of three equa-

tions from (2.22) (including the null constraint obtained via g4 data):

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, 0 =

⌧
J

2(2J 2
� 5d+ 4)

m8

�
. (3.2)

With these definitions, let us examine a similar, but simpler set of relations:

h2 =

⌧
1

m4

�
, h3 =

⌧
a � J

2

m6

�
, 0 =

⌧
J

4
� bJ

2

m8

�
⌘

⌦
n(m2

, J)
↵
. (3.3)

These relations take on the same form as original identities when a = 3(d�2)
4 , b = 5d�4

2 and

the coupling is rescaled to g3 =
4

d�2h3. Consequently, our warm-up problem is to lower-bound

h3.

What makes a finite lower bound plausible is that the null constraint (the third equation)

should somehow prevent large spins from contributing too much. This is an important point:

the allowed range for g̃3 is restricted by higher derivative crossing equations!
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Let us record the first few two instances explicitly:

B2 : 2g2 � g3t+ 8g4t
2 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m2 (m2 + t)2

+
, (2.20)

B4 : 4g4 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m4 (m2 + t)3

+
. (2.21)

The left-hand side has a regular series in t, and the right-hand side involves Gegenbauers

PJ(1 + 2t
m2 ), which can be straightforwardly expanded at small t ⌧ M

2 using eq. (2.7) .

Recall that averages are taken over heavy states with m � M . Matching both sides order by

order in t generates a linear system in gn’s:

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, g4 =

⌧
1

2m8

�
,

g4 =

*
1 + 4�5d

2d(d�2)J
2 + 1

d(d�2)J
4

2m8

+
.

(2.22)

We introduced the spin Casimir J
2 = J(J + d � 3) for convenience. Note that we truncated

Mlow to order g4, but it is possible to work to higher orders and generate linear relations on

couplings such as g5 and so on.

The averaging notation immediately shows that g2, g4 > 0 since they are high-energy

averages of positive quantities 1
m4 and 1

2m8 , respectively. Furthermore, the inequalities g3 

3g2
M2 and g4 

g2
2M4 also follow readily since m � M inside the average. In contrast, the sign of

g3 is not immediate due to the presence of spinning particles – the magnitude of J
2 requires

a deeper investigation. This di�culty was noted in attempted proofs of the six-dimensional

a-theorem [25].

The key to calculating a lower bound for g3 will be the existence of two distinct averages

that output g4. Equating them yields the first example of what turns out to be an infinite

set of null constraints :

0 =
⌦
n4(m

2
, J)

↵
, n4(m

2
, J) ⌘

J
2
�
2J 2

� (5d � 4)
�

m8
. (2.23)

This is a constraint on the probabilities ⇢J(s) which define the average h·i. The subscript

indicates the degree in 1/m2. Physically this stems from crossing symmetry – since there is

a unique symmetric polynomial at degree 4, the coe�cients of s2t2 and s
4 must be related.

There are no lower-degree examples of this phenomenon: monomials with fewer than two

powers of s are killed by any double-subtracted sum rule, and odd powers of s are information-

free since fixed-t dispersion relations preserve the s $ �s � t symmetry of our problem.

Null constraints such as eq. (2.23) will be central to this work. They balance spin-two

states against higher spin states: as visible from fig. 5, the average vanishes for spin 0, is

negative for spin 2, and positive for all other spins. This implies that, as soon as one particle

– 10 –

clearly: g2 ≥ 0 g3 ≤
3g2

M2

m ≥ M

0 ≤ g4 ≤
g2

2M4

how about lower bound on g3? 



3 Optimization framework

The Bk sum rules just introduced, coupled with positivity of high-energy averages h·i provide

a complete apparatus to establish potent self-consistency conditions on EFT coe�cients gk’s

(defined in eq. (2.3)). We recall our physical assumptions:

• Double-subtracted dispersion relations converge

• The low-energy amplitude is crossing symmetric

• The high-energy spectral density is positive

Since we are considering averages over heavy states (with m > M), the coe�cients (except

in subsection 3.5) are naturally normalized by g2 and the EFT cuto↵ M . We will therefore

be bounding dimensionless ratios:

g̃3 = g3
M

2

g2
, g̃4 = g4

M
4

g2
, g̃5 = g5

M
6

g2
, . . . (3.1)

Optimal bounds on these g̃k’s will be found by formulating a dual problem, in which we

combine the desired averages (such as 2.18) with null constraints (such as eq. (2.23)) to

obtain sign-definite sum rules. We first describe a simple example analytically, then describe a

systematic implementation as a semi-definite problem amenable to publicly available software

like SDPB [26].

