Gravity = Gauge Theory
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Disambiguation: What this talk is NOT about

e Bulk gravity

e Gravity = (

e

o Gravity as gaugé theety of Poincare group

\\

o Gravity = SU(2) gauge theory



Main message:

o o . . . A : |
General Relativity (in 4 dimensions) 7 0 KK PRL106:251103,2011

can be reformulated as an SU(2)
gauge theory (of a certain type)

Why should one be interested in any reformulations!?

There are many. Have not helped. Gravity is still best

understood in the original metric
formulation. So is the problem of

Tetrad (first order) formulation
quantum gravity (non-renormalizability)

Plebanski (Ashtekar) self-dual formulation

Mac Dowell-Mansouri SO(2,3) gauge theoretic formulation

Some exceptional things happen in the new formulation!



General Relativity
Juv - spacetime metric

Sen|g| = 163TG /(R—ZA)

Beautiful geometric theory
that physicists study for
already about a century!

RMV ™~ g,LLl/
Very “I"igid” theOl’)’! An)’ Several GR uniqueness
modification messes it up theorems

GR is the unique theory of interacting massless spin 2 particles
But GR is also very much unlike all other theories!

the only theory that is not scale invariant (apart from the Higgs potential term)

non-polynomial Lagrangian (in terms of the metric); non-renormalizable

there is a scale Mp



Linearized description: Guv = N + KA
k* = 327G
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(Euclidean) action conformal mode

unbounded from below! B o— B
conformal mode problem “Wr'ong” sign a

Count of propagating DOF:

dim(huy) — 10 (per point) —4 — 4 — 2 PI’OPaga', DOF

diffeomorphisms

Spinor representation: TM =S, ®S5_ | 1nw— AA
huw — haapp €S2 ®S2 @ (trivial) Pk ueimed

after (covariant) gauge-fixing all 10 metric components propagate



Einstein gravity perturbatively: Nasty mess... Expansion around an
arbitrary background Juv
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th -fixing t 1, . 1
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even in flat space, the corresponding vertex has about 100 terms!



quartic order
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Imagine having to do
calculations with these
interaction vertices!
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Still, they were done...

In 1963 | gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a
graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are

XA

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions
in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this
was not a trivial calculation, in the days before computers with algebraic manipulation capacities were
available. And yet the final results were ridiculously simple. The cross section for scattering in the
center-of-mass frame, of gravitons having opposite helicities, is

From: Bryce DeWitt

do/dSY = 4G?E? cos™ 16/ sin* 16 arXiv:0805.2935
Quantum Gravity,

Yesterday and Today
where G is the gravity constant and E is the energy.

We now know that computing Feynman diagrams is not the simplest approach to the problem

Using the spinor helicity methods, the computation becomes doable

Using BCFWV on-shell technology, the calculation becomes a homework exercise

Still, having a simpler off-shell description would be important



Linearized gauge-theoretic description (around de Sitter space)
ai infinitesimal SU(2)

. H i
Spinorial description: u© — AA" i — (AB) Fonnection
i=1,2,3

(L spacetime index

al, > aaaPC €8, 285 ®53 =5{®S_®5:®8-

' S A o e e o L A B s R R S o A e i L ’- . )
| 2 BCD)A’ i ABC 3 3
L ~ (81(4' @ | ) 'i a(A/ ) {aap”a
pure gauge

explicitly non-negative
(Euclidean signature) functional

(diffeomorphisms) part

only depends on the

dlm(Si %Y S_) — 8 (per point) Si ® S_ part of a'AA’BC

Count of propagating DOF:

after gauge-fixing only 8 connection
8 —3 —3 — 2 propagating DOF components propagate (an irrep of Lorentz!)

