Simon Caron-Huot McGill University

Vincent van Duong On work with: Yue-Zhou Li Julio Parra Martinez

Paris, March 16 2022

Causality constraints on modifications to gravity

> Dalimil Mazac Leonardo Rastelli **David Simmons-Duffin**

Einstein's General Relativity works well

How different could it be, if world is causal+unitary?

How small: [Guerrieri, Penedones& Vieira '21]

Outline

- 1. The question: What modifications can we bound?
 - Graviton scattering
 - causality+unitarity
 - CEMZ constraints
- 2. The method: Dispersive sum rules
 - axioms
 - scalar scattering
 - gravity
- 3. Results
 - what can hide from the SM?

On: SCH, Mazac, Rastelli & Simmons-Duffin '20 SCH& van Duong '20 SCH, Mazac, Rastelli& Simmons-Duffin '21 SCH, Mazac, Rastelli & Simmons-Duffin '21 SCH, Li, Parra Martinez & Simmons-Duffin '22 Flat

 $M_{higher-spin} < < M_{pl}$: neglect loops.

We don't bound:

- f(R) (\simeq Einstein + scalar field : no imprint in graviton scattering)
- Any term with Ricci tensor/scalar: removable by field redefinition (no imprint) Scalar potentials (don't grow with energy)
- Torsion etc: treat as extra matter fields / non-minimal couplings to matter

"signals can't travel faster than light"

• Why waves, fields

"signals can't travel faster than light"

- Why waves, fields
- Why particles

"signals can't travel faster than light"

- Why waves, fields
- Why particles
- Why antiparticles

- Why waves, fields
- Why particles
- Why antiparticles

. . .

- Why EFTs have to work
- Why gravity is attractive

"signals can't travel faster than light"

Experimentally tested to exquisite accuracy

same limiting velocity for all species, antiparticle vs particle properties, ...

Doesn't mean it's an exact property of Nature

theoretically unknown how to define causality sharply for bulk observers, like us

• We assume 'relativistic causality' because we see no real alternative

simplest 'quantum gravity':
$$H = \sum_{i} \frac{\overrightarrow{p}_{i}^{2}}{2m_{i}}$$

$$\sum_{i < j} V_{ij}, \quad V_{ij} = \frac{-Gm_im_j}{|\overrightarrow{x}_i - \overrightarrow{x}_j|} + ?$$

Causality vs. gravity: some known results

at long distances, any Lorentz-invariant S-matrix of a massless spin-2 0) particle must agree with GR

[Weinberg]

Causality vs. gravity: corrections?

Vertices: large impact-parameter scattering

$$M(s,b) \sim 8\pi G s \left(\begin{array}{c} \log(1/b\mu_{\rm IR}) & \frac{g_3}{b^4} \\ \frac{g_3}{b^4} & \log(1/b\mu_{\rm IR}) \end{array} \right)$$

2) Contacts: forward limit (!) of Kramers-Kronig dispersion relations

$$g_4 = \int_{M_{\text{heavy}}}^{\infty} \frac{ds}{s} \operatorname{Im} f(s, t = 0) \ge 0$$

Our approach will merge these two.

[Bellazzini, Cheung & Remmen '15] [Adams, Arkani-Hamed, Dubovsky, Nicolis& Rattazzi '06]

Common complaints

• We live in 4d. S-matrix doesn't exist. (IR divergences)

if you can remove it, we'll just get stronger bounds!

- We live in an expanding universe. S-matrix doesn't exist.
 - \Rightarrow Curvature / thermal effects? $H \ll M_{higher-spin}$ [de Rham, Grall, Melville, Jazayeri, Payer, Stefanyszyn; Dvali,...]
 - \Rightarrow energy limit $E < M_{\rm pl}^2/H \sim 10^{80} {\rm GeV}$? I can't conceptualize its effects.
- Others?

and why we won't worry today

 \Rightarrow divergent scattering phase has simple physical origin (Newton potential).

Why spin \geq 4 states drive corrections to GR ?

Light spin 2's are natural in Kaluza-Klein reductions.

But they don't easily decay to massless gravitons.

 \Rightarrow even if $M_{\rm KK} \ll M_{\rm higher-spin}$, anticipate couplings suppressed by $1/M_{\rm higher-spin}^{\#}$

Mhigher-spin: What do we know?

1. LHC: string-like resonances M> ~7TeV

only because of non-grav couplings to SM!

