Recent Advances in Two-loop Superstrings

Eric D'Hoker

Institut des Hautes Etudes Scientifiques, 2014 May 6

Outline

- 1. Overview of two-loop superstring methods, including global issues;
- Applications to Vacuum Energy and Spontaneous Supersymmetry Breaking
 E. D'Hoker, D.H. Phong, arXiv:1307.1749,
 Two-Loop Vacuum Energy for Calabi-Yau orbifold models
- 3. Applications to Superstring Corrections to Type IIB Supergravity
 - E. D'Hoker, M.B. Green, arXiv:1308.4597,

Zhang-Kawazumi invariants and Superstring Amplitudes

E. D'Hoker, M.B. Green, B. Pioline, R. Russo, arXiv:1405.6226, Matching the $D^6 \mathcal{R}^4$ interaction at two-loops

String Perturbation Theory

Quantum Strings: fluctuating surfaces in space-time M

Perturbative expansion of string amplitudes in powers of coupling constant g_s = sum over Riemann surfaces Σ of genus h

Bosonic string: • sum over maps $\{x\}$

- sum over conformal classes [g] on Σ
 - = integral over moduli space \mathcal{M}_h of Riemann surfaces.

Superstrings

• Worldsheet = super Riemann surface

 (x,ψ) RNS-formulation ψ spinor on Σ (g,χ) superconformal geometry

- Worldsheet action invariant under local supersymmetry in addition to $\text{Diff}(\Sigma)$ Absence of superconformal anomalies requires $\dim(M) = 10$
- Supermoduli Space $s\mathcal{M}_h$ = space of superconformal classes $[g,\chi]$,

$$\dim(s\mathcal{M}_h) = \begin{cases} (0|0) & h = 0\\ (1|0)_{\text{even or }} (1|1)_{\text{odd}} & h = 1\\ (3h - 3|2h - 2) & h \ge 2 \end{cases}$$

• Two-loops is lowest order at which odd moduli enter non-trivially.

Independence of left and right chiralities

• Locally on $\Sigma,$ worldsheet fields split into left & right chiralities

 $\partial_z \partial_{\bar{z}} x^{\mu} = 0 \qquad \Longrightarrow \qquad x^{\mu} = x^{\mu}_+(z) + x^{\mu}_-(\bar{z})$ $\partial_z \psi^{\mu}_- = \partial_{\bar{z}} \psi^{\mu}_+ = 0 \qquad \Longrightarrow \qquad \psi^{\mu}_+(z), \ \psi^{\mu}_-(\bar{z})$

Fundamental physical closed superstring theories

- Type II ψ^{μ}_{+} and ψ^{μ}_{-} are independent (not complex conjugates)with independent spin structure assignmentsodd moduli for left and right are independent
- Heterotic ψ^{μ}_{+} left chirality fermions with $\mu = 1, \dots, 10$ ψ^{A}_{-} right chirality fermions with $A = 1, \dots, 32$ odd moduli for left, but none for right chirality

Pairing prescription (Witten 2012)

- Separate moduli spaces for left and right chiralities
 - LEFT : $s\mathcal{M}_L$ of dim (3h-3|2h-2) with local coordinates $(m_L, \bar{m}_L; \zeta_L)$
 - RIGHT: Type II string, $s\mathcal{M}_R$ of dim (3h-3|2h-2), with $(m_R, \bar{m}_R; \zeta_R)$ Heterotic string, \mathcal{M}_R of dim (3h-3|0), with (m_R, \bar{m}_R)
- Left and right odd moduli ζ_L, ζ_R are independent
- Even moduli must be related
 - Heterotic string: integrate over a closed cycle $\Gamma \subset s\mathcal{M}_L \times \mathcal{M}_R$ such that
 - $-\bar{m}_R = m_L + \text{ even nilpotent corrections dependent on } \zeta_L$
 - certain conditions at the Deligne-Mumford compactification divisor
 - For $h \ge 5$ no natural projection $s\mathcal{M}_h \to \mathcal{M}_h$ exists (Donagi, Witten 2013)
 - but superspace Stokes's theorem guarantees independence of choice of $\Gamma.$

Superperiod matrix $\hat{\Omega}$ (ED & Phong 1988)

• For genus h = 2 there is a natural projection $s\mathcal{M}_h \to \mathcal{M}_h$ - provided by the super period matrix.