3.1 Warm-up problem with three sum rules

As a warm-up, let us ask whether it is possible to lower-bound the g̃3 coe�cient using the

B2, B4 sum rules previously calculated. We consider the corresponding system of three equa-

tions from (2.22) (including the null constraint obtained via g4 data):

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, 0 =

⌧
J

2(2J 2
� 5d+ 4)

m8

�
. (3.2)

With these definitions, let us examine a similar, but simpler set of relations:

h2 =

⌧
1

m4

�
, h3 =

⌧
a � J

2

m6

�
, 0 =

⌧
J

4
� bJ

2

m8

�
⌘

⌦
n(m2

, J)
↵
. (3.3)

These relations take on the same form as original identities when a = 3(d�2)
4 , b = 5d�4

2 and

the coupling is rescaled to g3 =
4

d�2h3. Consequently, our warm-up problem is to lower-bound

h3.

What makes a finite lower bound plausible is that the null constraint (the third equation)

should somehow prevent large spins from contributing too much. This is an important point:

the allowed range for g̃3 is restricted by higher derivative crossing equations!
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null constraints 
from IR crossing:

this constrains UV spectral density!  (light-light-heavy couplings)

L

L

L

L

H

⟨ 1
m4

J2

m2 ⟩
m≥M

≤
#

m2 ⟨ 1
m4 ⟩

m≥M

∼ b2

(ie. large black holes, long strings, etc, can never dominate sum rules)

 As far as sum rules are concerned, 
     heavy states with large spin (large b) can’t couple strongly
⇒

[Tolley, Wang& Zhou ’20]
[SCH& van Duong ’20]



EFT coe�cient Lower bound Upper bound

g̃3 -10.346 3

g̃4 0 0.5

g̃5 -4.096 2.5

g̃6 0 0.25

g̃
0
6 -12.83 3

g̃7 -1.548 1.75

g̃8 0 0.125

g̃
0
8 -10.03 4

g̃9 -0.524 1.125

g̃
0
9 -13.60 3

g̃10 0 0.0625

g̃
0
10 -6.32 3.75

Table 3: Bounds on coe�cients g̃(p)k = g
(p)
k M

2k�4
/g2 for d = 4 spacetime dimension, where

g
(p)
k refers to the coe�cient of (s2 + t

2 + u
2)

k�3(2p+�k,odd)

2 (stu)2p+�k,odd , which has degree k in

Mandelstam invariants and contains 2p powers of stu more than the minimum at that degree.

The upper bounds are all simple rational numbers realized by the Mspin-0 model. The values

(except for g̃3) were calculated at order n = 10, which corresponds to the number of null

constraints of dimN = 12.

B Bounds on operators up to order s10

In table 3 we record numerical bounds on various EFT coe�cients in four spacetime dimen-

sions.
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Figure 8: The (g̃3, g̃4) allowed region. Numerics were performed at n = 10 Mandelstam

order and J = 0, 2, . . . , 40. One can see that g3 may take-on negative values, while g4 is

positive. Boundaries appear smooth except for two kinks at (�10.19, 0.5) and (3, 0.5).

region is then simply the convex hull of the allowed regions for these two problems:

Entire region = Convex Hull [Spin-0 + Spin-J � 2] . (4.5)

As may be seen from the form of the g3 sum rule (2.22), the two solutions are di↵erentiated

by the sign of g3: positive for Spin-0 and negative for Spin-J � 2.

In our implementation of the dual problem, theories with only J � 2 particles can be

studied by simply dropping the positivity constraint for the functional action on J = 0. The

allowed regions for the Spin-0 and Spin-J � 2 sub-problems are the narrow almond-shaped

regions shown in fig. 9.

The shape of these regions is largely explained by a simple scaling argument: given any

solution to crossing, scaling-up its overall mass scale will give a new solution. Starting from

any allowed point (g̃3, g̃4), this generates an allowed path (↵g̃3,↵2
g̃4) where 0  ↵  1. This

explains the parabolic shape of the “underbellies” in fig. 9. In fact the Spin-0 almond is simply

the convex hull of the parabola connecting (0, 0) to (3, 12). (This is qualitatively similar to

what is found in the forward limit [11, 13].)

