The Perturbative Ultraviolet Structure of N=4 Supergravity

Tristan Dennen

Niels Bohr International Academy & Discovery Center, NBI

With: Bern, Davies, Huang, A. V. Smirnov, V. A. Smirnov

Outline

- ♦ Statement of the problem: UV divergences in supergravity
 - ♦ BCJ color-kinematics duality
 - Double-copy construction of gravity integrands
- ♦ Calculation of UV divergences in N=4 SG
 - ♦ N=4 SG, n=4, L=3
- ♦ Main result: N=4 SG, n=4, L=4
- \diamond Interpretation of main result
 - ♦ U(1) duality anomaly found by N. Marcus

$$\mathcal{A}_{n}^{\text{loop}} = i^{L} g^{n-2+2L} \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j} c_{j}}{D_{j}}$$
$$\mathcal{M}_{n}^{\text{loop}} = i^{L+1} \left(\frac{\kappa}{2}\right)^{n-2+2L} \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j} \tilde{n}_{j}}{D_{j}}$$

ULTRAVIOLET DIVERGENCES AND THE DOUBLE COPY METHOD

UV Divergences in Supergravity

 Naively, two derivative coupling in gravity makes the theory badly ultraviolet divergent

- ♦ Non-renormalizable by power counting
- ♦ But: extra symmetry enforces extra cancellations
 - To what extent can observed cancellations be explained by known symmetries?

UV Divergences in Supergravity

- Naturally, the theory with the most symmetry is the best bet for ultraviolet finiteness
 - N = 8 supergravity

Cremmer, Julia (1978)

 I will mostly discuss half-maximal supergravity
 N = 4 supergravity
 Das (1977); Cremmer, Scherk, Ferr

Cremmer, Scherk, Ferrara (1978)

Expectations about Divergences

- 1970's-1980's: Supersymmetry delays UV divergences until three loops in all 4D pure supergravity theories
 - ♦ Expected counterterm is R⁴
- In N=8, SUSY and duality symmetry rule out couterterms until 7 loops
 - Expected counterterm is
 D⁸R⁴
- 7-loop counterterm has an analog in N = 4 supergravity at three loops
 - But the divergence is not present

Grisaru; Tomboulis; Deser, Kay, Stelle; Ferrara, Zumino; Green, Schwarz, Brink; Howe, Stelle; Marcus, Sagnotti; etc.

Bern, Dixon, Dunbar; Perelstein, Rozowsky (1998); Howe and Stelle (2003, 2009); Grisaru and Siegel (1982); Howe, Stelle and Bossard (2009); Vanhove; Bjornsson, Green (2010); Kiermaier, Elvang, Freedman (2010); Ramond, Kallosh (2010); Beisert et al (2010); Kallosh; Howe and Lindström (1981); Green, Russo, Vanhove (2006) Bern, Carrasco, Dixon, Johansson, Roiban (2010) Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger (2010)

IHÉS 30 January 2014

Duality Symmetries

♦ Analogs of E₇₍₇₎ for lower supersymmetry

 $N=8: E_{7(7)}$ $E_{7(7)}$ $N=6: SO^*(12)$ SO^* N=5: SU(5,1)SU(1,1) $N=4: SU(4) \times SU(1,1)$ SU(1,1)

E₇₍₇₎/SU(8) SO*(12)/U(6) SU(5,1)/U(5) SU(1,1)/U(1)

♦ Can help UV divergences in these theories

 Still have candidate counterterms at L = N - 1 (1/N BPS)

Bossard, Howe, Stelle, Vanhove (2010)

♦ Nice analysis for N = 8 counterterms

Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger (2010)

Recent Field Theory Calculations

♦ N=8 Supergravity

- ♦ Four points, L=2,3,4
- ♦ Five points, L=1,2,3

Bern, Carrasco, Dixon, Johansson, Kosower, Roiban (2007) Bern, Carrasco, Dixon, Johansson, Roiban (2009) Carrasco, Johansson (2011)

- **Superfinite: Critical Dimension** D = 4 + 6/L (L>1)
 - UV finite theory if critical dimension holds for all L
 - ♦ But trouble is predicted starting at L = 5: D = 26/5 or D = 24/5?