- Fix even spin structure δ , and canonical homology basis A_I, B_I for $H^1(\Sigma, \mathbb{Z})$
 - 1/2-forms $\hat{\omega}_I$ satisfying $\mathcal{D}_-\hat{\omega}_I = 0$ produce super period matrix $\hat{\Omega}$ (generalize holó 1-forms ω_I producing period matrix Ω_{IJ})

$$\oint_{A_I} \hat{\omega}_J = \delta_{IJ} \qquad \qquad \oint_{B_I} \hat{\omega}_J = \hat{\Omega}_{IJ}$$

– Explicit formula in terms of (g,χ) , and Szego kernel S_δ

$$\hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \iint \omega_I(z)\chi(z)S_{\delta}(z,w)\chi(w)\omega_J(w)$$

- $\hat{\Omega}_{IJ}$ is locally supersymmetric with $\hat{\Omega}_{IJ} = \hat{\Omega}_{JI}$ and $\operatorname{Im} \hat{\Omega} > 0$ - Every $\hat{\Omega}$ corresponds to a Riemann surface, modulo $Sp(4,\mathbb{Z})$

 \Rightarrow Projection using $\hat{\Omega}$ is smooth and natural for genus 2.

The chiral measure in terms of $\vartheta\text{-constants}$

Chiral measure on $s\mathcal{M}_2$ (with NS vertex operators) (ED & Phong 2001)

$$d\mu[\delta](\hat{\Omega},\zeta) = \left(\mathcal{Z}[\delta](\hat{\Omega}) + \zeta^1 \zeta^2 \frac{\Xi_6[\delta](\hat{\Omega}) \ \vartheta[\delta]^4(0,\hat{\Omega})}{16\pi^6 \ \Psi_{10}(\hat{\Omega})}\right) d^2 \zeta d^3 \hat{\Omega}$$

 $-\Psi_{10}(\hat{\Omega}) =$ Igusa's unique cusp modular form of weight 10 $-\mathcal{Z}[\delta]$ is known, but will not be given here.

The modular object $\Xi_6[\delta](\hat{\Omega})$ may be defined, for genus 2 by

- Each even spin structure δ uniquely maps to a partition of the six odd spin structures ν_i . Let $\delta \equiv \nu_1 + \nu_2 + \nu_3 \equiv \nu_4 + \nu_5 + \nu_6$

$$\Xi_6[\delta](\hat{\Omega}) = \sum_{1 \le i < j \le 3} \langle \nu_i | \nu_j \rangle \prod_{k=4,5,6} \vartheta[\nu_i + \nu_j + \nu_k](0, \hat{\Omega})^4$$

- Symplectic pairing signature: $\langle \nu_i | \nu_j \rangle \equiv \exp 4\pi i (\nu'_i \nu''_j - \nu''_i \nu'_j) \in \{\pm 1\}$

Chiral Amplitudes

- Chiral Amplitudes on $s\mathcal{M}_2$ (with NS vertex operators)
 - involve correlation functions which depend on $\hat{\Omega}$ and on ζ
 - Their effect multiplies the measure;

$$\mathcal{C}[\delta](\hat{\Omega},\zeta) = d\mu[\delta](\hat{\Omega},\zeta) \left(\mathcal{C}_0[\delta](\hat{\Omega}) + \zeta^1 \zeta^2 \mathcal{C}_2[\delta](\hat{\Omega}) \right)$$

- Projection to chiral amplitudes on \mathcal{M}_2
 - by integrating over odd moduli ζ at fixed δ and fixed $\hat{\Omega}$

$$\mathcal{L}[\delta](\hat{\Omega}) = \int_{\zeta} \mathcal{C}[\delta](\hat{\Omega}, \zeta) = \left(\mathcal{Z}[\delta]\mathcal{C}_2[\delta](\hat{\Omega}) + \frac{\Xi_6[\delta] \ \vartheta[\delta]^4}{16\pi^6 \ \Psi_{10}}\mathcal{C}_0[\delta](\hat{\Omega})\right) d^3\hat{\Omega}$$

- Gliozzi-Scherk-Olive projection (GSO)
 - realized by summation over spin structures δ with constant phases;
 - separately in left and right chiral amplitudes for Type II and Heterotic;
 - phases determined uniquely from requirement of modular covariance.

Recent Advances in Two-loop Superstrings

Vacuum energy and susy breaking

Vacuum energy and susy breaking

- Vacuum energy observed in Universe is 10^{-120} smaller than QFT predicts.
- In supersymmetric theories, vacuum energy vanishes exactly (since fermion and boson contributions cancel one another)
- In Type II and Heterotic in flat \mathbb{R}^{10}
 - vanishing of vacuum energy conjectured for all \boldsymbol{h}
 - well-known for h = 1 (Gliozzi-Scherk-Olive 1976)
 - proven for h = 2 using the chiral measure on $s\mathcal{M}_2$ along with vanishing of amplitudes for ≤ 3 massless NS bosons. (ED & Phong 2005)