The Spin-J � 2 region is more complicated – while it also displays a parabolic under-

belly near the origin, it fails to extend all the way to g̃4 = 1
2 . The boundary must thus

exhibit non-analytic behaviour at the end of the parabola, however we were unable to local-

– 23 –

'dimensional analysis' is a theorem

grow like geometric series

shape approximated analytically by EFThedron [Chiang, Huang, Li, Rodina& Weng ’21]
[Arkani-Hamed, Huang& Huang ’20]

[mixed correlators numerics: Du, Zhang& Zhou ‘21]

[Tolley, Wang& Zhou ’20]
[SCH& van Duong ’20]
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FIG. 8. The allowed region for a2,1
a2,0

given by Eq. (5.20) is depicted in black. The explicit amplitudes

that emerge from integrating out the one-loop matter or tree-level string theories are depicted in

various colors. Assuming LSD in the form (5.26) with ↵ = 102 one can derive stronger bounds

which we depict by the dashed line.

In deriving the bounds above we did not impose crossing symmetry. At the level k = 2

we are working it implies that

Crossing : a2,1 = a2,2 . (5.19)

Taking the crossing-symmetric slice of the constraints (5.15) gives the two-sided bound on

the Wilson coe�cients

�
90

11


a2,1

a2,0
=

a2,2

a2,0
 6 . (5.20)

It is very striking that for the explicit UV completions studied here we find a much narrow

window of possibilities that we depict in Fig. 8. We now try to understand the origin of this

fact. To do this it will be useful to use the null constraint a2,1 � a2,2 = 0 to derive a bound

similar to Eq. (5.20). By adding the null constraint to the dispersive representations for a2,1

and a2,2 it is straightforward to show that

�
108

13

h⇢
+�
5 i2

h⇢
++
0 i2 + h⇢

+�
4 i2 + h⇢

+�
5 i2


a2,1

a2,0
=

a2,2

a2,0


6h⇢++
2 i2 +

16
7 h⇢

+�
4 i2

h⇢
++
0 i2 + h⇢

+�
4 i2 + h⇢

++
2 i2

, (5.21)

where we introduced h. . .i for the relevant integrals over intermediate energies m2

h⇢Jik ⌘
1

⇡

Z 1

m2
gap

dm
2

m2k+10
⇢J(m

2) . (5.22)

60

[Bern, Kosmopoulous, Zhiboedov ’21]

f
D4R4

= a2,0 t2 − a2,1suGravitons: homogeneous bounds vs known theories 
(with spin>=4 near-forward sum rules)

[photons: Henriksson, McPeak, Russo, Vichi’21]

−90
11



Graviton pole: scalars with graviton exchange [SCH, Mazac, Rastelli& Simmons-Duffin ’21]

B2(−p2)
low

=
8πG
p2

+2g2 + g3p2 + 8g4p4 + …

Can't use forward limits. Solution: 
  -Integrate over  
  -Use crossing to eliminate all but finitely many contacts

p ∈ [0,M]

-15 -10 -5 5 10 15
g2M2

8 �G

-50

50

100

150

g3M4

8 �G

D=5
D=6
D=7
D=8
D=9
D=10
D=11
D=12

Figure 4. Allowed regions for g2 and g3 in a theory of a scalar coupled to gravity in flat space in
dimensions D = 5, . . . , 12, with heavy mass scale M . For each curve, the region to the right is allowed
and the region to the left is disallowed. Each bound was computed using a 17-dimensional space of
functionals, listed in Table 2. We give more details on the numerical computation in Appendix A. The
inequalities plotted here are listed in Table 3.

In Figure 5, we show the impact parameter wavefunction bf(b) for the extremal functional
that minimizes g2 in D = 6. Clearly, the numerical optimization procedure constructs sum
rules dominated by b ⇠ 1/M .