- 2. LIGO, EHT, neutron stars, solar system... test GR below M~(1km)⁻¹ ~ 10⁻¹⁰eV
- 3. Cavendish-type experiments probe M ~ $(10^{-5}m)^{-1}$ ~ $10^{2}eV$

note: static 'fifth forces' \neq 'gravity' in our language

What is interplay between collider and astrophysical constraints?

Do we really know that Mhigher spin >> 10-10eV ?

Method

Causality for 2->2 scattering

i) Fixed angle scattering can show time advances [Giddings+Porto '09]

 $s \rightarrow \infty$ \Rightarrow causality controls Regge limit t or b fixed

Causality for 2->2 scattering

i) Fixed angle scattering can show time advances [Giddings+Porto '09]

 $s \rightarrow \infty$ \Rightarrow causality controls Regge limit t or b fixed

ii) Strongest statement involves crossing:

particle $1 \rightarrow 3 \simeq$ antiparticle $3 \rightarrow 1$

Assume: M_{low}(s,t) has a causal+unitary (relativistic) UV completion

Minimal axioms:

ii) Boundedness $|M_{\psi}(s)/s| \leq \text{const as } |s| \to \infty$ for smeared amplitude: $M_{\psi}(s) =$

holds for AdS gravity / large-N large-gap CFTs: [SCH,Mazac,Rastelli& Simmons-Duffin '21]

i) Analyticity of M(s,t) in $\{t \in (-M^2, 0)\} \times \{ \text{real } s > M^2 \cup \text{real } u > M^2 \}$ $\cup \text{ upper-half-plane connecting them} \}$

$$\psi(p)M(s, -p^2)$$

 ψ : compact support in p, fast decay in b

Axioms ensure Kramers-Kronig dispersive sum rules

Relate IR and UV:

(low-energy couplings) = (sums of high-energy unknow positive

5	
_	_
ndre ents) ()
	/
/ns	5)

Warm-up: non-gravitational real scalar

- weakly coupled EFT below M - anything above M, just causal and unitary

Goal: bound higher-derivative terms

 $(\partial_{\nu}\phi)^2(\partial_{\sigma}\phi)^2 + 4g_4[(\partial_{\mu}\partial_{\nu}\phi)^2]^2 + \cdots$

 $(tu) + q_4(s^2 + t^2 + u^2)^2 + q_5(s^2 + t^2 + u^2)(stu) + \dots$

First few sum rules: (k=2, 4, ...)

$$B_2: 2g_2 - g_3t + 8g_4t^2 + \dots$$

 $B_4: 4g_4 + \dots$

Instead of smearing, expand around t=0 (simpler, but requires Froissart)

$$g_{2} = \left\langle \frac{1}{m^{4}} \right\rangle, \qquad g_{3} = \left\langle \frac{3 - \frac{4}{d-2}\mathcal{J}^{2}}{M^{6}} \right\rangle$$

$$g_{3} \leq \frac{3g_{2}}{M^{2}}$$

how about lower bound on g₃?

$$= \left\langle \frac{\left(2m^{2}+t\right)\mathcal{P}_{J}\left(1+\frac{2t}{m^{2}}\right)}{m^{2}\left(m^{2}+t\right)^{2}}\right\rangle_{m} \geq M$$
$$= \left\langle \frac{\left(2m^{2}+t\right)\mathcal{P}_{J}\left(1+\frac{2t}{m^{2}}\right)}{m^{4}\left(m^{2}+t\right)^{3}}\right\rangle_{m} \geq M$$

$$g_4 = \left\langle \frac{1}{2m^8} \right\rangle$$
$$0 \le g_4 \le \frac{g_2}{2M^4}$$

null constraints from IR crossing: $0 = \left\langle \frac{\mathcal{J}^2(2\mathcal{J}^2 - 5d + 4)}{m^8} \right\rangle$

this constrains UV spectral density! (light-light-heavy couplings) $\sim b^2$ $\left\langle \frac{1}{m^4} \frac{J^2}{m^2} \right\rangle \leq \frac{\#}{m^2} \left\langle \frac{1}{m^4} \right\rangle_{m \geq M}$