♦ N=4 Supergravity

- $\Rightarrow \quad \text{Four points, } L = 3, D = 4$
 - Unexpected cancellation of R⁴ counterterm
 - Counterterm appears valid under all known symmetries, but ¼ BPS
- ♦ Four points, L = 2, D = 5
 - ♦ Valid non-BPS counterterm R⁴ does not appear
- **Four points**, L = 4, D = 4
 - \diamond Valid non-BPS counterterm D^2R^4

Bern, Davies, Dennen, Smirnov² (2013)

Bern, Davies, Dennen, Huang (2012)

Recent Field Theory Calculations

- \diamond How are the calculations done?
 - 1. Find a representation of SYM that satisfies color-kinematics duality (hard)
 - 2. Construct the integrand for a gravity amplitude using the double copy method (easy)
 - **3.** Extract the ultraviolet divergences from the integrals (straightforward, but a practical challenge)

Color-Kinematics Duality

 ♦ Color-kinematics duality provides a construction of gravity amplitudes from knowledge of Yang-Mills amplitudes

Bern, Carrasco, Johansson (2008)

$$\mathcal{A}_n = g^{n-2} \sum_i \frac{n_i c_i}{D_i}$$

- ♦ Color factors $c_i \sim f^{abc} f^{cde}$ ♦ Kinematic factors $n_i \sim (\epsilon_1 \cdot k_2) (\epsilon_2 \cdot k_3) (\epsilon_3 \cdot \epsilon_4) + \dots$
- Duality rearranges the amplitude so color and kinematics satisfy the same identities (Jacobi)

$$c_i + c_j + c_k = 0 \leftrightarrow n_i + n_j + n_k = 0$$

Example: Four Gluons

- **Four Feynman diagrams** \diamond
- **Color factors based on a Lie algebra** \diamond

$$\mathcal{A}_{4}^{\text{tree}} = g^{2} \left(\frac{n_{s}c_{s}}{s} + \frac{n_{t}c_{t}}{t} + \frac{n_{u}c_{u}}{u} \right)$$

$$n = \epsilon_{1} \cdot k_{2} \epsilon_{2} \cdot \epsilon_{3} \epsilon_{4} \cdot k_{1} + \dots$$

$$c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$$
$$c_t = f^{a_1 a_4 b} f^{b a_2 a_3}$$
$$c_u = f^{a_1 a_3 b} f^{b a_4 a_2}$$

 $c_s + c_t + c_u = 0$

$$f^{a_1a_3b}f^{ba_4a_2}$$

- **Color factors satisfy Jacobi identity:** \diamond
- Numerator factors satisfy similar identity: $n_s+n_t+n_u=0$ \diamond
 - Color and kinematics satisfy the same identity! \diamond

Five gluons and more

- ♦ At higher multiplicity, rearrangement is nontrivial
 - ♦ But still possible

 ♦ Claim: We can always find a rearrangement so color and kinematics satisfy the same Jacobi constraint equations.

Recent Field Theory Calculations

- \diamond How are the calculations done?
 - 1. Find a representation of SYM that satisfies color-kinematics duality (hard)
 - 2. Construct the integrand for a gravity amplitude using the double copy method (easy)
 - **3.** Extract the ultraviolet divergences from the integrals (straightforward, but a practical challenge)

Gravity from Double Copy

Once numerators are in color-dual form, "square" to construct a gravity amplitude
 Bern, Carrasco, Johansson (2008)

$$\mathcal{A}_n = g^{n-2} \sum_i \frac{n_i c_i}{D_i} \longrightarrow \mathcal{M}_n = i \left(\frac{\kappa}{2}\right)^{n-2} \sum_i \frac{n_i \tilde{n}_i}{D_i}$$

- ♦ Gravity numerators are a double copy of gauge theory ones!
- Proved using BCFW on-shell recursion Bern, Dennen, Huang, Kiermaier (2010)
- The two copies of gauge theory don't have to be the same theory.