SU(2) gauge rotations



Interactions: expansion around de Sitter M2 — A/S

significantly more complicated

complete off-shell cubic vertex expression in the metric case

zero on-shell

------------------------
- .--.
- -

the only part that is relevant for MHV

graphical representation of the
where the spinor contraction notations are 3-derivative vertex

(9a)ABCD — (A, (BICDM’

(Da)M'N'AB _ gC(M' L ABN')

! N1/ / /
(aa)M'N'CD _ (CDAM' BN

D m
In terms of computational complexity, the above vertex
is analogous to that of YMA2 type by Bern

a



Comparison with Yang-Mills:

gauge indices

can rewrite the YM Lagrangian as
suppressed

1
_ + \2
»CYM — 492 (F,uy) - self-dual part of the curvature

Spinorial description: p — AA’
Asp € S_|_ ® S_  spin |

quadratic order (not gauge-fixed)

L3 ~ (05 AP

cubic order

Ling ~ (051 ADA) AM' Ay

our linearized graviton Lagrangian and the cubic AABC’A’ c Si RS_  spin2

vertex is just the generalization to the case



The gauge-theoretic formulation

® Simpler than the metric-based GR

convex action functional

vertices are much simpler in this formulation

conformal mode does not propagate even off-shell

® Suggests generalizations that are impossible
to imagine in the metric formulation

GR is not the only theory of interacting massless spin 2 particles!

Suggests new (speculative at the moment) ideas as to what
may be happening with gravity at very high energies



Self-duality

Riemannian
signature for
simplicity
A2 M two-forms on M
. . sighature
wedge product of forms gives a conformal metric 8(3 3)

full metric if a volume form on M is chosen A°M @ A°M — R

If metric on M is chosen

Hodge dual
%« N°M — A°M

ATM  eigenspaces of X 2 {_|_1 Riemannian
of eigenvalues £1(+£7) -

-1 Lorentzian

self (anti-self)-dual 2-forms



Thus, given a metric get NMM=ATMe&A M

restriction of the wedge-product
metric on AT M is positive-definite

Remark: Hodge dual is conformally-invariant

only need a conformal metric on M to get the above split

In the opposite direction the correspondence also holds

Split A°M =A"TMaeA M
such that the first subspace is =
positive-definite

conformal
metric on M

Explicitly: BY  abasisin ATM
i 4 ~(X/8')/5 ij ’I/ ,] k/' (L d DAsIS IN
Guv ~ € € BMO&ByﬁBw



The above relation proves an isomorphism of group spaces

ST,(4)/SO(4) SO(3,3)/S0(3) x SO(3)

conformal Grassmanian of
metrics on M 3-planes in A?

. Conformal metrics can be encoded into the |
] knowledge of which forms are self-dual



Curvature and self-duality

Riemann : N°M — A°M

Or, in terms of the self-dual split s

Riemann = ( Q N > + Q,P - symmetric
P

N1 - 3x3 matrices
Einstein condition - N =0 \>
|0 equation
Riemann = A metric TrQ) + TrP = 2A e
Bianchi identity & TrQ) = TrP

M o . o o ° d ’ d h I h
Differential Bianchi identity < A = const on’t need the |0t

equation as independent



Connection on A™M

Levi-Civita connection on 7" M = connectionon AT M

(self-dual part of Levi-Civita)
Its curvature [T is the self-dual part of the Riemann QN parts

Einstein condition:

Curvature of the metric connection on AT M
is self-dual as a two-form

Differential Bianchi identity —>
tr() = const



Remarks on A™ M bundle

wedge product metric + volume form on M

= metric (positive-definite) in fibers of AT M

connection in AT )/ preserves this metric

= all AT M are SO(3) bundles
Which bundle!? Hitchin

/ (Riemann)2 = 2x(M) Euler characteristic of M
M

/ (Riemann)(Riemann)™ = 37(M) Signature of M
M

form

first Pontrjagin P = / (F+)2 = 2x(M) + 37(M) =
M I

bundle is fixed by th topology of M



Plebanski formulation of GR

|dea: encode metric in the split A*M =ATM oA~ M

Since all A" M bundles are isomorphic, fix the principal SO(3)
bundle over M with p1 = 2x(M) + 37(M) .
Let £ — M be the associated bundle the usual SO(3) invariant

metric in the fibers

such that the pullback of the wedge

8 7 2 product metric to E coincides with
defined modulo SO the SO(3) invariant metric in E

