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INTRODUCTION

*Most of cosmology is based on observing &
interpreting light (or light-like) signals.

»Such signals travel on null geodesics lying
on our past light cone (PLC).

*In a FLRW space-time it's easy to define
our PLC and describe geodesics therein.



*Tn the presence of inhomogeneities our
PLC and its null geodesics become messy.

*Q: Can we simplify our life by a suitable
choice of coordinates?

*And, if yes: What can we do with them?



OUTLINE
®The GLC gauge & its properties
®Light-cone averaging in GLC coordinates

®Average & dispersion in the Hubble
diagram for a “realistic” Universe

®Lensing in GLC coordinates?



If time allows

®Gravitational radiation from massless particle
collisions (A. Gruzinov&GV, 1409.4555, gr-qc)



The geodetic light cone (6LC) gauge
(Gasperini, Marozzi, Nugier & GV, 1104.1167)

An almost fully gauge-fixed variant of the
“observational coordinates” of G. Ellis et al.
The metric w.r.t. the coordinates (z, w, 6%):

[dﬁ = Y2dw? — 2Xdwdr + Yap(d0* — U%dw)(d6® — Udw) ; a,b=1, 2}
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Flat-FRW limit (a(n)dn = dt, n = conformal time):

T =1, w =1+, T = a(t)
U* =0, Yapd09d0° = a(t)r?(d6?* + sin® 6d¢?).



Generic properties of GLC coordinates

*w =(<) wo defines our past light cone (causal past)
*w = constant hypers. provide a null-foliation

*7 can be identified with synchronous-gauge time
*Static geodetic observers in SG have u, = 0,7

*Photons travel at fixed w and 0° :

_ S, SH
k, = 0,w= z" ~ o






Other nice properties of the 6LC6

1. A simple expression for the redshift z

In FRW cosmology z is simple (& factorizes) in
terms of entries of the standard FRW metric

a (7o)
a(ns)

In the GLC gauge this property remains true:

(Ffup)s Yo (ur)s > T,
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6« coordinates



2. An exact & factorized expression for

the Jacobi Map

(Fanizza, Gasperini, Marozzi, GV, 1308.4935)
0

dQp
N

Lo /

fs

dAg

From Schneider, Ehlers & Falco



Recall deviation equation for null geodesics:

[ V3EH = Rap " kOkVEP Vi = k*V, ]

projected along the Sachs basis:
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d2
d)\2

d 14
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FGMV: exact expression for J in GLCG!
4 (T —179Y )

kho,s\ !
JA)\)\OZAA % . AA_a
A0 =t () | b =

N - ~ B A=A /

Again (bi)local and factorized (s.” = zweibeins for yab)
in this gauge (NB: expression is NOT covariant!)




3. Area & luminosity distance (da, d.)
(Ben-Dayan, Gasperini, Marozzi, Nugier & GV,
1202.1247 & FGMV 1308.4935)

Much easier if one has the Jacobi map!

y
B = det (JA (A, Ao)) = 1) ) = detya

 det (u;lastB)/\:Ao

1

det (u;langB))\:AO =7 [det (u;lé)Tfyab) 73/2]

Using residual gauge freedom in GLCG:

2 =Y &finly:  dp = (1+2)%da

sin @




I: The inhomogeneous Hubble diagram
in a realistic cosmology

For a complete summary of our (and related)
work see: F. Nugier's thesis: 1309.65420



The concordance model:
3 sets of data pointing at Dark Energy
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Two arguments for DE are based on
inhomogeneities/structures
The 3rd (SNIa) ignores them completely!

Basic tool: the famous Hubble diagram of
redshift vs. luminosity-distance

A short reminder (for FLRW)



Definition of luminosity distance d.:

L
b = 5
4WdL

where L is the absolute luminosity and @ the flux.

ao aad

For FLRW: 1+ 2(t) = @ Qo = _ﬁ(t = 1)
For a spatially flat ACDM Universe (for simplicity):
JELRW () = 1+2 [~ dz'
(2) Ho /0 Qa0 4 Qmo(1 + 2)3]"?