Gravity from Double Copy

- ☆ The two copies of gauge theory don't have to be the same theory.
 - ♦ Spectrum controlled by tensor product of Yang-Mills theories

$$N = 8$$
 sugra: ($N = 4$ SYM) x ($N = 4$ SYM)
 $N = 6$ sugra: ($N = 4$ SYM) x ($N = 2$ SYM)
 $N = 4$ sugra: ($N = 4$ SYM) x ($N = 0$ SYM)
 $N = 0$ sugra: ($N = 0$ SYM) x ($N = 0$ SYM)

Recent papers show more-sophisticated lower-SUSY theories

Damgaard, Huang, Sondergaard, Zhang (2012) Carrasco, Chiodaroli, Gunaydin, Roiban (2013) Borsten, Duff, Hughes, Nagy (2013)

♦ Relatively compact expressions for gravity amplitudes

Loop Level

- ♦ What we really want is *multiloop* gravity amplitudes
- ♦ Color-kinematics duality at loop level
 - ♦ Consistent loop labeling between three diagrams
 - ♦ Non-trivial to find duality-satisfying sets of numerators

 \diamond

Double copy gives gravity

Bern, Carrasco, Johansson (2010)

$$\begin{split} \mathcal{A}_{n}^{\text{loop}} &= i^{L}g^{n-2+2L} \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D}p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}c_{j}}{D_{j}} \end{split} \text{ Just replace c with n} \\ \mathcal{M}_{n}^{\text{loop}} &= i^{L+1} \left(\frac{\kappa}{2}\right)^{n-2+2L} \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D}p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}\tilde{n}_{j}}{D_{j}} \end{split}$$

Gravity Integrands are Trivial $c_i = c_j - c_k$ $n_i = n_j - n_k$ \diamond If you have a set of duality satisfying numerators, to get: Gauge theory \longrightarrow gravity theory simply take Color factor \longrightarrow kinematic numerator $\mathcal{A}_{n}^{\text{loop}} = i^{L} g^{n-2+2L} \sum_{j} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j} c_{j}}{D_{j}}^{-1}$ $\mathcal{M}_n^{\text{loop}} = i^{L+1} \left(\frac{\kappa}{2}\right)^{n-2+2L} \sum_j \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_j} \frac{n_j \tilde{n}_j}{D_j}$

Known Color-Dual Numerators

<i>N</i> = 4 SYM	1 Loop	2 Loops	3 Loops	4 Loops	L Loops			
4 point	trivial	trivial	ansatz	ansatz				
5 point	construction	ansatz	ansatz					
6 point	construction							
7 point	construction	[Bern, Carrasco, Johansson (2010)					
n point	construction		Carrasco, Johansson (2011) Bern, Carrasco, Dixon, Johansson, Roiban (2012)					
			Yuan (2012) Bjerrum-Bohr, Dennen, Monteiro, O'Connell (2013)					

Pure YM	1 Loop	2 Loops		L Loops	
4 point	ansatz	(All-plus)			
n point	(All-plus and single minus)	Boels, Isermann, Monteiro, O'Connell (2 Bern, Davies, Dennen, Huang, Nohle (20		· · · · · · · · · · · · · · · · · · ·	

Numerators by Ansatz

♦ Strategy:

∕

- ♦ Write down an ansatz for a master numerator
- ♦ All possible terms
 - Subject to power counting assumptions
 - Symmetries of the graph

$$n_{\text{box}} = \alpha_1 s_{12}^2 (\epsilon_1 \cdot \epsilon_2) (\epsilon_3 \cdot \epsilon_4) + \alpha_2 s_{12} s_{23} (\epsilon_1 \cdot \epsilon_2) (\epsilon_3 \cdot \epsilon_4) + \dots$$

- ♦ Take unitarity cuts of the ansatz and match against the known amplitude
 - ♦ Gives a set of constraints
- ♦ Very powerful, but relies on having a good ansatz
 - ♦ Not always possible to write down *all* possible terms