Vacuum energy and susy breaking (cont'd)

- Broken supersymmetry will lead to non-zero vacuum energy
- Supersymmetry spontaneously broken in perturbation theory
 - Superstring theory on Calabi-Yau preserves susy to tree-level
 - but one-loop corrections can break susy by Fayet-Iliopoulos mechanism if unbroken gauge group contains at least one U(1) factor (Dine, Seiberg, Witten 1986; Dine, Ichinose, Seiberg 1987; Attick, Dixon, Sen 1987)
- Heterotic on 6-dim Calabi-Yau
 - holonomy $G \subset SU(3)$ embedded in gauge group to cancel anomalies
 - $-E_8 \times E_8 \rightarrow E_6 \times E_8$ produces no U(1)
 - $-Spin(32)/Z_2 \rightarrow U(1) \times SO(26)$ produces one U(1)
- Two-loop contributions to vacuum energy naturally decompose (Witten 2013)
 - interior of $s\mathcal{M}_2$ conjectured to vanish for both theories;
 - boundary of $s\mathcal{M}_2$, which vanish for $E_8 \times E_8$ but do not for $Spin(32)/Z_2$.
 - Leading order in α' using pure spinor formulation (Berkovits, Witten 2014)

$\mathbb{Z}_2\times\mathbb{Z}_2$ Calabi-Yau orbifolds

- Prove conjecture for $\mathbb{Z}_2 \times \mathbb{Z}_2$ Calabi-Yau orbifolds of Heterotic strings. - using natural projection $s\mathcal{M}_2 \to \mathcal{M}_2$ provided by super period matrix
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ Calabi-Yau orbifold of real dimension 6,

 $Y = (T_1 \times T_2 \times T_3)/G \qquad T_i = \mathbb{C}/(\mathbb{Z} \oplus t_i\mathbb{Z}), \quad \operatorname{Im}(t_i) > 0$ - orbifold group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 = \{1, \lambda_1, \lambda_2, \lambda_3 = \lambda_1\lambda_2\}$ with $\lambda_1^2 = \lambda_2^2 = 1$

• Transformation laws of worldsheet fields x, ψ under $G \subset SU(3)$

$x\ = (x^{\mu},z^{i},z^{\bar{i}})$	$\lambda_iz^j=\left(- ight)^{1-\delta_{ij}}z^j$	$\mu=0,1,2,3$
$\psi_+ = (\psi^\mu_+, \psi^i, \psi^{ar i})$	$\lambda_i \psi^j = (-)^{1-\delta_{ij}} \psi^j$	$i, \overline{i} = 1, 2, 3$
$\psi=(\psi^lpha,\xi^i,\xi^{\overline{i}})$	$\lambda_i \xi^j = (-)^{1-\delta_{ij}} \xi^j$	$\alpha = 1, \cdots, 26$

– while $x^{\mu}, \psi^{\mu}_{+}, \psi^{\alpha}_{-}$ are invariant.

Twisted fields

- Functional integral formulation of Quantum Mechanics prescribes – summation over all maps $\Sigma \to \mathbb{R}^4 \times Y$ with $Y = (T_1 \times T_2 \times T_3)/G$
- Fields on Σ obey identifications twisted by G,
 - On homologically trivial cycles, no twisting since G is Abelian.
 - On homologically non-trivial cycles, twists = half integer characteristics

 $(\varepsilon^{i})'_{I}, (\varepsilon^{i})''_{I} \in \{0, \frac{1}{2}\}$ for I = 1, 2 and i = 1, 2, 3.

Spinors ψ and ξ with spin structure $\delta = [\delta' \ \delta'']$ obey

$$\psi^{i}(w + A_{I}) = (-)^{2(\varepsilon^{i})'_{I} + 2\delta'_{I}} \psi^{i}(w)$$

$$\psi^{i}(w + B_{I}) = (-)^{2(\varepsilon^{i})''_{I} + 2\delta''_{I}} \psi^{i}(w)$$

- twists must satisfy $\varepsilon^1 + \varepsilon^2 + \varepsilon^3 = 0$ so that $G \subset SU(3)$.