If expanded to 2" order in z:

(iL(z)::.Eﬂ;1 {z-+-%(1.——q0)z2-+-(?(23)

In FLRW cosmology: ¢y = 4mG(po + 3po) = %(Qm,o — 2Q 0)

3H?
Hubble law beyond linear order => information about eq. of statel




Using Type Ia supernovae as standard candles: evidence
for negative qo, DE...
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The Universe is fairly homogeneous only on very
large scales (> few 100 Mpc?).

Q: What's the effect of smaller scale
inhomogeneities?

A. Not obvious! Averages of physical quantities do
not obey the homogeneous EEs (Buchert &
Ehlers, ...).

There are extra, so-called "backreaction”, terms.
This "averaging problem” has been a rather hot
Topic in recent years.



Hopes have been raised that inhomogeneities might
“explain” cosmic acceleration and give a natural
resolution of the famous coincidence (why now?)
problem (Buchert, Rasanen, Kolb-Matarrese-Riotto...)

Too optimistic (given other evidence for DE)? Yet
still important to take inhomogeneities into account

for (future) precision cosmology and/or for testing
the concordance model itself.



Most of previous work deals with spatial averages
and with formal definitions of acceleration...

Not clear what's the relation between such

averages and the averaged d. -z relation (Hubble
diagram)

We therefore looked at how to average directly
that relation.



Gauge-invariant light-cone averages
(Gasperini, Marozzi, Nugier & GV, 1104.1167)
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WHATS THE CORRECT MEASURE?

(6. Marozzi and 6. Veneziano, in preparation)

An important issue (that came out afterl) is whether
one should weight the physical quantity (e.g. d."?) with
a non trivial averaging measure.

In our SNe papers we took as measure the proper
area of the 2-D surface element.

Justified if the proper number density of SNe is
constant on a fixed-z hypersurface.

Then our procedure gives the measured average!

For CMB on the last-scattering surface one may argue

that the correct measure is simply the solid angle at
the observer.



Averaging the flux at 2"-order
(BGMNV,1207.1286, 1302.0740; BGNV,1209.4326)

Considering < ® > ~ <d > (not <d>?) simplifies
life further. In GLCG (w/ our measure):

(@) e w0) = (127 | [ Tl om0

where ts(zs, 6%) is the solution of:

T(wo, 70, (Qa)
T(wo, Ts, (9&)

Intersection of w = wo and z = zs hypersurfaces is a
2-surface (topologically a sphere) on which SNe of
given redshift zs are located.

(1+25) =
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This is exact: can be used for any specific (fixed-geometry)
inhomogeneous model (e.g. LTB with us at center)

A more realistic (and Copernican) model is the one produced
by inflation: a stochastic background of perturbations with
statistical isotropy and homogeneity.

Vanishing effects at 1st order, need 2nd order (at least)

Unfortunately, perturbations are normally studied in other
gauges (e.g. Newtonian or Poisson): we need to find the
coordinate transformation up 2nd order (quite a lot of work,
see F. Nugier's thesis, yet easier than starting directly in

the Poisson Gauge, see e.g. Bernardeau, Bonvin, Vernizzi
0911.2244).



The calculation proceeds in two steps:

1. Calculation of d."?to 2" order in the Poisson gauge
(BGNV,1209.4326) via coordinate transformation.
Independent result by Umeh, Clarkson & Maartens
(1207.2109, 1402.1933) being compared to ours (6.
Marozzi, 1406.1135: some errors in both?).

2. Performing the appropriate LC integrals both for
computing the effect on different averages and on
the corresponding dispersions. Part of the
calculation is analytic, part is numerical using
realistic power spectra (BGMNV,1302.0740).

See BGMNV 1207.1286 (prl) for a summary of both
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Fortunately many terms are very small/negligible.
The most important ones pick up some moments
(2nd and 3rd at most) of the power spectrum.

Their contribution is enhanced, relative to a very
nhaive estimate of 1079, by powers of k*/Ho, where

k* is a characteristic scale of the power spectrum.

Yet the overall effect is small...



Different observables suffer different
corrections (here w/out area measure)

Fractional Corrections
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Results somewhat sensitive to the power
spectrum used (but no IR or UV divergence)
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Lensing dispersion is as in Betoule 1401.4064.
The (uncorrected) Doppler is a factor ~2 larger



Conclusions on DE application

Inhomogeneities (of a stochastic type) cannot
mimic DE.