Because our sum rules are linear and homogeneous in the EFT couplings 8⇡G, g2, g3, we
can always add an admissible amplitude without gravity to an admissible amplitude with
gravity to obtain a new admissible amplitude with gravity. The allowed region in (g2, g3)-
space without gravity is a cone C [10]. The allowed region with gravity must be a union of
translations of C. Indeed, this is the case: the allowed region is similar to the non-gravitational
one, but shifted so that g2 has a negative minimum value (achieved at a particular value of g3).
Note that the bounds are stronger in larger D. This is due to the fact that the dimensional
reduction of a unitary theory is unitary (more technically the fact that higher-dimensional
Gegenbauer polynomials can be written as positive linear combinations of lower-dimensional
Gegenbauer polynomials). Physically, it makes sense that the ratio g2M

2
/G should not admit

an upper bound: g2 and G are a priori independent couplings, measuring respectively the
strength of the scalar self-interaction and the strength of gravity. We are assuming that the
EFT is weakly coupled, which means that both g2 and G are taken to be small in units of M ,
but their ratio is a priori undetermined without further physical input. On the other hand, for
fixed g2M

2
/G, we expect (and will confirm) that all other dimensionless ratios gkM

2k�2
/G

obey double-sided bounds.

– 17 –

 term can be slightly negative:(∂ϕ)4

g2 ≥ −
#G
M2



Gravity: new results



Dispersive sum rules for gravitons
• Spin helps:


• The prefactor grants antisubtracted sum rules: 
 
     ,      


• Superconvergence is awesome

B2(u) : 0 = ∮s=∞
(s − t)ds[ f(s, t) + f(t, s)] B3(u) : 0 = ∮s=∞

ds[ f(s, t) − f(t, s)]

[14]4⟨23⟩4 × 8πG [ 1
stu

+
|g3 |2 su

4t
+

|gs |2

−t
+ g4 + g5t + …]M+−−+ =

∝ t4
f(s, t)



• Superconvergent sum rules automatically kill all contacts! 
   

  

 
 

• to follow CEMZ, could study mixed problem with other helicity amplitudes. 
(using crossing to remove towers of ++++ contacts and reach p~M)


• Much simpler: find a single MAGIC combination that writes G = positive sum.

B2(−p2) :
8πG
p2

+ |gs |2 p2 + |g3 |2 p6 = ∫
M2>M2

higher−spin

dm2

m8
(2m2 − p2)∑

J [ |c++(m) |2 dJ
++(1 +

2p2

m2
) + |c+−(m) |2 dJ

+−(1 +
2p2

m2
)]

exact! (neglecting loops  )∼ 1/M4
pl

It will automatically dominate every other coupling!



Riem3 and Riem4 can't exceed GR

S =
1

16πG ∫ (R +
g̃3 Riem3

M4
higher−spin

+
g̃4 Riem4

M6
higher−spin

+ …)

rescaled 's can't exceed O(1) 
without violating causality

g̃

Figure 8: Allowed region for |bg3|2 and g4 in terms of Newton’s constant and the spin-

4 mass gap M . Note that both axes are rescaled by an infrared logarithm log(M/mIR).

Manifestly, both |bg3|2 and g4 obey two-sided bounds; a nonvanishing cubic coupling bg3 requires

a nonvanishing quartic g4. The dashed line gives the bound eq. 4.6.

stronger ones by using the numerical parameter choices in appendix C. Our optimal bounds

are:

|bg3|2M8  24.9 log(M/mIR) � 27.6 , (4.4)

g4M
6

8⇡G
 12.3 log(M/mIR) � 13.5 . (4.5)

To obtain these, we included all improved sum rules B
imp
2 and B

imp
3 with nmax = 6, and we

included additional @
q
p2B

(1) imp
4 (0) up to q = 2 to get the bound on g4.

A finer way to present the constraint is to carve out the allowed space in the three EFT

parameters |bg3|2, g4 and G, as shown in figure 8. These were are computed by using all im-

proved B2 and B3 for nmax = 5 and additional forward-limit contributions from @
q
p2B

(1) imp
4 (0)

up to q = 2.

A special limit of the bound is the dashed line in figure 8 which is tangent to the allowed

region near origin; from its slope we find numerically that

g4

8⇡G
� 0.26|bg3|2M2

. (4.6)

This is e↵ectively equivalent to the bound g4
8⇡G � 1

4 |bg3|2M2 reported in (6.13) of [52] using

forward-limit bounds of spin k � 4. This bound indicates that it is not possible to turn on a

cubic coupling without having a quartic coupling as well.

– 27 –

[SCH, Li, Parra Martinez, Simmons-Duffin]



more on contact interactions using (more) spin>=4 null constraints: (two D4R4 )/R4

~s6
~s7
~s15

extremal slopes are only realized in 
region that disappears asymptotically!