Summation over all Twisted Sectors

- Left chiral amplitude $\mathcal{L}[\vec{\varepsilon}, \delta](\hat{\Omega}, p_{\vec{\varepsilon}})$ now depends on
 - twist $\vec{\varepsilon} = (\varepsilon^1, \varepsilon^2, \varepsilon^3)$
 - left chirality spin structure δ
 - internal loop momenta $p_{ec{arepsilon}}$ (in the lattices $\Lambda_i + \Lambda_i^*$)
- Right chiral amplitude $\overline{\mathcal{R}[\vec{\varepsilon}, \delta_R](\hat{\Omega}, p)}$
 - twist $\vec{\varepsilon} = (\varepsilon^1, \varepsilon^2, \varepsilon^3)$
 - spin structure δ_R for $Spin(32)/Z_2$ and $\delta_R = (\delta_R^1, \delta_R^2)$ for $E_8 \times E_8$
 - internal loop momenta $p_{ec{arepsilon}}$ (in the lattices $\Lambda_i + \Lambda_i^*$)
- Full vacuum energy obtained by summing over all sectors,

$$\int_{\mathcal{M}_2} \sum_{\vec{\varepsilon}} \sum_{p_{\vec{\varepsilon}}} \left(\sum_{\delta} \mathcal{L}[\vec{\varepsilon}, \delta](\hat{\Omega}, p_{\vec{\varepsilon}}) \right) \left(\sum_{\delta_R} \overline{\mathcal{R}[\vec{\varepsilon}, \delta_R](\hat{\Omega}, p_{\vec{\varepsilon}})} \right)$$

• We prove that for fixed twist $\vec{\varepsilon}$ and fixed $\hat{\Omega}$ the left chirality sum vanishes,

$$\sum_{\delta} \mathcal{L}[\vec{\varepsilon}, \delta](\hat{\Omega}, p_{\vec{\varepsilon}}) = 0$$

Twist orbits under modular transformations

• Decompose summation over twists $\vec{\varepsilon} = (\varepsilon^1, \varepsilon^2, \varepsilon^3)$ into <u>orbits</u> under $Sp(4, \mathbb{Z})$ - Triplets of twists $\vec{\varepsilon}$ with $\varepsilon^1 + \varepsilon^2 + \varepsilon^3 \equiv 0$ transform in 6 irreducible orbits,

- \mathcal{O}_0 untwisted sector: vacuum energy cancels as in flat space-time;
- O₁, O₂, O₃ effectively twisted by a single Z₂;
 − vacuum energy was earlier shown to vanish (ED & Phong 2003)
- \mathcal{O}_{\pm} genuinely twist by full $\mathbb{Z}_2 \times \mathbb{Z}_2$

Contributions from the orbits \mathcal{O}_\pm

• Concentrate on spin structure dependent contributions to left chiral amplitudes, – Each pair of Weyl fermions with spin structure δ and twist ε contributes a factor proportional to $\vartheta[\delta + \varepsilon](0, \Omega)$

• Contribution from twist $\vec{\varepsilon} = (\varepsilon^1, \varepsilon^2, \varepsilon^3)$ in orbits \mathcal{O}_{\pm} is proportional to

$$\vartheta[\delta](0,\Omega) \prod_{i=1}^{3} \vartheta[\delta + \varepsilon^{i}](0,\Omega)$$

– Vanishes unless δ as well as $\delta + \varepsilon^i$ are all even.

- Define $\mathcal{D}[\vec{\varepsilon}] = \{\delta \text{ even, such that } \delta + \varepsilon^i \text{ is even for } i = 1, 2, 3\}$

- For any $\vec{\varepsilon} \in \mathcal{O}_-$ we find $\#\mathcal{D}[\vec{\varepsilon}] = 0 \implies$ No contributions from orbit \mathcal{O}_- .
- For any $\vec{\varepsilon} \in \mathcal{O}_+$ we find $\#\mathcal{D}[\vec{\varepsilon}] = 4 \implies$ The only remaining contribution to left chiral amplitude $\mathcal{L}[\vec{\varepsilon}, \delta](\Omega, p_{\vec{\varepsilon}})$ is from orbit \mathcal{O}_+ .

A modular identity for $Sp(4,\mathbb{Z})/\mathbb{Z}_4$

• For fixed $\vec{\varepsilon} \in \mathcal{O}_+$ and fixed $\hat{\Omega}$ two terms contribute,

$$\sum_{\delta} \mathcal{L}[\vec{\varepsilon}, \delta](\Omega, p_{\vec{\varepsilon}}) = \sum_{\delta} \left(\mathcal{Z}[\delta] \, \mathcal{C}_2[\vec{\varepsilon}, \delta](\Omega, p_{\vec{\varepsilon}}) + \frac{\Xi_6[\delta] \, \vartheta[\delta]^4}{16\pi^6 \, \Psi_{10}} \mathcal{C}_0[\vec{\varepsilon}, \delta](\Omega, p_{\vec{\varepsilon}}) \right) d^3\Omega$$

– $\mathcal{C}_0, \mathcal{C}_2$ calculated from orbifold construction

• Cancellation point-wise on \mathcal{M}_2 via the factorization identity

$$\sum_{\delta \in \mathcal{D}[\vec{\varepsilon}]} \langle \delta_0 | \delta \rangle \, \Xi_6[\delta](\Omega) = 6\Lambda[\vec{\varepsilon}, \delta_0] \prod_{\delta \notin \mathcal{D}[\vec{\varepsilon}]} \vartheta[\delta](0, \Omega)^2$$

for any $\delta_0 \in \mathcal{D}[\vec{\varepsilon}]$, and we have $\Lambda[\vec{\varepsilon}, \delta_0]^2 = 1$.