Averaging gives hegligible corrections to the FLRW
results.

In principle 10* precision attainable, however...

Effects on the variance/dispersion are much
larger and may limit the determination of DE
parameters (via SNIa data) to the few % level
because of limited statistics.



IT: GLC gauge and lensing?
(6.Fanizza and F. Nugier, 1408.1604 & work in
progress)

Trying to make use of our simple, exact
result on the Jacobi Map for
gravitational lensing



The Jacobi map is a basic ingredient in gr. lensing
(see "Gravitational Lensing” by Schneider, Ehlers
& Falco). By its definition, J(s,0) connects
lengths at the source to angles at the observer:

k10, £8

kY u,,

A — Ji(s,0) ( ) — T4 (s, 0)6

Its determinant gives the so-called area distance:
da®= dAs/dQ, = det J.



Another map, J(0,s), connects angles at the
source to lengths at the observer:

€A — T o, s) (

Its determinant gives the so-called corrected
luminosity distance d'L.

The two Jacobi maps (hence the two distances) are
related by Etherington’s (exact) reciprocity relation:

J(0,8) = - (1+2) J(s,0).

The (uncorrected) luminosity distance is given by:
d.= (1+Z) d.= (1+Z)2 da



From Schneider, Ehlers & Falco

O




In the lensing literature one relates more often
angles at the observers to angles at the source
through the so-called (2x2) amplification matrix,
containing both convergence x and shear 7v.

(P )
V2 l—rk+m

The total magnification u is related to its
determinant:

pt=det A= (1-k)—~7
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1. In the GLCG it should be possible to give the

amplification matrix in a compact non-perturbative
form directly from the known Jacobi map.

2.Improve treatment of gravitational lensing when a
perturbative approach is inadequate, e.g. in the

presence of caustics (points where rank (Vab) < 2);

3.Another quantity that can be studied is the
deformation matrix S*g (simply related to J). It
contains the null expansion and shear. Its

derivatives are related, through the EEs, to Ricci
and Weyl focussing (cf. Raych. eqn.)



What else?

1. Give non perturbative arguments for the
smallness (or otherwise?) of inhomogeneity
effects on the z-® (z-d.°) relation;

3. Set up Einstein's equations (at least in
cosmological perturbation theory) directly in the
GLCG (prel. investigations on H-constraint &
Raychaudhuri egn. encouraging, domain of
dependence simple, ...)

4. ...Any suggestion?



Gravitational radiation

from massless particle collisions
(A. Gruzinov & GV, 1409.4555)



A gravitational "energy crisis"?
(ACV 0712.1209, Wosiek & GV 0805.2973)

Within some (crude) approximations the graviton spectrum in a
Transplanckian-E collision turned out to be:

R3 Gs R?

__ 2 .
= Gs R” exp (—|k|b—wa) 7 >> 1

dE,,
2k dw

Accordingly, the fraction of energy emitted in GWs is O(1) already
for b = b*>> R (i.e. for small deflection angle). Is this puzzling from a
GR perspective? Given that spectrum is known to be flat @ small w:

Q: What's the cutoff in w for the GWs emitted in an ultra-
relativistic small angle (b >> R) 2-body collision?

Possible answers for w.: 1/b, 1/R (my old guess), b/R?, b%/R3 (ACV),
v/b (Gal'tsov et al, singular m=0 limit?), E/h (singular classical limit?)



GR's answer to this problem seems to be unknown...
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High-speed black-hole encounters and gravitational radiation

P. D. D’Eath
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England
(Received 15 March 1977)

Encounters between black holes are considered in the limit that the approach velocity tends to the speed of
light. At high speeds, the incoming gravitational fields are concentrated in two plane-fronted shock regions,
which become distorted and deflected as they pass through each other. The structure of the resulting curved
shocks is analyzed in some detail, using perturbation methods. This leads to calculations of the gravitational
radiation ¢ d_ne he and backward directions. These methods can be applied when the impact
pa ”- M is a typical black-hole mass and 7y is a typical Lorentz
factor S 2 3 rame) of an incoming black hole. Then the radiation carries
power/solid angle of the characteristic strong-field magnitude ¢ °G ~' within two beams occupying a solid
angle of order y~°. But the methods are still valid when the black holes undergo a collision or close
encounter, where the impact parameter is comparable to G¢™2My. In this case the radiation is apparently
not beamed, and the calculations describe detailed structure in the radiation pattern close to the forward and
backward directions. The analytic e'xpressions for strong-field gravitational radiation indicate that a
significant fraction of the collision energy can be radiated as gravitational waves.