(3) rotations

Let

Declare the image of E in A*M to be ATAM = conformal metric

Declare the image of the (inverse) metricin Ein A*M ® A*M
(composed with the wedge product) to be the volume form

= full metric



Connections

The metric connection in AT M is also encoded in B

Lemma: 3 unique (modulo gauge) SO(3)
connection A in Esuchthat d 4B =0

Lemma: It coincides with the pull-back (under B)
of the metric connection in A™M

Thus B can be taken as the basic object



Einstein equations

Theorem: The metric encoded in B is Einstein iff
3Q € End(E) : F(A(B)) = QB

curvature of the self-dual part
of the Levi-Civita connection is

self-dual as a two-form

Action principle:

1
S[B, A, Q] = / Tr (B A F(A) ~ SQB A B>
M
TrQ) = A
trace of Q is fixed
varying wrt Q gives the condition that B is an and is not varied

isometry, other equations also follow



Euler-Lagrange equations

() variation: BAB~§
A variation: daB =0
B variation: F(A)=0QB

To get a better feel for this, consider linearization

- be E@ A~ M
BAb~S — b=b+ 0B where
¢ ¢ € C(M)
be E® A°M T\

the tracefree part of
the metric variation

But B provides an isomorphism F ~ AT M = B(E) cEANTMRA M

the trace part

This is the known identification

Mo A M~ ST

symmetric tracefree
2-tensors




The second linearized equation db+ [a,B]=0 =  a(b)

a e B X AlM linearized connection

To disentangle the content, consider tracefree perturbationsonly ) = b

Introduce a hew exterior derivative

d " EQAMNM —-EQA M

Lemma:  a(b) = d* b

The last equation linearized da(b) = gB + Qb

Let us take its A~ )/ part (for tracefree perturbations)

This is the tracefree part of the (linearized) Einstein condition!

(on an arbitrary background!)



Towards the “pure connection” formulation
|ldea: Take A in F — M as the main variable

Consider Einstein metrics such that F'(A™) spans a definite
3-dimensional subspace in A°M = conformal metric

Fine, Panov

Definition: An SO(3) connection is called definite
if F(A)AF(A)is a definite matrix

For a definite A, declare the subspace spanned by F(A) to be A™M

= conformal metric
To get the full metric and

Einstein equations consider In Pl2ebanski this is
F(A) N F(A) € A*M ® End(E) Q*Tr(B A B) o

¥ volume form

Define the
volume form via

A2(vol) := (Tr\/F A F) 2



Theorem: LetA be a definite connection in the principal SO(3)
bundle over M with p1 = 2x(M) + 37(M)
Let F be its curvature 2-form. Define
AB:=Tr(VF AF)(F ANF) Y2F
(so that B:E — A°M is an isometry).
Then the metric defined by F (or B) is Einstein if

daB =0
Einstein metrics With | SO(3) connections (on a specific
s # 0 and definite £, bundle over M) satisfying
o |
T | W—I— daB =0

Examples not covered:

alternatively, metrics for which F(A_I_) spans A+M

Kahler-Einstein



KK arXiv:1103.4498

Variational Principle

partial results on zero scalar
curvature in early 90’s

1 2
SarlA] = / (Tr(\/F A F))
167G A M well-defined on the space
of definite connections
Euler-Lagrange equations daB =0 should take a given D1

bundle to get GR

where AB :=Tr(VF AF)(FAF) Y2F
thus precisely Einstein metrics

action is just
the volume

Remark: Recalling the metric as defined by F




The new functional from Plebanski

can solve the B equation B =Q 'F

SI.Q1 = [ Q7P AF + u(Te(@) ~ A

now minimize wrt Q, keeping the trace fixed

- uQ*=FAF

— A\/ﬁ — Tr\/F A F precisely the same procedure as

one that leads to the so-called
Eddington’s formulation of GR

1 2 .
— S[A] — / (TI’\/F A F) (also Schrodinger)