EXTRACTING ULTRAVIOLET DIVERGENCES IN N=4 SUPERGRAVITY

$$\mathcal{S}\left[\int \prod_{i=1}^{L} dp_{i}I\right] \equiv \operatorname{Div}\left[\int \prod_{i=1}^{L} dp_{i}I\right] - \sum_{l=1}^{L-1} \sum_{\substack{l=\text{loop}\\\text{subloops}}} \operatorname{Div}\left[\int \prod_{j=l+1}^{L} dp_{j}\mathcal{S}\left[\int \prod_{i=1}^{l} dp_{i}'I\right]\right]$$

Three Loop Construction

Bern, Davies, Dennen, Huang (2012)

- \Rightarrow N = 4 SYM copy
 - ♦ Use BCJ representation
- ♦ Pure YM copy
 - Use Feynman diagrams
 in Feynman gauge
 - Only one copy needs to satisfy the duality
- **\diamond** Double copy gives N = 4 SG
 - Power counting suggests
 linear divergence
 - Valid counterterm under all known symmetries

 $\sim k^3 \ell(st A_4^{\rm tree})$ $\sim (\epsilon_i \cdot \ell)^4 \ell^4$ $\sum_{j} \int \prod_{l=1}^{L} \frac{d^{D}\ell_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}\tilde{n}_{j}}{P_{j}}$ $\int (d^{D}\ell)^{3} \frac{k^{7}\ell^{9}}{\ell^{20}} \sim \frac{k^{8}}{\epsilon} \sim \frac{1}{\epsilon}R^{4}$

N = 4 SYM Copy

- **Numerators satisfy BCJ duality** \diamond Bern, Carrasco, Johansson (2010)
- Factor of stA_4^{tree} pulls out of \diamond every graph
- **Graphs with triangle** \diamond subdiagrams have vanishing numerators

		_
Integral $I^{(x)}$	$\mathcal{N} = 4$ Super-Yang-Mills ($\sqrt{\mathcal{N} = 8}$ supergravity) numerator	
(a)-(d)	s^2	
(e)–(g)	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right)/3$	
(h)	$\left(s\left(2\tau_{15}-\tau_{16}+2\tau_{26}-\tau_{27}+2\tau_{35}+\tau_{36}+\tau_{37}-u\right)\right)$	$\mid \tau_{ij} = 2k$
	$+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2\tau_{36}-2\tau_{15}-2\tau_{27}-2\tau_{35}-3\tau_{17}\right)+s^2\right)/3$	
(i)	$\left(s\left(-\tau_{25} - \tau_{26} - \tau_{35} + \tau_{36} + \tau_{45} + 2t\right)\right)$	
	$+t\left(\tau_{26}+\tau_{35}+2\tau_{36}+2\tau_{45}+3\tau_{46}\right)+u\tau_{25}+s^2\right)/3$	
(j)-(l)	s(t-u)/3	

$$\overline{c}_{ij} = 2k_i \cdot l_j$$

Pure YM Copy

- \diamond Pros and cons of Feynman diagrams
 - Straightforward to write down
 - Analysis is relatively easy to pipeline
 - *D*-dimensional simple to introduce extra scalars
 - 👳 Lots of diagrams
 - **1** Time and memory constraints
- ♦ Many of the N=4 SYM BCJ numerators vanish
 - \diamond If one numerator vanishes, the other is irrelevant

$$\sum_{j} \int \prod_{l=1}^{L} \frac{d^{D}\ell_{l}}{(2\pi)^{D}} \frac{1}{S_{j}} \frac{\eta_{j} \tilde{p}_{j}}{P_{j}}$$

 Power counting for divergences – can throw away most terms very quickly

Ultraviolet Analysis

- ♦ To extract ultraviolet divergences from integrals:
 - **1.** Series expand the integrand and select the logarithmic terms
 - 2. Reduce all the tensors in the integrand
 - 3. Regulate infrared divergences (uniform mass)
 - 4. Subtract subdivergences
 - 5. Evaluate vacuum integrals

1. Series Expansion

- ♦ Counterterms are polynomial in external kinematics
 - ♦ Count up the degree of the polynomial using dimension $\Delta = \sum k^{\mu} \frac{\partial}{\partial k^{\mu}} + 2m^2 \frac{\partial}{\partial m^2}$ operator

$$\Delta \int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2} = 2 \int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2}$$

 \diamond Derivatives reduce the dimension of the integral by at least 1.