6
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Figure 12: Allowed regions for g6 and g
0
6, normalized by the quartic self-coupling, g4. The

blue, orange and olive regions show increasing derivative orders 6, 7 and 15 respectively. On

the left we superimposed the values realized in the models of subsection 4.1. (b) is a zoom

near the origin of the allowed region, showing the rapid convergence with derivative order.

Although negative values of g
0
6 are excluded asymptotically, at any finite derivative order the

boundary appears to be tangent to lines of slope 6 and �90
11 .

where ↵ � 1 was used to parameterize the size of suppression of higher-spin states. By

increasing ↵, ref [45] pushes the bounds asymptotically to

0  g
0
6

g6
 2 (assuming LSD) , (4.12)

thus narrowing down the space of couplings to that spanned by the aforementioned theories.

In this paper we do not assume LSD. However, by considering inhomogeneous bounds

involving g6/g4 and g
0
6/g4 of increasing derivative orders n (meaning null constraints having

up to the same scaling dimension as the coupling gn), we find that we can further narrow down

the space of couplings as shown in figure 12.12 As we increase the number of null constraints

at higher derivative order, we observe that g
0
6 is approaching g

0
6 � 0. We can thus claim that

positivity of g
0
6 holds asymptotically, which agrees with the prediction of LSD [45]. On the

rightmost edge g6M
4
/g4 = 1 we find the absolute upper bound g

0
6M

4
/g4 . 2.38, which is

significantly closer to the ratio predicted by LSD.

We can do even better by considering impact-parameter bounds on g6 and g
0
6 normalized

by gravity, which are the main novelty of this paper. This can be computed by using B
imp
i

with i = 2 . . . 6 with nmax = 8, with the result shown in Fig. 13a. Surprisingly, we find, as

12This result was found concurrently in Ref. [67], which also studies inhomogeneous bounds of the form

gnM
2(n�m)

/gm, and makes similar observations. We thank the authors of that paper for sharing their draft

with us and coordinating submission.
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Figure 12: Allowed regions for g6 and g
0
6, normalized by the quartic self-coupling, g4. The

blue, orange and olive regions show increasing derivative orders 6, 7 and 15 respectively. On

the left we superimposed the values realized in the models of subsection 4.1. (b) is a zoom

near the origin of the allowed region, showing the rapid convergence with derivative order.

Although negative values of g
0
6 are excluded asymptotically, at any finite derivative order the

boundary appears to be tangent to lines of slope 6 and �90
11 .

where ↵ � 1 was used to parameterize the size of suppression of higher-spin states. By

increasing ↵, ref [45] pushes the bounds asymptotically to

0  g
0
6

g6
 2 (assuming LSD) , (4.12)

thus narrowing down the space of couplings to that spanned by the aforementioned theories.

In this paper we do not assume LSD. However, by considering inhomogeneous bounds

involving g6/g4 and g
0
6/g4 of increasing derivative orders n (meaning null constraints having

up to the same scaling dimension as the coupling gn), we find that we can further narrow down

the space of couplings as shown in figure 12.12 As we increase the number of null constraints

at higher derivative order, we observe that g
0
6 is approaching g

0
6 � 0. We can thus claim that

positivity of g
0
6 holds asymptotically, which agrees with the prediction of LSD [45]. On the

rightmost edge g6M
4
/g4 = 1 we find the absolute upper bound g

0
6M

4
/g4 . 2.38, which is

significantly closer to the ratio predicted by LSD.

We can do even better by considering impact-parameter bounds on g6 and g
0
6 normalized

by gravity, which are the main novelty of this paper. This can be computed by using B
imp
i

with i = 2 . . . 6 with nmax = 8, with the result shown in Fig. 13a. Surprisingly, we find, as

12This result was found concurrently in Ref. [67], which also studies inhomogeneous bounds of the form

gnM
2(n�m)

/gm, and makes similar observations. We thank the authors of that paper for sharing their draft

with us and coordinating submission.
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FIG. 8. The allowed region for a2,1
a2,0

given by Eq. (5.20) is depicted in black. The explicit amplitudes

that emerge from integrating out the one-loop matter or tree-level string theories are depicted in

various colors. Assuming LSD in the form (5.26) with ↵ = 102 one can derive stronger bounds

which we depict by the dashed line.