THE GENERATION OF GRAVITATIONAL WAVES.
IV. BREMSSTRAHLUNG *t}

SANDOR J. KOoVAcs, JRr.
W. K. Kellogg Radiation Laboratory, California Institute of Technology

AND

Kip S. THORNE

Center for Radiophysics and Space Research, Cornell University; and
W. K. Kellogg Radiation Laboratory, California Institute of Technology

Received 1977 October 21; accepted 1978 February 28

ABSTRACT

This paper attempts a definitive treatment of *“classical gravitational bremsstrahlung”—i.e., of
the gravitational waves produced when t arbitrary rela fly past each other
with arbitrary relative velocity v, but yith large enough impact parameter tha

eflection of stars’ orbits) « (1 — v2/c?)Y2/

For 0<1/y (b >yR) agrees with GKST: E®W/E ~ v 6

A long standing problem, also hard numerically



What's GR's answer for 0> 1/v?

Andrei Gruzinov and T (1409.4555/gr.qc) believe to know
the answer at infinite

a bit tricky, but final result is simple.

We found both the frequency and the angular distribution
of the GW spectrum

Result obtained via Huygens principle in the Fraunhofer
approximation to reconstruct the metric at future null
infinity from the data on the collision surface.

NB: Subtracting the deflected shock wave (as in D'Eath’s
work) is crucial!
Rough i



(6 =1, E =R of previous slide)




AS shock wave metric, curvature, time delay

72
ds®* = —dz"dz™ 4+ dz® + dy® — 4FIn ;y 6(zT)(dzT)?
<~2
lc[*

1
§(R+x+x — Riyty), Rx = Ripqy

R=R, +iRy =4FE6(z") (=x+ 1y

Ry

62T =0; 627 = —8FEIn(b/)\) = dt = =6z = —4FIn(b/)\) ; 25 =t+ 2

General formula for GW
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After FT and Huygens

dESY 1
__ dZQ 2 2
do — 2w? IRz iE 2
W 2 —twu(x,p) R(X) - 2 |<’|4
rR(R) = 5 d°x R(x)e P T

Putting everything together and subtracting deflected wave

E2
ECY = /d2,0 dw|c|?,

2t
_ 2 —ilwpP-X CZ WAz~ WAz,
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This can be written in its final form

dEGW E? b
dw d2p — 2—7T4‘C|23 ps =p—8L5

b2
d2 2 . .
C(w7 ps) — / ‘Zf p WX P [e—zEwCI)(x) o 1]

(x—b)? _b-x

P
where p;s is the solid angle around (one of) the deflected
trajectories and Re {* and Im (¢ correspond to the two

physical polarizations.

(=x+1iy; (x)=4In



The w-spectrum is almost flat (dE/d w ~ log w ) up to w~E™ and
at very small w ~ b reproduces the known “zero-frequency-
limit" (Smarr 1977) based on the soft graviton limit
(Weinberg, 1965):

dECY 2
T 0°E* log(6~*)

At o ~E! there is a break in the spectrum, which becomes scale-
invariant (dE ~ d w/w) producing an extra log in the “efficiency”.
Only logarithmic sensitivity to UV cutoff. With a reasonable guess
on the latter we obtain:

ECY 1
= — 6° log(6"
75 T 0g(077)

to leading-log accuracy.




We can also get the angular distribution.

The emerging picture is quite appealing: gravitons are
mainly produced in two back-to-back cones of some typical
angular size around the deflected ftrajectories. That size
shrinks with increasing frequency: this is responsible for
the dw/w spectrum at w > 1/E.

Q: Can we get the same from our QF T diagrams?

A: Hopefully yes: Ciafaloni, Colferai & I (in progress) have
some arguments about how that should work.



THANK YOU!