A
ST = % / d'zy/det(R,.,)




Half-flat metrics

The gauge-theoretic reformulation of GR gives a
simple characterization of half-flat metrics Q|ir = 0, Py # 0

Theorem: A connection whose curvature viewed as a
ool Dol MAP i E A’M is anisometry FAF ~ ¢
Jacobson '90 gives a half-flat metric (instanton) of non-zero
scalar curvature

Fine’10
Proof: Define B = F
Satisfies d4B =0 aswellas BA B ~ 0

Thus gives an Einstein metric with () ~ 0

= WVeyl curvature is purely anti-self-dual



To get a better feel for the new functional, let us
consider linearization (around an ASD connection)

Lemma: b=d_a where
_ —1
¢ =TrB 1(d+a) B (dya) e EQE
the space of connections
variation of the conformal factor is not independent! mod gauge transforms is

only 9 functions per point

2
Lemma: 5QSGR:/ <B1(d+a) )
M sym,trace free

At a critical point corresponding to ASD Einstein
metric the functional is non-negative

— local rigidity of ASD Einstein metrics

convex after gauge-fixin
S8 8 (of positive scalar curvature)



Description of GR without the conformal mode problem!

On-shell equivalent description of gravitons

T~

space of metrics space of conformal metrics =
SU(2) connections/gauge

(Euclidean) EH functional is not convex The new action (its Euclidean version) is a
(conformal mode problem) convex functional

Restriction of the EH action to a smaller space

. : Same critical points!
gives a convex functional P

The conformal mode has been “integrated out” and is
now absent even off-shell



How to do calculations: Scattering Amplitudes
Gauge-fixing:

gauge-fixing condition invariant under shifts o" (P(3/2’1/2)CLZ) =0

/
in spinor terms (aa)BC = aﬁ, aﬁCA —( where aﬁ?c - Si QR S_

gauge-fixed Lagrangian - functional on COO(S§r ®S_) Analog of Feynman
gauge inYM
(2) (2) (A BCD)A’ 2,3 AB)?2 1 A’ 02 ABC
L _I_Lgf — ((9 ) + Z ((6’&) ) — —§CLABC 0“a A
Thus, the propagator N e (e pBey,Clep, M
A(k’)EFM D! — k2
ABC l EFM only the (3/2,1/2)

D Vi 1.2 component propagates



Spinor helicity states

o (pyABey, - LERIR o gpae g 9000 kD

PTM k] (kq)?

here, as usual p“, ¢ are arbitrary spinors not aligned with k*

and  |kp| := k’A/pA/, (kp) := k“pa  are spinor products

To take the M — () limit

need to make the (positive helicity) external momenta slightly massive

A A
kAA/ :kAkA/ | qu q

| so that kAA/k ) = —2M?
(kq) k4] A

Usual spinor helicity calculations! Same amplitudes (e.g. graviton-graviton, MHYV)

the only headache is taking the A — 0 limit



Relation to the metric description bot: \I/Ialidlon-
shell only

1 / ]. A ! 7
hABA’B’ ~/ M(@CL)ABA/B/ aABCA ~ _8( hBC)A B

both are true on k° = 2M?

then our helicity states are just images of the usual metric states

Bern’s 3-vertex for GR

3-vertex in the metric language square of the
YM vertex

1 ! o/ ! AT/
£(3) ~/ ﬁ (aﬁf({?ghCD)A B ) hM N ABhM’N’CD
p

our calculations are exactly the same as ones done with the usual metric
helicity states and the above vertex



Summary so far:

® Using Si ® S_ instead of Si ® S?
to describe gravitons

® “Restriction” of the EH action to a smaller space of
conformal metrics gives a convex functional

® Much simpler linearized action, e.g. off-shell 4-vertex contains

much simpler interaction vertices! only 7 terms, as compared to a
page in the metric-based case