In deriving the bounds above we did not impose crossing symmetry. At the level k = 2

we are working it implies that

Crossing : a2,1 = a2,2 . (5.19)

Taking the crossing-symmetric slice of the constraints (5.15) gives the two-sided bound on

the Wilson coe�cients

�
90
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a2,1

a2,0
=

a2,2

a2,0
 6 . (5.20)

It is very striking that for the explicit UV completions studied here we find a much narrow

window of possibilities that we depict in Fig. 8. We now try to understand the origin of this

fact. To do this it will be useful to use the null constraint a2,1 � a2,2 = 0 to derive a bound

similar to Eq. (5.20). By adding the null constraint to the dispersive representations for a2,1

and a2,2 it is straightforward to show that

�
108
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h⇢
+�
5 i2

h⇢
++
0 i2 + h⇢

+�
4 i2 + h⇢

+�
5 i2


a2,1

a2,0
=

a2,2

a2,0


6h⇢++
2 i2 +

16
7 h⇢

+�
4 i2

h⇢
++
0 i2 + h⇢

+�
4 i2 + h⇢

++
2 i2

, (5.21)

where we introduced h. . .i for the relevant integrals over intermediate energies m2

h⇢Jik ⌘
1

⇡

Z 1

m2
gap

dm
2

m2k+10
⇢J(m

2) . (5.22)

60

f
D4R4

= a2,0 t2 − a2,1su

0 ≤
a2,1

a2,0
≤ 2.38

our bounds

(away from origin)



A tale of 3 effective field theorists:

L ⊃ m2
plR+c

Riem3

M2

"c<O(1) since couplings 
at cutoff should be O(1)"

L ⊃ m2
pl (R+c′ 

Riem3

M4 ) L ⊃ m2
plR+c′ ′ m3

pl
Riem3

M5

∼ h∂2h+c′ ′ 

∂6h3

M5

When M<<mpl , what is the correct scaling of higher-derivative corrections with M & mpl ?

"c'<O(1): corrections can never

dominate GR below the cutoff"

"c"<O(1) so gravitons stay 
weakly coupled below M"



A tale of 3 effective field theorists:

L ⊃ m2
plR+c

Riem3

M2

"c<O(1) since couplings 
at cutoff should be O(1)"

L ⊃ m2
pl (R+c′ 

Riem3

M4 )
"c'<O(1): corrections can never

dominate GR below the cutoff"

L ⊃ m2
plR+c′ ′ m3

pl
Riem3

M5

∼ h∂2h+c′ ′ 

∂6h3

M5

"c"<O(1) so gravitons stay 
weakly coupled below M"

too restrictive 
(untrue in string theory...)

too permissive 
(ruled out by our causality bounds!)= what we find!

When M<<mpl , what is the correct scaling of higher-derivative corrections with M & mpl ?

lesson: a gravitational EFT can never significantly differ from GR within its regime of validity.



What do we know about Mhigher-spin?

• Very conservatively: hard to imagine not seeing ‘missing energy’ at LHC from 
a gravitationally-coupled spin-4 particle with M<MeV.


• Corresponds to a length scale:  ...


• Phenomenological constraints should be analyzed carefully.

M−1
higher−spin < 10−13m

gluon
spin 4 2

∼
αsE6

M4M2
pl

q

gluon
spin 4 2

graviton

∼
αsE16

M12M4
pl

or ∼
αsE8

M4M4
pl



Conclusion
Suppose light-bending by Sun disagreed by more than ~10-40 from GR. 
 
 
 0. new light scalars [constrained by other experiments] 
 
  
 1. Other conventional new physics / new particles 
 
 
 2. Experimental error 
 
 
 3. Causality doesn’t work like we thought

might be 
impossible



Open questions
• Bound couplings to matter, light, SM?


• Expect loops only .  Check?


• Remove Log[IR]’s (dressing, …)?


• Higher spacetime dimensions?   Where is weakly coupled string theory?


• What if M~Mpl: how close to classical GR can 4d quantum gravity be?


• …

O(N/M4
pl)



• causality (relativistic): can’t send info faster than light

e.g. quantum gravity would be trivial:   H = ∑
i

⃗p 2
i

2mi
− ∑

i<j

Gmimj

| ⃗x i − ⃗x j |

served us well in past century.

without it, particle physics methods lose predictive power.

• unitarity (probabilities can’t be negative)
interesting interplay: wrong-sign kinetic terms can be quantized so

positive-frequency modes have positive norm, but propagate backward in time.


(problem: negative-E propagating forward makes vacuum unstable.)

any  
would do.