- Apply again to reduce further... all the way down to logarithmic.
- ♦ Now can drop dependence on external momenta.

$$\int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2} = \int d^{6-2\epsilon}\ell \left\{ \frac{4(k\cdot\ell)^2}{[\ell^2]^4} - \frac{k^2}{[\ell^2]^3} \right\} + O(\epsilon^0)$$

1. Series Expansion

$$\int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2} = \int d^{6-2\epsilon}\ell \left\{ \frac{4(k\cdot\ell)^2}{[\ell^2]^4} - \frac{k^2}{[\ell^2]^3} \right\} + O(\epsilon^0)$$

- ♦ Counterterms are polynomial in external kinematics
- ♦ Series expansion of the propagators

$$\frac{1}{(\ell+k)^2} = \frac{1}{\ell^2} \left\{ \mathbf{1} + \frac{2\ell \cdot k - k^2}{\ell^2} + \frac{4(\ell \cdot k)^2 - 4\ell \cdot k \, k^2 + [k^2]^2}{[\ell^2]^2} + \dots \right\}$$

- ♦ Terms less than logarithmic have no divergence
- Terms more than logarithmic vanish as the IR regulator is set to zero
- ♦ Only log-divergent terms remain

2. Tensor Reduction

$$\int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2} = \int d^{6-2\epsilon}\ell \left\{ \frac{4(k\cdot\ell)^2}{[\ell^2]^4} - \frac{k^2}{[\ell^2]^3} \right\} + O(\epsilon^0)$$

 \diamond The tensor integral knows nothing about external vectors

♦ Must be proportional to metric tensor $\int d^{6-2\epsilon} \ell \frac{\ell^{\mu} \ell^{\nu}}{[\ell^2]^4} = A \eta^{\mu\nu}$

♦ Contract both sides with metric to get $\int d^{6-2\epsilon} \ell \frac{\ell^2}{[\ell^2]^4} = A(6-2\epsilon)$

$$\int \frac{d^{6-2\epsilon}\ell}{\ell^2(\ell+k)^2} = \int d^{6-2\epsilon}\ell \frac{1}{[\ell^2]^3} \left\{ \frac{4k^2}{(6-2\epsilon)} - k^2 \right\} + O(\epsilon^0)$$

♦ Generalizes to arbitrary rank – Need rank 8 for 3 and 4 loops

30 January 2014

IHÉS

3. Infrared Regulator

- ♦ Integrals have infrared divergences (in 4 dimensions)
- \diamond One strategy: Use dimensional regulator for both IR and UV
 - ♦ Subdivergences will cancel automatically,
 - \diamond But, integrals will generally start at $\epsilon_{
 m IR}^{-L} \epsilon_{
 m UV}^{-L}$
 - ♦ Very difficult to do analytically
- ♦ Another strategy: Uniform mass regulator for IR
 - \diamond Integrals will start at $\epsilon_{\rm UV}^{-L}$ -- much easier!

Marcus, Sagnotti (1985) Vladimirov (1980)

Regulator dependence only enters through subleading terms

$$\int \frac{d^{6-2\epsilon}\ell}{[\ell^2]^3} = \int \frac{d^{6-2\epsilon}\ell}{[\ell^2 - m^2]^3} + O(\epsilon^0)$$

♦ Now we have a sensible integral!