® Formulation in which the off-shell 3-vertex
is (basically) (YM vertex)"2

in this respect similar to Bern’s reformulation



Generalization: Diffeomorphism invariant gauge theories

¢ - Lie algebra of G
Let f be a function on g ®s g f: X = R(C) defining

o function
satisfying X € 9®g g

|) f(OéX) — C{f(X) homogeneous degree |
2) f(ngT) _ f(X)’ Vg c G gauge-invariant
Then f(F A F) is a well-defined 4-form (gauge-invariant)

Can define a gauge and F=dA+(1/2)[A, A
diffeomorphism invariant action

no dimensionful
coupling constants!

L SA] =i / FEAF) |



Field equations: daB =0

of Second-order
where B = 8_XF and X = F A F (non-linear) PDE’s

compare Yang-Mills equations: daB =0

where B =*F * _ encodes the metric

Dynamically non-trivial theory with 2n-4 propagating DOF

. ftop — TY(F /\ F)
Gauge symmetries:

0pA = dag gauge rotations

0¢A = 1 F diffeomorphisms



The simplest non- G=SU(2) - gravity
trivial theory:

(interacting massless spin 2 particles)

Define the metric by:

Span{F(A)} = AT M (vol) ~ f(FAF)

The functional is just the volume:

The linearization (around de Sitter) is the same for any f()

i For any choice of f() - a theory of |
i interacting massless spin 2 particles | specific f() - GR



Deformations of GR

All other choices of f() lead to can be shown to correspond to the
different (from GR) interacting agrangtan with an Infinite set o
: . . counterterms added
theories of massless spin 2 particles

seemingly impossible due to the GR uniqueness, but specific
(sometimes innocuous) assumptions that go into each version of
the uniqueness theorems are explicitly violated here

Not a dynamical theory of Guv

(in its second-order formulation)

A generic theory is not parity invariant!

Modified gravity theories with 2 propagating DOF - a very
interesting object of study



Parity violation is quantified in scattering amplitudes

In GR only parity-preserving processes:
\+ +i \ -j \” 'i
+ + T - - -
, 1 s3 B\’
amplitude A ~ M2 tu ~ (ﬁp>

becomes larger than unity at Planck
energies, cannot trust perturbation theory



In a general theory from our family parity-violating
processes become allowed:

84 + t4 + U,4
M8

AN

stu <E>6
AN—GN _—
e~ \ M,

A general theory likes negative helicity gravitons!

Can speculate that at high energies these processes will dominate and all gravitons will get
converted into negative helicity ones (strongly coupled by the parity-preserving processes)



Quantum Theory Hopes

Remark: no dimensionful coupling constants
in any of these gravitational theories

Non-renormalizable in the usual sense

Hope: the class of theories - all possible f() - is large enough
to be closed under renormalization

Of(F A F)
0 log 1

= Br(F'AF)

l.e. physics at higher energies continues to be
described by theories from the same family



The speculative RG flow

strongly coupled negative helicity gravitons at high energies
= no propagating DOF ! = topological theory !

frop(F' A F) = Tr(F A F) necessarily a fixed point
of the RG flow

corresponds to a topological theory
(no propagating DOF)

ftop

JGRr * Planck scale



Summary:

® Dynamically non-trivial diffeomorphism invariant gauge theories
® The simplest non-trivial such theory G=SU(2) - gravity

® GR can be described in this language (on-shell equivalent only)
= possibly different quantum theory

® Computationally efficient alternative to the usual description
(no propagating conformal mode even off-shell)

® Different from GR (parity-violating)
theories of interacting massless spin 2 particles

® |f this class of theories is closed under renormalization

understanding of the gravitational RG flow

—
description of the Planck scale physics



Open problems

Chiral, thus complex description. Unitarity?
Coupling to matter?

Enlarging the gauge group - rather general types of
matter coupled to gravity can be obtained. Fermions?

Closedness under renormalization?

Are these just some effective field theory models,
or they are UV complete as Yang-Mills?