V(r)

[Ostrogradsky; Cline, Jeon& Moore ’03; Woodard ‘15]
[Lee-Wick ’69, ’killed’ by Cutkosky et al ’69]

Assumptions



• The first few sum rules for +--+ : 
 
   

  

 

  

 

B2(−p2) :
8πG
p2

+ |gs |2 p2 + |g3 |2 p6 = ∫heavy
(…)

B3(−p2) : − |gs |2 − p2 |g3 |2 = ∫heavy
(…)

B4(−p2) : g4 + |g3 |2 p2 + … = ∫heavy
(…)

infinite sum

• For k=2,3 we integrate against ’s, for  we expand in forward limit.ψ k ≥ 4



Example functional (d=5)

Figure 2: Allowed region (shaded) for g2 and g3 from [11], in a theory of a scalar coupled
to gravity in flat space in dimensions D = 5 and heavy mass scale M . Asymptotically to the
right, the region is a cone which matches the non-gravitational bounds; note the offset to the
left. The solid lines show the non-optimal bounds from the simple functionals (2.20).

�M2 < u < 0. It is not obvious how to analytically construct suitable functions on this
range, but a numerical search algorithm was presented in [11]. Polynomials of surprisingly
low degree turn out to work, although their coefficients are hard to interpret. For the purposes
of this paper, we will simply record two simple polynomials found with this method in D = 5:7

C(1) ⌘
Z 1

0
dp Cimproved

2,�M2p2 ⇥ p2(1� p)2
⇥
2280� 665p+ 2964p5 � 8280p6

⇤
,

C(2) ⌘
Z 1

0
dp Cimproved

2,�M2p2 ⇥ p2(1� p)2
⇥
1785� 3468p� 18785p5 + 26187p6

⇤
.

(2.20)

We claim that the heavy actions of both these functionals are rigorously positive in D = 5:

C(i)
[m2, J ] � 0 8m � M,J even . (2.21)

Positivity of the left-hand-side of (2.19) then gives the following inequalities:

� 8.96
g2
M2

� 54.7
8⇡G

M4
 g3  3.06

g2
M2

+ 188
8⇡G

M4
(D = 5) , (2.22)

which are shown in Figure 2 alongside with the optimal bounds found in [11].
7The numbers show rational approximants to numerical results: no attention should be paid to their

number-theoretic properties.
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Figure 3: Action of the C(i) functionals in (2.20) for i = 1, 2 respectively, on various heavy
states with m � M in units where M = 1. Individual points, representing different spins J ,
are lined up with constant impact parameter b =

2J
m in order to highlight the regularity as

m ! 1 and J ! 1. This helps confirm positivity on all heavy states. The blue outliers (at
J = 2 and J = 0, 4 respectively) are caused by single zeros slightly below threshold m = M .

Positivity of the functionals is verifiable by exhaustion: in Figure 3 we plot the action of
C(1) on various states of different masses m � M and spin J up to 500, grouped in terms of
their impact parameters b =

2J
m . The infinite mass limit at fixed impact parameter can be

computed for arbitrary J using

lim
m,J!1

PJ

✓
1� 2p2

m2

◆
= �(

D�2
2 )

JD�4
2

(pb)

(pb/2)
D�4
2

⌘ eJ(pb) . (2.23)

The plots reveal a clear trend where the infinite-mass limit is approached from above.
The bounds in (2.22) show that, once the value of g2 is fixed, the value of g3 lies in a

range that conforms with dimensional analysis. Furthermore, while g2 isn’t strictly positive
due to gravity’s attractive force, the magnitude of this effect is bounded and conforms with
dimensional analysis at the scale M . Our goal in the rest of the paper will be to uplift these
bounds to EFTs in AdS; the methods will be general and will apply to any other dispersive
sum rule on 2! 2 scattering.

2.3 What does it mean to probe local physics in AdS?

There are at least two ways to study the geometric dependence of a scattering process. Perhaps
the most obvious is to scatter wavepackets that are designed to localize near a particular
configuration — for example near impact parameter b. An alternative approach, which will
be crucial in the following, is to characterize the geometry of a process using the quantum
numbers of intermediate states.

