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Disambiguation:  What this talk is NOT about

Gravity = (Gauge Theory)^2
string-theory inspired 

KLT relations

Bulk gravity  = Boundary gauge theory

color-kinematic duality

AdS/CFT 
correspondence

Gravity as gauge theory of Poincare group

Gravity = SU(2) gauge theory



General Relativity (in 4 dimensions) 
can be reformulated as an SU(2) 
gauge theory (of a certain type)

results on zero scalar 
curvature in early 90’s

KK  PRL106:251103,2011

Main message:

Why should one be interested in any reformulations?

There are many:

Tetrad (first order) formulation 

Plebanski (Ashtekar) self-dual formulation

Mac Dowell-Mansouri SO(2,3) gauge theoretic formulation

...

Have not helped. Gravity is still best 
understood in the original metric 
formulation. So is the problem of 

quantum gravity (non-renormalizability)

Some exceptional things happen in the new formulation!

Capovilla, Dell, Jacobson

Λ �= 0



gµν - spacetime metric

SEH[g] = − 1
16πG

�
(R− 2Λ)

Rµν ∼ gµν

General Relativity

Beautiful geometric theory 
that physicists study for 
already about a century! 

Very “rigid” theory! Any 
modification messes it up

Several GR uniqueness 
theorems

GR is the unique theory of interacting massless spin 2 particles

But GR is also very much unlike all other theories!

the only theory that is not scale invariant (apart from the Higgs potential term)

non-polynomial Lagrangian (in terms of the metric); non-renormalizable

there is a scale Mp



Linearized description:

L(2) = −1
2
(∂µhρσ)2 +

1
2
(∂µh)2 + (∂µhµν)2 + h∂µ∂νhµν

h = hµ
µ“wrong” sign 

dim(hµν) = 10 (per point)

diffeomorphisms

−4− 4→ 2 propagating DOF

conformal mode

gµν = ηµν + κhµν
κ2 = 32πG

hµν → hAA�BB� ∈ S2
+ ⊗ S2

− ⊕ (trivial)

Count of propagating DOF:

Spinor representation:

after (covariant) gauge-fixing all 10 metric components propagate 

S± unprimed/
primed spinors

(Euclidean) action 
unbounded from below!

µ→ AA�TM = S+ ⊗ S−

conformal mode problem



Einstein gravity perturbatively: Nasty mess... Expansion around an 
arbitrary background gµν

quadratic order (together with 
the gauge-fixing term)

cubic order
from Goroff-Sagnotti 

“2-loop” paper

even in flat space, the corresponding vertex has about 100 terms! 



quartic order

Imagine having to do 
calculations with these 
interaction vertices!



We now know that computing Feynman diagrams is not the simplest approach to the problem

In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a 
graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are 
these: 

In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a

graviton-graviton scattering in tree approximation, for his Ph.D. thesis [28]. The relevant diagrams are

these:

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions

in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this

was not a trivial calculation, in the days before computers with algebraic manipulation capacities were

available. And yet the final results were ridiculously simple. The cross section for scattering in the

center-of-mass frame, of gravitons having opposite helicities, is

dσ/dΩ = 4G2E2 cos12 1
2θ/ sin4 1

2θ

where G is the gravity constant and E is the energy [28].

In string theory there is only one diagram, namely

and its contribution to the graviton-graviton amplitude is relatively easy to compute, giving the same

result as that obtained by my student.

The other “pretty” feature of string theory concerns the topological transitions. In conventional quan-

tum gravity topological transitions are impossible. I say this despite occasional efforts that have been

made in the past to sum “amplitudes” for different spacetime topologies in “Euclidean quantum gravity,”
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where G is the gravity constant and E is the energy.

From: Bryce DeWitt

Quantum Gravity, 
Yesterday and Today

arXiv:0805.2935

Using BCFW on-shell technology, the calculation becomes a homework exercise

Using the spinor helicity methods, the computation becomes doable

Still, having a simpler off-shell description would be important

Still, they were done...



Linearized gauge-theoretic description

ai
µ

infinitesimal SU(2) 
connection

(around de Sitter space)

i = 1, 2, 3
µ spacetime index

Spinorial description: µ→ AA� i→ (AB)

ai
µ → aAA�

BC ∈ S+ ⊗ S− ⊗ S2
+ = S3

+ ⊗ S− ⊕ S+ ⊗ S−

a(ABC)
A� aA�E

E
A

only depends on the 

S3
+ ⊗ S− part of aAA�

BC

pure gauge 
(diffeomorphisms) part

dim(S3
+ ⊗ S−) = 8 (per point)

explicitly non-negative 
(Euclidean signature) functional

L(2) ∼
�
∂(A

A� aBCD)A�
�2

after gauge-fixing only 8 connection 
components propagate (an irrep of Lorentz!)8− 3− 3→ 2 propagating DOF

SU(2) gauge rotations 

Count of propagating DOF:



complete off-shell cubic vertex 
significantly more complicated 
expression in the metric case 

where the spinor contraction notations are

4 Interactions

The cubic interaction vertex is obtained from the third order terms in the expansion of the action.