 \Rightarrow As far as sum rules are concerned,

(ie. large black holes, long strings, etc, can never dominate sum rules)

heavy states with large spin (large b) can't couple strongly

'dimensional analysis' is a theorem

shape approximated analytically by EFThedron

 $\tilde{g}_k \equiv g_k M^{\#}/g_2$

	-0.5			
	-	EFT coefficient	Lower bound	Upper boui
	-	$ ilde{g}_3$	-10.346	3
-	0.4	$ ilde{g}_4$	0	0.5
		$ ilde{g}_5$	-4.096	2.5
	0.3	$ ilde{g}_6$	0	0.25
		\widetilde{g}_6'	-12.83	3
		$ ilde{g}_7$	-1.548	1.75
-	0.2	$ ilde{g}_8$	0	0.125
		$ ilde{g}_8'$	-10.03	4
	- 0.1	$ ilde{g}_9$	-0.524	1.125
		$ ilde{g}_9'$	-13.60	3
		$ ilde{g}_{10}$	0	0.0625
	_	$ ilde{g}_{10}'$	-6.32	3.75

0.0

grow like geometric series

Tolley, Wang& Zhou '20] [SCH& van Duong '20] [Arkani-Hamed, Huang& Huang '20] [Chiang, Huang, Li, Rodina& Weng '21]

[mixed correlators numerics: Du, Zhang& Zhou '21]

Gravitons: homogeneous bounds vs known theories (with spin>=4 near-forward sum rules)

$$f\Big|_{D^4 R^4} = a_{2,0} t^2 - a_{2,0}$$

[photons: Henriksson, McPeak, Russo, Vichi'21]

Graviton pole: scalars with graviton exchange

$$B_2(-p^2)\Big|_{\text{low}} = \frac{8\pi G}{p^2} + 2g_2 + g_3 p^2 + 8g_3 p^2$$

Can't use forward limits. Solution:

-Integrate over $p \in [0,M]$

-Use crossing to eliminate all but finitely many contacts

[SCH, Mazac, Rastelli& Simmons-Duffin '21]

-- D=5 $(\partial \phi)^4$ term can be slightly negative: **—** *D*=6 — *D*=7 — *D*=8 $g_2 \ge -\frac{\#G}{M^2}$ — *D*=9 — *D*=10 *— D*=11 *D*=12

Gravity: new results

Dispersive sum rules for gravitons

• Spin helps:

$$M^{+--+} = [14]^4 \langle 23 \rangle^4 \times 8\pi G \left[\frac{1}{stu} + \frac{|g_3|^2 su}{4t} + \frac{|g_s|^2}{-t} + g_4 + g_5 t + \dots \right]$$

• The prefactor grants antisubtracted sum rules:

$$B_2(u): 0 = \oint_{s=\infty} (s-t)ds[f(s,t) + f(t,s)], \quad B_3(u): 0 = \oint_{s=\infty} ds[f(s,t) - f(t,s)]$$

• Superconvergence is awesome

Superconvergent sum rules automatically kill all contacts!

$$B_{2}(-p^{2}): \frac{8\pi G}{p^{2}} + |g_{s}|^{2}p^{2} + |g_{3}|^{2}p^{6} = \int_{M^{2} > M_{\text{higher-spin}}} \frac{dm^{2}}{m^{8}} (2m^{2} - p^{2}) \sum_{J} \left[|c_{++}(m)|^{2} d_{++}^{J} (1 + \frac{2p^{2}}{m^{2}}) + |c_{+-}(m)|^{2} d_{+-}^{J} (1 + \frac{2p^{2}}{m^{2}}) + |c_{+-}(m)|^{2} d_{+-}^{J} (1 + \frac{2p^{2}}{m^{2}}) \right]$$
exact! (neglecting loops ~ 1/M_{pl}^{4})

 to follow CEMZ, could study mixed problem with other helicity amplitudes. (using crossing to remove towers of ++++ contacts and reach p~M)

• Much simpler: find a single MAGIC combination that writes G = positive sum. It will automatically dominate every other coupling!