4. Subdivergences

- \diamond What about higher loops?
- ♦ At three loops, the integrals have logarithmic subdivergences
 - ♦ Integrals are $O(\epsilon^{-3})$
 - ♦ Mass regulator can enter subleading terms!
- ♦ Recursively remove all contributions from divergent subintegrals
 - \diamond Much like adding counterterm diagrams integral by integral
 - ♦ IR regulator dependence drops out

Marcus, Sagnotti (1985) Vladimirov (1980)

$$S\left[\int\prod_{i=1}^{L}dp_{i}I\right] \equiv \operatorname{Div}\left[\int\prod_{i=1}^{L}dp_{i}I\right] - \sum_{l=1}^{L-1}\sum_{\substack{l=1 \text{ subloops}}}\operatorname{Div}\left[\int\prod_{j=l+1}^{L}dp_{j}S\left[\int\prod_{i=1}^{l}dp_{i}'I\right]\right]$$
Regulator dependent
Regulator independent
Reparametrize
subintegral

Three Loop Result

- ✓ Series expand the integrand and select the logarithmic terms
- ✓ Reduce all the tensors in the integrand
- ✓ Regulate infrared divergences
- ✓ Subtract subdivergences
- ✓ Evaluate vacuum integrals

Graph	$(\text{divergence})/(\langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^8)$
(a)-(d)	0
(e)	$\frac{263}{768}\frac{1}{\epsilon^3} + \frac{205}{27648}\frac{1}{\epsilon^2} + \left(-\frac{5551}{768}\zeta_3 + \frac{326317}{110592}\right)\frac{1}{\epsilon}$
(f)	$-\frac{175}{2304}\frac{1}{\epsilon^3} - \frac{1}{4}\frac{1}{\epsilon^2} + \left(\frac{593}{288}\zeta_3 - \frac{217571}{165888}\right)\frac{1}{\epsilon}$
(g)	$-\frac{11}{36}\frac{1}{\epsilon^3} + \frac{2057}{6912}\frac{1}{\epsilon^2} + \left(\frac{10769}{2304}\zeta_3 - \frac{226201}{165888}\right)\frac{1}{\epsilon}$
(h)	$-\frac{3}{32}\frac{1}{\epsilon^3} - \frac{41}{1536}\frac{1}{\epsilon^2} + \left(\frac{3227}{2304}\zeta_3 - \frac{3329}{18432}\right)\frac{1}{\epsilon}$
(i)	$\frac{17}{128}\frac{1}{\epsilon^3} - \frac{29}{1024}\frac{1}{\epsilon^2} + \left(-\frac{2087}{2304}\zeta_3 - \frac{10495}{110592}\right)\frac{1}{\epsilon}$
(j)	$-\frac{15}{32}\frac{1}{\epsilon^3} + \frac{9}{64}\frac{1}{\epsilon^2} + \left(\frac{101}{12}\zeta_3 - \frac{3227}{1152}\right)\frac{1}{\epsilon}$
(k)	$\frac{5}{64}\frac{1}{\epsilon^3} + \frac{89}{1152}\frac{1}{\epsilon^2} + \left(-\frac{377}{144}\zeta_3 + \frac{287}{432}\right)\frac{1}{\epsilon}$
(1)	$\frac{25}{64}\frac{1}{\epsilon^3} - \frac{251}{1152}\frac{1}{\epsilon^2} + \left(-\frac{835}{144}\zeta_3 + \frac{7385}{3456}\right)\frac{1}{\epsilon}$

✓ The sum of all 12 graphs is finite!

Bern, Davies, Dennen, Huang (2012)

Perspectives on the 3-loop Result

- If R⁴ counterterm is allowed by supersymmetry, why is it not present?
 - ♦ Heterotic string computation
 - ♦ Solid
 - Violates Noether-Gaillard-Zumino current conservation
 - ♦ Controversial
 - ♦ Hidden superconformal symmetry
 - Lacks consideration of U(1) anomaly
 - ♦ Existence of off-shell superspace formalism
 - Ruled out by three-loop matter amplitudes Bossard, How
- Different perspectives lead to different expectations for a fourloop divergence.

Kallosh, Ferrara, Van Proeyen (2012)

Bossard, Howe, Stelle (2012)

Tourkine, Vanhove (2012)

Kallosh (2012)

FOUR-LOOP UV DIVERGENCE IN N=4 SUPERGRAVITY

医夏夏夏夏夏夏夏 国国国国英国的 反应分还反应反应负 受受受互互互互反反 医支系的令点致。 这会会多为国国会区发 令成军者或审理者 A A A A A A A A TE - LA

Four Loop Setup

- \diamond Allowed counterterm D^2R^4 , non-BPS
- \diamond Same approach as three loops.