- Proof includes Thomae map $\vartheta[\delta]^4$ to hyper-elliptic representation.
- Factorization identity is invariant under $Sp(4,\mathbb{Z})/\mathbb{Z}_4$ - with $\mathbb{Z}_4 = \{I, J, -I, -J\}$ normal subgroup of $Sp(4,\mathbb{Z})$

Recent Advances in Two-loop Superstrings

Contributions from the boundary of $s\mathcal{M}_2$

• At separating degeneration node of $s\mathcal{M}_2$, integration is only conditionally convergent, due to right moving tachyon $\approx d\tilde{\tau}/\tilde{\tau}^2$ (Witten 2013)

- Regularization near separating node is required
 - consistent with physical factorization
 - produces a δ -function at separating node.
- \bullet To compute coefficient, decompose orbit \mathcal{O}_+ under modular subgroup
 - $Sp(2,\mathbb{Z}) \times Sp(2,\mathbb{Z}) \times \mathbb{Z}_2$ preserving separating degeneration
 - contributions only from $\vec{\varepsilon}$ such that $\mathcal{D}[\vec{\varepsilon}]$
 - contains one spin structure which decomposes to odd odd
- Lengthy calculation shows
 - vanishing for $E_8 \times E_8$
 - non-vanishing for $Spin(32)/\mathbb{Z}_2$.

Recent Advances in Two-loop Superstrings

Superstring corrections to Type IIB supergravity

Superstring corrections to Type IIB supergravity

- String theory induces α' corrections to supergravity beyond $\mathcal R$
 - Local effective interactions from integrating out massive states
 - Non-analytic contributions from threshold effects
- Supersymmetry imposes strong constraints
 - supersymmetry e.g. prohibit \mathcal{R}^2 , \mathcal{R}^3 corrections;
 - leading correction \mathcal{R}^4 subject to susy contraction of $R_{\mu
 u
 ho\sigma}$
- S-duality requires axion/dilaton dependence through modular forms
 - S-duality in Type IIB on \mathbb{R}^{10} is invariance under $SL(2,\mathbb{Z})$
 - axion-dilaton field $T\in \mathbb{C}$ with $T=\chi+i\,e^{-\phi}$ with $\mathrm{Im}(T)>0$
 - $SL(2,\mathbb{Z})$ acts by $T \to (aT+b)/(cT+d)$
 - e.g. coefficient of \mathcal{R}^4 is a real Eisenstein series

$$\mathcal{E}_{(0,0)}(T) \sim \sum_{(m,n) \neq (0,0)} \frac{(\operatorname{Im} T)^{\frac{3}{2}}}{|m+nT|^3}$$
 (Green, Gutperle 1997)

- Perturbative contributions only at tree-level and one-loop.

Superstring corrections of the form $D^{2p}\mathcal{R}^4$

• Accessible through 4-graviton amplitude

$$\mathcal{A}_4(\varepsilon_i, k_i; T) = \kappa^2 \,\mathcal{R}^4 \,\mathcal{I}_4(s, t, u; T)$$

 $-\varepsilon_i, k_i$ are polarization tensor and momentum of gravitons;

- $-s = -\alpha' k_1 \cdot k_2/2$ etc are Lorentz invariants with s + t + u = 0;
- $-\kappa$ is 10-dimensional Newton constant.
- Expansions

– Low energy for $|s|,\,|t|,\,|u|\ll 1$

* non-analytic part in s, t, u produced by massless states; * analytic part in s, t, u producing local effective interactions.

$$\mathcal{I}_4(s,t,u;T) \bigg|_{\text{analytic}} = \sum_{m,n=0}^{\infty} \mathcal{E}_{(m,n)}(T) \left(s^2 + t^2 + u^2\right)^m \left(s^3 + t^3 + u^3\right)^n$$

 \star Coefficients $\mathcal{E}_{(m,n)}(T)$ are modular invariants in T. – Match with superstring perturbation theory for $g_s=(\operatorname{Im} T)^{-1}\to 0$

$$\mathcal{E}_{(m,n)}(T) = \sum_{h=0}^{\infty} g_s^{-2+2h} \, \mathcal{E}_{(m,n)}^{(h)} + \mathcal{O}(e^{-2\pi/g_s})$$