Riem³ and Riem⁴ can't exceed GR

[SCH, Li, Parra Martinez, Simmons-Duffin]

more on contact interactions using (more) spin>=4 null constraints: (two D^4R^4)/ R^4

11

 $-90^{-0.1}$

6

0.05

0.3

0.2

0.1

0.0

osonic string

eterotic string

arita-Schwinger

uperstring

oin two

 ector

ermion

calar

region that disappears asymptotically!

our bounds

A tale of 3 effective field theorists:

$$L \supset m_{\rm pl}^2 R + c \frac{\rm Riem^3}{M^2}$$

"c<O(1) since couplings at cutoff should be O(1)"

"c'<O(1): corrections can never dominate GR below the cutoff"

$$\sim h\partial^2 h + c'' \frac{\partial^6 h}{M^5}$$

 $C \frac{\text{Riem}^3}{M^2} \qquad L \supset m_{\text{pl}}^2 \left(R + c' \frac{\text{Riem}^3}{M^4} \right) \qquad L \supset m_{\text{pl}}^2 R + c'' m_{\text{pl}}^3 \frac{\text{Riem}^3}{M^5}$

"C"<O(1) so gravitons stay weakly coupled below M"

When $M < < m_{pl}$, what is the correct scaling of higher-derivative corrections with M & m_{pl} ?

A tale of 3 effective field theorists:

 $L \supset m_{\rm pl}^2 R + c - \frac{\rm Riem^3}{\rm Mar}$ "c<O(1) since couplings at cutoff should be O(1)"

 $L \supset m_{\rm pl}^2 \left(R + \frac{c'}{M^4} \right) \qquad | L \supset m_{\rm pl}^2 R + \frac{c''}{m_{\rm pl}^2} | L \supset$

"c'<O(1): corrections can never dominate GR below the cutoff"

too restrictive (untrue in string theory...) = what we find!

lesson: a gravitational EFT can never significantly differ from GR within its regime of validity.

When $M < < m_{pl}$, what is the correct scaling of higher-derivative corrections with M & m_{pl} ?

What do we know about Mhigher-spin?

- a gravitationally-coupled spin-4 particle with M<MeV.
- Corresponds to a length scale: $M_{\text{higher-spin}}^{-1} < 10^{-13} \text{m...}$
- Phenomenological constraints should be analyzed carefully.

Very conservatively: hard to imagine not seeing 'missing energy' at LHC from

Conclusion

Suppose light-bending by Sun disagreed by more than ~10⁻⁴⁰ from GR.

0. new light scalars [constrained by other experiments]

1. Other conventional new physics / new particles

2. Experimental error

3. Causality doesn't work like we thought

might be impossible

Open questions

- Bound couplings to matter, light, SM?
- Expect loops only $O(N/M_{\rm pl}^4)$. Check?
- Remove Log[IR]'s (dressing, ...)?
- Higher spacetime dimensions? Where is weakly coupled string theory?
- What if M~M_{pl}: how close to classical GR can 4d quantum gravity be?

Assumptions

• causality (relativistic): can't send info faster than light

served us well in past century. without it, particle physics methods lo

e.g. quantum gravity would be to

• unitarity (probabilities can't be negative)

interesting interplay: wrong-sign kinetic terms can be quantized so

(problem: negative-E propagating forward makes vacuum unstable.)

ose predictive power.
would have a constraint of the power.
rivial:
$$H = \sum_{i} \frac{\overrightarrow{p}_{i}^{2}}{2m_{i}} - \sum_{i < j} \frac{Gm_{i}m_{j}}{|\overrightarrow{x}_{i} - \overrightarrow{x}_{j}|}$$

- positive-frequency modes have positive norm, but propagate backward in time.

 - [Ostrogradsky; Cline, Jeon& Moore '03; Woodard '15] [Lee-Wick '69, 'killed' by Cutkosky et al '69]

The first few sum rules for +--+ :

$$B_{2}(-p^{2}): \quad \frac{8\pi G}{p^{2}} + |g_{s}|^{2}p^{2} + |g|$$
$$B_{3}(-p^{2}): \quad -|g_{s}|^{2} - p^{2}|g_{3}|^{2} =$$

$$B_4(-p^2): \quad g_4 + |g_3|^2 p^2 + \dots =$$

f
infinite

• For k=2,3 we integrate against ψ 's, for $k \ge 4$ we expand in forward limit.

sum

$$-8.96\frac{g_2}{M^2} - 54.7\frac{8\pi G}{M^4} \le g_3 \qquad m^4 \mathcal{C}^{(2)}[$$

$J_{ m max}$	dimension	
Ο	dim. 3	
U	dim. 4	
1	dim. 4	
$\overline{2}$	dim. 5	
	dim. 5	
1	dim. 6	$F^{[a}F^{b]}\psi^{(i}\psi^{j)}\psi^{(k}\psi^{j)}\psi^{(k)$
	dim. 7	$F\phi^{[a]}$
higher-	dim. 6	
points	• • •	

with SM gauge invariance.