Bern, Davies, Dennen, A. V. Smirnov, V. A. Smirnov (2013)

 \wedge N = 4 SYM numerators: 82 nonvanishing (comp. 12)

Bern, Carrasco, Dixon, Johansson, Roiban (2012)

- Pure YM numerators: ~30000 Feynman diagrams (comp. ~1000)
- \diamond Integrals are generally quadratically divergent
 - \diamond Requires a deeper series expansion \rightarrow proliferation of terms

Four Loop Calculation

- Series expand the integrand and select the logarithmic terms
- ✓ Reduce all the tensors in the integrand
- ✓ Regulate infrared divergences
- ✓ Subtract subdivergences
- ✓ Evaluate vacuum integrals

Czakon (2004)

- ♦ Result is consistent
 - \checkmark Overall cancellation of ϵ^{-4} , ϵ^{-3} and ϵ^{-2}
 - Cancellation of transcendental constants related to the mass regulator
 - ✓ Gauge invariant

Four Loop Result

$$\mathcal{M}_{\mathcal{N}=4}^{4\text{-loop}}\Big|_{\text{div}} = \frac{1}{(4\pi)^8} \left(\frac{\kappa}{2}\right)^{10} \frac{1 - 264\zeta_3}{288\epsilon} st A_{\mathcal{N}=4}^{\text{tree}} \left(\mathcal{O}^{--++} + 3\mathcal{O}^{-+++} + 60\mathcal{O}^{++++}\right)$$

$$\mathcal{O}^{-+++} = -4s^2 t \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$
$$\mathcal{O}^{-+++} = -12s^2 t^2 \frac{[24]^2}{[12] \langle 23 \rangle \langle 34 \rangle [41]}$$

$$\mathcal{O}^{++++} = 3stu \frac{[12][34]}{\langle 12 \rangle \langle 34 \rangle}$$

- Double copy makes SU(4) Rsymmetry manifest
- ♦ Three distinct counterterms
- \diamond --++ is 4-graviton sector
- The latter two configurations would vanish if duality symmetry were not anomalous

 \diamond E.g. in N>4 SG

- ♦ All three independent configurations have a similar divergence!
 - How much can we really read into this? There is very little information in the transcendental coefficient.

Matter Multiplets in the Loops

$$\mathcal{M}_{\mathcal{N}=4}^{4\text{-loop}}\Big|_{\text{div}} = \frac{1}{(4\pi)^8} \left(\frac{\kappa}{2}\right)^{10} \frac{1-264\zeta_3}{288\epsilon} st A_{\mathcal{N}=4}^{\text{tree}} \left(\mathcal{O}^{--++} + 3\mathcal{O}^{-+++} + 60\mathcal{O}^{++++}\right)$$

$$\downarrow$$

$$\frac{1}{4608} \left(\frac{6(n_{\rm V}+2)n_{\rm V}}{\epsilon^2} + \frac{(n_{\rm V}+2)(3n_{\rm V}+4) - 96(22-n_{\rm V})\zeta_3}{\epsilon}\right)$$

- \diamond Couple to matter multiplets to get more info
- Requires honest subtraction of subdivergences, since matter amplitudes diverge already at one loop
 Fischler (1979)
- ♦ Kinematic factor is the same as pure SUGRA
- ♦ Transcendental constants factorize out

The Structure of the Result

$$\mathcal{M}_{\mathcal{N}=4}^{4\text{-loop}}\Big|_{\text{div}} = \frac{1}{(4\pi)^8} \left(\frac{\kappa}{2}\right)^{10} \frac{1-264\zeta_3}{288\epsilon} st A_{\mathcal{N}=4}^{\text{tree}} \left(\mathcal{O}^{--++} + 3\mathcal{O}^{-+++} + 60\mathcal{O}^{++++}\right)$$

$$\frac{1}{4608} \left(\frac{n_{\rm V}+2}{\epsilon^2} + \frac{(n_{\rm V}+2)(3n_{\rm V}+4) - 96(22-n_{\rm V})\zeta_3}{\epsilon}\right)$$