Predictions from Supersymmetry and S-duality

ullet Interplay of Type IIB and M-theory dualities from compactifications on \mathbb{T}^d

$$\mathcal{R}^{4} \qquad \mathcal{E}_{(0,0)}^{(0)} = 2\zeta(3) \qquad \mathcal{E}_{(0,0)}^{(1)} = 4\zeta(2) \qquad \mathcal{E}_{(0,0)}^{(h)} = 0, \quad h \ge 2$$

$$D^{4}\mathcal{R}^{4} \qquad \mathcal{E}_{(1,0)}^{(0)} = \zeta(5) \qquad \mathcal{E}_{(1,0)}^{(1)} = 0 \qquad \mathcal{E}_{(1,0)}^{(h)} = 0, \quad h \ge 3$$

$$D^{6}\mathcal{R}^{4} \qquad \mathcal{E}_{(0,1)}^{(0)} = \frac{2}{3}\zeta(3)^{2} \qquad \mathcal{E}_{(0,1)}^{(1)} = \frac{4}{3}\zeta(2)\zeta(3) \qquad \mathcal{E}_{(0,1)}^{(h)} = 0, \quad h \ge 4$$

• Non-vanishing coefficients at two and three loops

$$\mathcal{E}_{(1,0)}^{(2)} = \frac{4}{3}\zeta(4) \qquad \qquad \mathcal{E}_{(0,1)}^{(2)} = \frac{8}{5}\zeta(2)^2 \qquad \qquad \mathcal{E}_{(0,1)}^{(3)} = \frac{4}{27}\zeta(6)$$

- Little is known beyond, for $D^8 \mathcal{R}^4, D^{10} \mathcal{R}^4$ etc.
- basic references : (Green, Gutperle 1997) (Pioline; Green, Sethi 1998) (Green, Kwon, Vanhove; Green, Vanhove 1999) (Obers, Pioline 2000) (Green, Russo, Vanhove 2010) · · ·

Two-loop Type IIB 4-graviton amplitude

• Integral representation (ED & Phong 2001-2005)

$$\mathcal{I}_4^{(2)}(s,t,u;T) \sim g_s^2 \int_{\mathcal{M}_2} d\mu_2 \int_{\Sigma^4} \frac{|\mathcal{Y}|^2}{(\det Y)^2} \exp\left(-\sum_{i< j} \alpha' k_i \cdot k_j \, G(z_i, z_j)\right)$$

 $\mathcal{Y} = (k_1 - k_2) \cdot (k_3 - k_4) \, \omega_{[1}(z_1) \omega_{2]}(z_2) \, \omega_{[1}(z_3) \omega_{2]}(z_4) + 2$ perm's

- $\omega_I(z)$ are the holomorphic Abelian differentials on Σ
- G(z,w) is a scalar Green function on Σ
- $-\Omega = X + iY$ with X, Y real matrices;
- $-d\mu_2$ canonical volume form on \mathcal{M}_2 ;
- $\mathcal{I}_4^{(2)}$ is defined by analytic continuation in s, t, u.
- Expansion for small s, t, u (using \mathcal{Y} linear in s, t, u)
 - * As a result \mathcal{R}^4 coefficient $\mathcal{E}_{(0,0)}^{(2)} = 0$ (ED & Phong 2005)
 - * Confirm $D^4 \mathcal{R}^4$ coefficient $\mathcal{E}_{(1,0)}^{(2)} = 4\zeta(4)/3$ (ED, Gutperle & Phong 2005)
 - * Calculating $D^6 \mathcal{R}^4$ coefficient $\mathcal{E}_{(0,1)}^{(2)}$ requires integral with one power of G.

The Zhang-Kawazumi Invariant

• Integration over Σ^2 gives, (ED & Green 2013)

$$\mathcal{E}_{(0,1)}^{(2)} = \pi \int_{\mathcal{M}_2} d\mu_2 \varphi \qquad \qquad \varphi(\Sigma) \equiv -\frac{1}{8} \int_{\Sigma^2} P(x,y) G(x,y)$$

– where P is a symmetric bi-form on Σ^2 , defined by

$$P(x,y) = \sum_{I,J,K,L} \left(2Y_{IL}^{-1} Y_{JK}^{-1} - Y_{IJ}^{-1} Y_{KL}^{-1} \right) \omega_I(x) \overline{\omega_J(x)} \omega_K(y) \overline{\omega_L(y)}$$