[unpublished; see Durieux, Kitahara, Machado, Shadmit Weiss '20]

interactions $\phi^{(a}\phi^{b}\phi^{c}\phi^{d)}$ $\psi^{(i}\psi^{j)}\phi$ $\psi^{(i}\psi^{j)}\phi^{(a}\phi^{b)}$ F_{η} ${}^{b}F^{c]}, \phi^{[a}D\phi^{b]}\phi^{[c}D\phi^{d]}, \psi^{i}\bar{\psi}_{j}\phi^{[a}D\phi^{b]}, \psi^{l}\psi^{l}, \psi^{l}\psi^{j}\bar{\psi}_{k}\bar{\psi}_{l}, F\psi^{[i}\psi^{j]}\phi, F^{(a}F^{b)}\phi^{(c}\phi^{d)}$ $D\phi^b D\phi^{c]}, \, \dot{F}^{[a} \dot{F}^b F^{c]} \phi, \, D\psi^{[i} \psi^j \psi^{k]} \bar{\psi}$ ϕ^6 . $\psi^2 \phi^3$

Table 1. Interactions which have spin ≤ 1 in all channels and are thus not probed by dispersion relations; ϕ are scalars, ψ Weyl fermions, and F field strengths. Adding any further derivative or graviton coupling pushes these above the $J_{\text{max}} = 1$ threshold. Struck-out interactions $\phi \phi \phi$ are incompatible

$J_{ m max}$	dimension		
3	dim. 7	$\psi\psi\phi\phi$	
$\overline{\overline{2}}$	dim. 8	$\psi \overline{\psi} q$	
	dim. 8	$\phi\phi\phi\phi L$	
9	dim. 9		$\psi\psi\phi$
Δ		$Far{F}\psi$	
	dim. 10	$\phi\phi\phi\phi D^6,\psi\psi\psi\psi D^4$	
	dim. ≤ 6		
2	dim. 7		
w/ gravity	dim. 8	R_{\cdot}	
	dim. 9		

Table 2. Four-point interactions with maximum spin $\frac{3}{2}$ or 2, which are all detectable by some dispersion relation. The positioning of the derivatives D is schematic, but only some index contractions have the quoted spin.

All graviton couplings are boundable. [see also: Chowdhury, Gadde, Gopalka, Halder, Janagal& Minwalla '20]

interactions

 $\phi D^2, F\psi\psi\phi D, FF\psi\psi, FF\psi\psi, RF\psi\psi$ $\phi\phi D^3, F\psi\psi\phi D^2, F\bar{\psi}\bar{\psi}\phi D^2, FF\psi\bar{\psi}D$ $D^4, \psi \psi \psi \psi D^2, F \overline{F} \psi \overline{\psi} D, F F F F, F F \overline{F} \overline{F}$ $\phi \phi D^4, \ \psi \psi \psi \overline{\psi} D^3, \ F \phi \phi \phi D^2, \ F \psi \overline{\psi} \phi D^3,$ ψD^2 , $FF\psi\psi D^2$, $FFF\phi D^2$, $FF\bar{F}\phi D^2$ ⁴, $\psi \psi \overline{\psi} \overline{\psi} D^4$, $FF \phi \phi D^4$, $F\overline{F} \phi \phi D^4$, $FFF\overline{F} D^2$, $F^4 D^2$ $S_{GB}, S_{R^3}, S_{R^3}^{\prime (D \ge 7)}, RFF, RR\phi\phi,$ $RFF\phi, RRF\phi, RRR\phi,$ $CF\phi\phi D^2, R\psi\psi\phi D^2, RFFF, RRFF$ $R\phi^3 D^2$, $RFF\phi D^2$, $RRFFD^2$

on the Regge limit of correlators.

Note this is weaker than 'Froissart-like' bound $|M(s,t)/s^2| \rightarrow 0$ The latter may also hold in gravity, but is inessential for our story.

We showed that any positive S-matrix sum rule derived from these axioms uplifts to a positive CFT sum rule up to $1/\Delta_{gap}$ corrections.

The axioms are compatible with quantum gravity.

For CFTs, our axiom $|M_{w}(s)/s| \leq \text{const}$ is the familiar 'Cauchy-Schwartz' bound $(j_* \leq 1)$

[see Chandorkar, Chowdhury, Kundu& Minwalla '21]

(no need to assume sequences of CFTs) [SCH,Mazac,Rastelli& Simmons-Duffin '21]