- ♦ All three independent configurations still have a similar divergence
 - Peculiar because the nonanomalous sector should naively have a very different analytic structure. Not related by any supersymmetry Ward identities.
- ♦ Factorization of transcendental constants is less trivial than it looks
 - $\diamond \zeta_4$ and ζ_5 cancel away unexpectedly
- \diamond n_v dependence is apparently consistent with U(1) anomaly

U(1) Anomaly

Marcus (1985)

Carrasco, Kallosh, Tseytlin, Roiban (2013)

- There is an anomaly in a U(1) subgroup of the SU(4) x SU(1,1) duality symmetry
 - Scalar degrees of freedom parameterize SU(1,1)/U(1)
 - Can gauge the U(1) to linearize the action of SU(1,1)
 - scalars become complex doublet under global SU(1,1)
 - Pick up a phase under local U(1)

$$\Phi^{\alpha}\Phi_{\alpha} = 1 \qquad \Phi'_{\alpha} = e^{-i\gamma(x)}U^{\beta}_{\alpha}\Phi_{\beta}$$

- Anomalous means different gauge choices for the U(1) give different theories at the quantum level
 - ♦ Theories differ by a local, finite term in the effective action

U(1) Anomaly

Carrasco, Kallosh, Tseytlin, Roiban (2013)

- ♦ Double copy perspective:
 - ♦ All-plus and single-minus YM amplitudes
 - ♦ Vanish at tree level
 - Finite at one-loop level proportional to (n_s+2)
 - Feed through double copy to build anomalous amplitudes in N=4 SG
- ♦ Key feature: One-loop SG anomalous amplitudes are proportional to (n_v+2)

Anomalies in unitarity cuts

- As pointed out by Carrasco, Kallosh, Tseytlin & Roiban, the anomalous sectors are poorly behaved, and contribute to a fourloop UV divergence (unless somehow cancelled, as they are at three loops)
- ♦ Anomalous sector feeds poor UV behavior into MHV sector

Figure from arXiv:1303.6219 Carrasco, Kallosh, Tseytlin, Roiban

- \diamond Each anomaly insertion gives a factor of (n_v+2)
 - \diamond This cut contributes $(n_v+2)^2$ times a two-loop integral
 - ♦ To get ζ_3 requires a three-loop integral, which leaves only enough room for one anomaly insertion.

Connection Between Sectors?

$$\mathcal{M}_{\mathcal{N}=4}^{4\text{-loop}}\Big|_{\text{div}} = \frac{1}{(4\pi)^8} \left(\frac{\kappa}{2}\right)^{10} \frac{1-264\zeta_3}{288\epsilon} st A_{\mathcal{N}=4}^{\text{tree}} \left(\mathcal{O}^{--++} + 3\mathcal{O}^{-+++} + 60\mathcal{O}^{++++}\right)$$

$$\frac{1}{4608} \left(\frac{n_{\rm V}+2}{\epsilon^2} + \frac{(n_{\rm V}+2)(3n_{\rm V}+4) - 96(22-n_{\rm V})\zeta_3}{\epsilon}\right)$$

♦ Result looks consistent with being entirely due to the anomaly

 $(n_v+2)^2$ for rational numbers

 \diamond (n_v+2) ζ_3 consistent with a single anomaly insertion

Bottom line: This divergence looks specific to N = 4 SG, and likely due to the anomaly.

Conclusions

- \diamond UV analysis of gravity integrals
 - \diamond 3 loop, *N* = 4 SG is ultraviolet finite.
 - \diamond 4 loop diverges, but related to the anomaly.
- Why are there apparently no four-loop divergences unrelated to the U(1) anomaly?
- Is it possible to understand the connection between the anomalous divergences and the 4-graviton divergence through standard symmetries, or is something new needed?
- ♦ SU(4) invariant formulation of N=4 SG corresponds to the U(1) gauge choice $Im \Phi = Im \Phi$

 $\mathrm{Im}\Phi_1 = \mathrm{Im}\Phi_2$

 \diamond Does anything interesting happen in other gauges?

Thank You!