For example, consider a 2 ! 2 scattering process of massless scalars. If the particles create
an intermediate massive state with mass m and angular momentum J , then by conservation of
energy and angular momentum, we deduce that the particles scattered with impact parameter
b = 2J

m , see Figure 4: the asymptotic trajectories are translated perpendicularly by the amount
b. In other words, we can use the ratio b =

2J
m to track contributions from different impact

– 14 –
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Jmax dimension interactions

0
dim. 3 �

(a
�
b
�
c)

dim. 4 �
(a
�
b
�
c
�
d)

1
2

dim. 4  
(i
 
j)
�

dim. 5  
(i
 
j)
�
(a
�
b)

1

dim. 5 F 
[i
 
j]

dim. 6
F

[a
F

b
F

c], �[aD�b]�[cD�d],  i
 ̄j�

[a
D�

b],

 
(i
 
j)
 
(k
 
l),  (i

 
j)
 ̄(k ̄l), F 

[i
 
j]
�, F (a

F
b)
�
(c
�
d)

dim. 7 F�
[a
D�

b
D�

c], F [a
F

b
F

c]
�, D [i

 
j
 
k]
 ̄

higher- dim. 6 �
6,  2

�
3

points . . .

Table 1. Interactions which have spin  1 in all channels and are thus not probed by dispersion rela-
tions; � are scalars,  Weyl fermions, and F field strengths. Adding any further derivative or graviton
coupling pushes these above the Jmax = 1 threshold. Struck-out interactions ��� are incompatible
with SM gauge invariance.

[unpublished; see Durieux, Kitahara, Machado, Shadmit Weiss ’20]



Jmax dimension interactions

3
2

dim. 7   ��D
2, F  ̄�D, FF  , FF  ̄ ̄, RF  

dim. 8   ̄��D
3, F  �D2, F  ̄ ̄�D2, FF  ̄D

2

dim. 8 ����D
4,     D2, FF̄  ̄D, FFFF , FFF̄ F̄

dim. 9
  ��D

4,     ̄D3, F���D2, F  ̄�D3,

FF̄  D
2, FF  D

2, FFF�D
2, FFF̄�D

2

dim. 10 ����D
6,     D4,    ̄ ̄D4, FF��D

4, FF̄��D
4, FFFF̄D

2, F 4
D

2

dim.  6 SGB, SR3 , S
0(D�7)
R3 , RFF , RR��,

2 dim. 7 RFF�, RRF�, RRR�,

w/ gravity dim. 8 RF��D
2, R  �D2, RFFF , RRFF

dim. 9 R�
3
D

2, RFF�D
2, RRFFD

2

Table 2. Four-point interactions with maximum spin 3
2 or 2, which are all detectable by some

dispersion relation. The positioning of the derivativesD is schematic, but only some index contractions
have the quoted spin.

Random formulas:

Llow =
R

16⇡G
+

1

2
(D�)2 � g

3!
�
3 � �

4!
�
4

+
g2

2

⇥
(Dµ�)

2
⇤2

+
g3

3
(DµD⌫�)

2(D��)
2 +

g4

4

⇥
(DµD⌫�)

2
⇤2

+ . . .

Mlow(s, t) =8⇡G


tu

s
+

su

t
+

st

u

�
� g

2


1

s
+

1

t
+

1

u

�
� �

+ g2(s
2 + t

2 + u
2) + g3 stu+ g4(s

2 + t
2 + u

2)2 + . . .+O(loops)

8⇡G

�t
+ 2g2 � g3t+ 8g4t

2 + . . . =

*
(2m2 + t)PJ(1 +

2t
m2 )

m2(m2 + t)2

+
(0.1)

8⇡G

�t
+ 2g2 � g3t =

D
Cimproved
2,t [m2

, J ]
E

(0.2)
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All graviton couplings are boundable.
[see also: Chowdhury, Gadde, Gopalka, Halder, Janagal& Minwalla ’20]



For CFTs, our axiom  is the familiar ‘Cauchy-Schwartz’ bound

on the Regge limit of correlators.

|Mψ(s)/s | ≤ const ( )j* ≤ 1

We showed that any positive S-matrix sum rule derived from these axioms 
uplifts to a positive CFT sum rule up to  corrections. 


The axioms are compatible with quantum gravity.

1/Δgap
(no need to assume sequences of CFTs)

[SCH,Mazac,Rastelli& Simmons-Duffin ’21]

Note this is weaker than ‘Froissart-like’ bound |M(s, t)/s2 | → 0
The latter may also hold in gravity, but is inessential for our story.

[see Chandorkar, Chowdhury, Kundu& Minwalla ’21]


