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Framework

Solution-generating algebraic methods for Einstein’s equations

I Always: give a deeper perspective on
I the structure of the space of solutions
I integrability properties

I Often:
I assume extra symmetry
I based on a mini-superspace analysis of the eoms

I Sometimes: provide new solutions



Here

Explore Geroch’s approach for Rab = Λgab

I Originally: Rab = 0 [Ehlers ’59; Geroch ’71]

I (M, g, ξ)→ (S , h)→ (S , h’)→ (M, g’, ξ ′)
I h→ h’: algebraic action of SL(2,R)
I no integrability discussion

I Before: Ernst method with 2 Killings [Ernst ’68]

I After: general integrability properties with 2 Killings → 2-dim
sigma-models (Lax pairs, inverse scattering, . . . )

I powerful and complementary wrt algebraic (Geroch) [Belinskii,

Zakharov ’78; Maison ’79; Bernard, Regnault ’01]

I no mention of Λ: hard problem [Astorino ’12]



Results [Leigh, Petkou, Petropoulos, Tripathy ’14]

Unified treatment for Λ = 0 or 6= 0 thanks to the conformal mode κ

I Mapping to a 3-dim sigma-model: (κ,ω,λ)-target space
conformal to R×H2

I Geroch’s SL(2,R) ≡ isometry – partly broken by the potential
I reduced algebraic solution-generating action
I no effect on integrability

I Mini-superspace analysis: h on S ∝ R× S2
I particle motion on R×H2 at zero energy
I integrability using Hamilton–Jacobi
I Λ: constant of motion as m and n
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4-dimM

With g = gabdxadxb (−+++) and a time-like Killing field ξ

I norm: λ = ‖ξ‖2 < 0
I twist 1-form: Ω = −2iξ ? dξ

Assuming Ric = Λg

d ? dξ = 2Λ ? ξ

⇓
dΩ = 0

Locally scalar twist Ω = dω



3-dim S
S : coset space obtained by modding out the group generated by ξ

I Natural pos. def. metric/projector: hab = gab − ξaξb
λ

I Natural fully antisymmetric tensor: ηabc = −1√
−λ

ηabcd ξd

I One-to-one correspondence between tensors on S and tensors
T onM s.t. iξT = 0 and LξT = 0:

T S b1 ...bq
a1 ...ap = hm1

a1
. . . hmp

ap hb1
n1

. . . hbq
nqT

M n1 ...nq
m1 ...mp

I Induced connection on S – coinciding with Levi–Civita

DcT
b1 ...bq

a1 ...ap = h`ch
m1
a1

. . . hmp
ap hb1

n1
. . . hbq

nq∇`T
n1...nq

m1 ...mp

with curvature

Rabcd = h p
[ahq

b]h
r
[ch

s
d ]

(
Rpqrs +

2
λ (∇pξq∇r ξs +∇pξr∇qξs)

)



Dynamics for g onM translates into dynamics for (h,ω,λ) on S

I Dynamics for g onM: Rab = Λgab

I Dynamics for (h,ω,λ) on S :

Rab = 1
2λ2 (DaωDbω− habD

cωDcω) + 1
2λDaDbλ

− 1
4λ2DaλDbλ + Λhab

D2λ = 1
2λ (DcλDcλ− 2DcωDcω)− 2Λλ

D2ω = 3
2λD

cλDcω



Any new solution (h′,ω′,λ′) on S translates into a new solution g′

onM with Killing ξ ′ – a new Einstein space with symmetry

I Define a 2-form on S : F′ = 1
(−λ′)3/2 ?

3
h′ dω′

I Check it is closed
I Locally: F′ = dη′

I Promote η′ onM by adding a longit. comp. s.t. iξη′ = 1
I New Killing onM: ξ ′ = η′λ′

I New Einstein metric onM: g ′ab = h′ab +
ξ ′aξ ′b

λ′
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Introduce a reference metric ĥ:

hab =
κ

λ
ĥab

(in Geroch h̃ab = λhab = κĥab)
Eqs. for ĥ, κ, τ = ω + iλ follow from

S =
∫
S
d3x
√

ĥL

L = −
√
−κ

(
D̂aκD̂aκ

2κ2
+ 2

D̂aτD̂aτ̄

(τ − τ̄)2
+ R̂− 4iΛ

κ

τ − τ̄

)
I ĥab: gravity in 3 dim with dilaton-Einstein–Hilbert action
I κ, τ: matter with sigma-model kinetic term plus potential