- φ conformal invariant, and modular invariant under $Sp(4,\mathbb{Z})$

• φ coincides with the invariant introduced by Zhang and Kawazumi (2008)

$$\varphi(\Sigma) = \sum_{\ell} \sum_{I,J} \frac{2}{\lambda_{\ell}} \left| \int_{\Sigma} \phi_{\ell} \, \omega'_{I} \wedge \overline{\omega'_{J}} \right|^{2}$$

- ω'_I are holomorphic 1-forms normalized $\int_{\Sigma} \omega'_I \overline{\omega'_J} = -2i\delta_{IJ}$

- $-\phi_{\ell}$ eigenfunction of the Arakelov Laplacian with eigenvalue λ_{ℓ} .
- related to the Faltings δ -invariant (De Jong 2010)

Diff eqs from S-duality and Supersymmetry

- Direct integration of $\int_{\mathcal{M}_2} d\mu_2 \varphi$ appears out of reach.
- S-duality and supersymmetry lead to diff eqs in T (Pioline; Green, Sethi 1998)

$$(\Delta_T - 3/4) \mathcal{E}_{(0,0)}(T) = 0$$

- satisfied by D-instanton sum in Type IIB (Green, Gutperle 1997)
- Difficult to obtain diff eqs for higher coefficients
- Two-loop 11-d sugra on \mathbb{T}^{d+1} for various d (Green, Kwon, Vanhove 2000) - conjecture diff eqs in perturbative and non-perturbative moduli m_d

$$\left(\Delta_{E_{d+1}} - \frac{3(d+1)(2-d)}{(8-d)}\right) \,\mathcal{E}_{(0,0)}(m_d) = 6\pi \,\delta_{d,2}$$

- $\Delta_{E_{d+1}}$ Laplace operators on cosets $E_{d+1}(\mathbb{R})/K_{d+1}(\mathbb{R})$

$$E_1(\mathbb{R}) = SL(2,\mathbb{R})$$

$$E_2(\mathbb{R}) = SL(2,\mathbb{R}) \times \mathbb{R}^+ \cdots E_7(\mathbb{R}) = E_{7(7)}$$

 $- K_{d+1}(\mathbb{R})$ maximal compact subgroup of $E_{d+1}(\mathbb{R})$

Diff eqs from S-duality and Supersymmetry cont'd

• Expand differential equations for $\mathcal{E}_{(m,n)}(m_d)$ at weak string coupling

- some moduli are not seen in perturbation theory (e.g. the axion)
- moduli of torus \mathbb{T}^d remain in perturbative limit: denote ho_d

$$\mathcal{E}_{(0,1)}^{(2)}(\rho_d) = \pi \int_{\mathcal{M}_2} d\mu_2 \,\Gamma_{d,d,2}(\rho_d;\Omega) \,\varphi(\Omega)$$

- where $\Gamma_{d,d,h}(\rho_d;\Omega)$ is the partition function on \mathbb{T}^d for genus h

– The perturbative part of $\mathcal{E}_{(0,1)}(m_d)$ satisfies,

$$\left(\Delta_{SO(d,d)} - (d+2)(5-d)\right) \,\mathcal{E}^{(2)}_{(0,1)}(\rho_d) = -\left(\mathcal{E}^{(1)}_{(0,0)}(\rho_d)\right)^2$$

– For genus h and dimension d the torus partition function satisfies,

$$\left(\Delta_{SO(d,d)} - 2\Delta_{\Omega} + \frac{1}{2}dh(d-h-1)\right)\Gamma_{d,d,h}(
ho_d;\Omega) = 0$$

• Combining both implies the equation,

$$\int_{\mathcal{M}_2} d\mu_2 \,\varphi(\Omega) \,\left(\Delta_{\Omega} - 5\right) \Gamma_{d,d,2}(\rho_d,\Omega) = -\frac{\pi}{2} \left(\int_{\mathcal{M}_1} d\mu_1 \,\Gamma_{d,d,1}(\rho_d,\tau)\right)^2$$

– This suggests $(\Delta_{\Omega} - 5)\varphi = 0$ in interior of \mathcal{M}_2 .

Laplace eigenvalue equation for φ

• First prove the following Laplace eigenvalue equation,

$$(\Delta - 5)\varphi = -2\pi \,\delta_{SN}^{(2)}$$

- where Δ is the Laplace-Beltrami operator on M₂, represented as

 a fundamental domain for Sp(4, Z) in Siegel upper half space.
 and δ⁽²⁾_{SN} is the volume form induced on the separating node of M₂.
- \bullet Proven by methods of deformations of complex structures on Σ
 - derivatives with respect to Ω related to Beltrami differential μ

$$\delta_{\mu}\Omega_{IJ} = i \int_{\Sigma} \mu \,\omega_I \omega_J$$

– Laplacian evaluated by computing $\delta_{\mu_1}\delta_{ar\mu_2} arphi$

Recent Advances in Two-loop Superstrings

Integrating φ over \mathcal{M}_2

• The integral $\int_{\mathcal{M}_2} d\mu_2 \varphi$ is absolutely convergent

– to obtain a concrete relation, parametrize $\boldsymbol{\Omega}$ by

$$\Omega = \begin{pmatrix} \tau_1 & \tau \\ \tau & \tau_2 \end{pmatrix} \qquad \qquad d\mu_2 = \frac{d^2 \tau \, d^2 \tau_1 \, d^2 \tau_2}{(\det Y)^3}$$

– asymptotics of φ near separating node where $\tau \to 0$

$$\varphi(\Omega) = -\ln \left| 2\pi \tau \eta(\tau_1)^2 \eta(\tau_2)^2 \right| + \mathcal{O}(\tau^2)$$

– near non-separating node where $au_2
ightarrow i\infty$ using (Fay, Wentworth)

$$\varphi(\Omega) = \frac{\pi}{6} \mathrm{Im}\tau_2 + \frac{5\pi(\mathrm{Im}\tau)^2}{6\mathrm{Im}\tau_1} - \ln\left|\frac{\vartheta_1(\tau,\tau_1)}{\vartheta_1(0,\tau_1)}\right| + \mathcal{O}(1/\tau_2)$$

– maximal non-separating ("supergravity" or "tropical") limit $\ell_i
ightarrow \infty$

$$\Omega = i \begin{pmatrix} \ell_1 + \ell_3 & \ell_3 \\ \ell_3 & \ell_2 + \ell_3 \end{pmatrix} \qquad \qquad \varphi(\Omega) = \frac{\pi}{6} \left(\ell_1 + \ell_2 + \ell_3 - \frac{5\ell_1\ell_2\ell_3}{\ell_1\ell_2 + \ell_2\ell_3 + \ell_3\ell_1} \right)$$

(Green, Russo, Vanhove 2008), (Tourkine 2013)

Integrating φ over \mathcal{M}_2 (cont'd)

• Integral on cut-off moduli space $\mathcal{M}_2^{\varepsilon} = \mathcal{M}_2 \cap \{|\tau| > \varepsilon\}$

– using convergence of integral, and $(\Delta-5) \varphi = -2\pi \, \delta^{(2)}_{SN}$

$$\int_{\mathcal{M}_2} d\mu_2 \,\varphi = \lim_{\varepsilon \to 0} \int_{\mathcal{M}_2^\varepsilon} d\mu_2 \,\varphi = \frac{1}{5} \lim_{\varepsilon \to 0} \int_{\mathcal{M}_2^\varepsilon} d\mu_2 \,\Delta\varphi$$

- reduces to integral over boundary

$$\partial \mathcal{M}_2^{\varepsilon} = \{ |\tau| = \varepsilon \} \times \left(\mathcal{M}_1^{(1)} \times \mathcal{M}_1^{(2)} \right) / (\mathbb{Z}_2 \times \mathbb{Z}_2)$$

- contribution from non-separating node vanishes

- contribution from separating node governed by limit of,

$$d\mu_2 \,\Delta arphi = d \left\{ rac{i}{2} \left(rac{dar{ au}}{ar{ au}} - rac{d au}{ au}
ight) \wedge d\mu_1^{(1)} \wedge d\mu_1^{(2)}
ight\}$$

- using $\int_{\mathcal{M}_1} d\mu_1 = 2\pi/3$, and 4π from τ -integral, and 1/4 from $\mathbb{Z}_2 \times \mathbb{Z}_2$ $\int_{\mathcal{M}_2} d\mu_2 \varphi = \frac{1}{5} \times \frac{1}{2} \times 4\pi \times \left(\frac{2\pi}{3}\right)^2 \times \frac{1}{4} = \frac{2\pi^3}{45}$

- Exact agreement with predictions from S-duality and supersymmetry

Outlook

 $\sqrt{}$ Interplay between superstring perturbation theory, S-duality, supersymmetry

 \surd Integrated over \mathcal{M}_2 a non-trivial modular invariant φ

- For higher genus, $h \ge 3$, the ZK invariant exists,
 - but does not satisfy $(\Delta-\lambda)arphi=0$
 - string theory significance ?
 - Pure spinor calculation for $\mathcal{E}_{(0,1)}^{(3)}$ (Gomez, Mafra 2014)
- For $D^8 \mathcal{R}^4$, $D^{10} \mathcal{R}^4$, \cdots two-loop superstring perturbation theory
 - suggests new invariants (ED, Green 2013)
 - significance in theory of modular invariants number theory ?
 - can one match with S-duality and supersymmetry in string theory ?