Symmetries

Kinetic term for the matter fields κ,ω,λ: target space

ds2target =
√
−κ

(
−dκ2

κ2
+

dω2 + dλ2

λ2

)

I Conformal to R×H2

I Conformal isometry group: R generated by ζ = 1
2κ∂κ

I Isometry group: SL(2,R) generated by

ξ+ = ∂ω ξ− =
(
λ2 −ω2) ∂ω − 2ωλ∂λ ξ2 = ω∂ω + λ∂λ

[ξ+, ξ−] = −2ξ2 [ξ+, ξ2] = ξ+ [ξ2, ξ−] = ξ−



Potential for the matter fields κ,ω,λ:

V =
√
−κ
(
R̂− 2Λ

κ

λ

)
Λ breaks ξ− and ξ2



Next

I Integrability properties and solution generation
I Assume a further Killing for g: 2-dim Ernst-like sigma model

(Lax pairs, inverse scattering, . . . )
I Freeze ĥ: 1-dim sigma model – particle motion (Hamilton–Jacobi)

I Role of the dilaton-like field κ



Mini-superspace analysis

Freeze ĥ to R× S2 – motivation: Taub–NUT, Schwarzschild

dŝ2 = dσ2 + dΩ2

I dΩ2: 2-dim, σ-independent → R̂abdxadxb = R̂
2 dΩ2

I Matter: κ(σ),ω(σ) and λ(σ)



Impose in equations and check consistency

I In ĥab equations
I Trace part: κ-equation (as in the generic case)
I Transverse part: consistency condition

R̂ =
2

(τ − τ̄)2
τ̇ ˙̄τ + 4iΛ

κ

τ − τ̄
+

1
2κ2

κ̇2

I extended symmetry: R̂ = 2`, ` = 1, 0,−1
I constraint (first-order equation)

I Dynamics: particle motion on ds2target with V subject to H = 0

L =

√
−κ

2

[
−
(

κ̇

κ

)2

− 4
τ̇ ˙̄τ

(τ − τ̄)2
− 4

(
`− 2iΛ

κ

τ − τ̄

)]



In summary

4-dim Einstein space with symmetry (M, g, ξ)

↓ ξ

3-dim sigma-model (S , ĥ, κ, τ)yextra ĥ isometries


R× S2

R3

R×H2

1-dim “time”-σ particle dynamics

Case under investigation: 1 extra Killing field for h⇒ 3-dim
sigma-model→ 2-dim sigma-model (Ernst-like with dilaton)
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At Λ = 0: Geroch

The full Lagrangian is SL(2,R)-invariant

I Algebraic scan of the space of solutions

τ → τ′ =
aτ + b
cτ + d

κ frozen

I Integrable with space of solutions: m, n{
SO(2) ⊂ SL(2,R) : rotation in (m, n)
N ⊂ SL(2,R) : homothetic transformation in (m, n)



At Λ 6= 0: generalization

Summary

I Only ξ+ leaves L invariant
I Integrability unaltered (SL(2,R) not crucial)
I ξ+ and ξ2 generate constants of motion
I Constants of motion: Λ,m, n
I Under N ⊂ SL(2,R): (Λ,m, n)→ (a2Λ,m/a, n/a)

I κ(σ) depends on Λ,m, n: freezing κ → missing solutions



In some detail

Change time dr̂ = (−κ)
3/2

−λ dσ and go to the Hamiltonian

Ĥ =
λ

2
p2κ −

λ3

2κ2
(p2ω + p2λ) + 2`

λ

κ
− 2Λ

contraint to Ĥ = 0

I Λ no longer any role in the symmetry: reduced to ξ+∀Λ
I SL(2,R) algebra on the phase space:

F̂+ = pω F̂2 = ωpω + λpλ + 2Λ r̂
F̂− = −2ωλpλ − (ω2 − λ2)pω − 4Λωr̂



I Action on Ĥ:{
Ĥ, F̂+

}
= 0

{
Ĥ, F̂2

}
= −Ĥ − 2Λ{

Ĥ, F̂−
}
= 2ωĤ + 4Λ

(
ω + r̂λ3pω

κ2

)
I Conserved quantities:

dF̂+
dr̂ = 0 dF̂2

dr̂ = −Ĥ
dF̂−
dr̂ = 2ωĤ + 4Λ r̂λ3pω

κ2

Under the constraint Ĥ = 0: F̂+ and F̂2 conserved



Hamilton–Jacobi integration

Hamilton–Jacobi:

Ĥ
(

∂S
∂qi , q

i
)
+

∂S
∂r̂

= 0

not fully separable but integrable – irrespective of Λ

I With qi = (κ,ω,λ)
I find principal solution S

(
qi , r̂ ; αi

)
I use βi = ∂S

∂αi
to get qi = qi (r̂ ; αj , βk )

I use pi =
∂S
∂qi to get pi = pi (r̂ ; αj , βk )



I Partial separation: 2 commuting first integrals F̂+ and Ĥ with
values 2ν and Ê

S = W + 2νω− Ê r̂

with W (κ,λ; αi ) solving a pde wrt κ,λ and

α1 = Ê + 2Λ α2 = ν α3 = α

Ê set to zero at the end

Relevant constants

(α1, α2, β3)⇔ (Λ, n,m)

the others can be reabsorbed in various redefinitions – Λ: effective
constant of motion relaxing the Hamiltonian constraint



General solution κ,ω,λ with the reference ĥ

4-dim metric g: general (A)dS Schwarzschild Taub–NUT

− ∆λ

(m2 + `2n2)κ

(
dT + 4n

√
m2 + `2n2f`

(χ

2

)
dψ
)2

+

h︷ ︸︸ ︷
κ

λ

(
dr2

∆︸︷︷︸
dσ2

+dΩ2
)

︸ ︷︷ ︸
ĥ

r̂ traded for r and f`(χ) = sin2 χ,χ2, sinh2 χ for ` = 1, 0,−1

I ∆ = `(r2 − n2)− 2mr − Λ/3
(
r4 + 6r2n2 − 3n4

)
I κ = −∆/m2+`2n2

I ω = −2n/3(m2+`2n2)

(
Λr + 3`r−3m−4Λn2r

r2+n2

)
I λ = −∆/(m2+`2n2)(r2+n2)



Back to Geroch: role of κ

Reference metrics:

h =
κĥ
λ

=
h̃
λ

I In Geroch (Λ = 0): define cosh σ = r−m/
√

m2+n2

I −κ = sinh2 σ
I −h̃ = −κĥ = sinh2 σ

(
dσ2 + dΩ2)

independent of (m, n): the space of solutions is scanned while
keeping h̃, ĥ, κ frozen

I Here (Λ 6= 0):
I κ(σ) and κĥ(σ) depend explicitly on (m, n)
I freezing h̃ = κĥ à la Geroch forbids scanning the space of

solutions

Crucial role of the dilaton-like field κ for Einstein spaces



Algebraic solution generation

F̂+ and F̂2 generate N ⊂ SL(2,R): τ → τ′ = a(aτ + b)

I Affects ω by a shift: irrelevant
I Affects λ via

(Λ,m, n)→ (a2Λ,m/a, n/a)

(homothetic transformation)

F̂− is no longer an invariance generator – no algebraic relationship
amongst solutions (κ,ω,λ) and (κ′,ω′,λ′) obtained by rotating
(m, n) to (m′, n′)
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Geroch non-compact SL(2,R) group: tool for handling the dynamics
of Einstein spaces with symmetry in a 3-dim sigma-model approach

I In general only a subgroup provides an algebraic mapping in
the space of solutions: no role for SO(2) ⊂ SL(2,R)

I Mini-superspace integrability analysis: symmetry reduction
does not affect integrability

I role of the conformal mode κ for scanning the mass–nut space
I Λ: constant of motion (relaxing the Hamiltonian constraint)
I (Λ,m, n) transform homothetically under N ⊂ SL(2,R)

I Beyond mini-superspace: standard Lax-pair and
inverse-scattering methods under investigation
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