We introduce some notation to simplify the tensorial structure

(Σ∂a)
ij

= Σiµν∂µaj
ν , (�aa)

i
µν = �ijkaj

µak
ν , (�∂a∂a)

ij
= �µνρσ∂µai

ν∂ρa
j
σ. (60)

Then

S(3)
=

1

MpM

�
d

4x

�
1

4

�
δi(kδl)(mδn)j −

1

3
δijδk(mδn)l

�
(Σ∂a)

ij
(Σ∂a)

kl
(Σ∂a)

mn
(61)

−1

2

�
δi(kδl)j −

1

3
δijδkl

�
1

i
(Σ∂a)

ij
(�∂a∂a)

kl

−M2

2

�
δi(kδl)j −

1

3
δijδkl

�
(Σ∂a)

ijΣkµν
(�aa)

l
µν +

M2

i
�µνρσ∂µai

ν(�aa)
i
µν

�
.

The interesting part from this point of view?

Fourth order terms...

5 Feynman rules

5.1 Spinor methods

We now introduce a spinor notation which greatly simplify the computations. Our conventions are

presented in the appendix. The translation rule is that each spacetime index becomes a pair of primed

and unprimed spinor indices and each internal index becomes a symmetrized pair of unprimed spinor

indices multiplied by a factor
√

2. For the field a we have

ai
µ �−→

√
2a(AB)

MM � . (62)

We also introduce some notation to simplify the spinorial expressions. We basically omit pairs of

naturally contracted indices, eg.,

(aa)
ABCD

= aABM
M �aCD

M
M �

, (aa)
M �N �CD

= aCD(AM �
aCD

B)N �
, (63)

(∂a)
ABCD

= ∂(A
M �aB)CDM �

, (∂a)
M �N �AB

= ∂C(M �
aC

ABN �),

(∂a)
AB

= ∂(A
A�aB)C

C
A�

, (∂a)
M �N �

= ∂A(M �
aA

B
B

N �).

The variations of the X̂ variable in spinor notation become

δX̂ij �−→ 2δX̂ABCD 1

MpM

�
(∂a)

ABCD
+ (∂a)

CDAB
�

δ2X̂ij �−→ 2δ2X̂ABCD
=

2

M2
p M2

�
(∂a)

MNAB
(∂a)MN

CD − (∂a)M �N �AB
(∂a)

M �N �CD − 2M2
(aa)

ABCD
�

δ3X̂ij �−→ 2δ3X̂ABCD
=

6

M3
p M

�
(∂a)M �N �AB

(aa)
M �N �CD

+ (∂a)M �N �CD
(aa)

M �N �AB

− (∂a)
MNAB

(aa)M �N �CD − (∂a)
MNCD

(aa)M �N �AB
�

and the third order Lagrangian

L(3)
=

2

MMp
(∂a)

ABCD
(∂a)

M �N �
AB(∂a)M �N �CD −

1

4MMp
(∂a)

ABCD
(∂a)AB(∂a)CD (64)

+
4M

Mp
(∂a)

M �N �AB
(aa)M �N �AB.
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the only part that is relevant for MHV
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k

k k

graphical representation of the 
3-derivative vertex

Interactions: expansion around de Sitter M2 = Λ/3

In terms of computational complexity, the above vertex 
is analogous to that of  YM^2 type by Bern 



Comparison with Yang-Mills:

Spinorial description: µ→ AA�

L2
YM ∼ (∂(A

A� AB)A�
)2

quadratic order (not gauge-fixed)

F+

can rewrite the YM Lagrangian as

- self-dual part of the curvatureLYM = − 1
4g2

(F+
µν)2

our linearized graviton Lagrangian and the cubic 
vertex is just the generalization to the case 

AAA� ∈ S+ ⊗ S−

AABCA� ∈ S3
+ ⊗ S− spin 2

spin 1

cubic order

gauge indices 
suppressed

L3
YM ∼

�
∂(A

A� AB)A�
�

AM �
AAM �B



Simpler than the metric-based GR

The gauge-theoretic formulation

vertices are much simpler in this formulation

Suggests generalizations that are impossible 
to imagine in the metric formulation 

GR is not the only theory of interacting massless spin 2 particles!

Suggests new (speculative at the moment) ideas as to what 
may be happening with gravity at very high energies

conformal mode does not propagate even off-shell

convex action functional



Self-duality

Λ2M two-forms on M

Riemannian 
signature for 

simplicity

wedge product of forms gives a conformal metric 

Λ2M ⊗ Λ2M → Rfull metric if a volume form on M is chosen

signature 
(3,3)

If metric on M is chosen
Hodge dual

∗ : Λ2M → Λ2M

∗2 =
�+1

-1
Riemannian

Lorentzian

Λ±M eigenspaces of *
of eigenvalues ±1(±i)

self (anti-self)-dual 2-forms



Thus, given a metric get Λ2M = Λ+M ⊕ Λ−M

restriction of the wedge-product 
metric on             is positive-definiteΛ+M

Remark: Hodge dual is conformally-invariant
only need a conformal metric on M to get the above split

In the opposite direction the correspondence also holds

Split Λ2M = Λ+M ⊕ Λ−M
⇒ conformal 

metric on Msuch that the first subspace is 
positive-definite

Explicitly:
gµν ∼ �̃αβγδ�ijkBi

µαBj
νβBk

γδ

Bi
µν a basis in Λ+M



The above relation proves an isomorphism of group spaces

SL(4)/SO(4)

conformal 
metrics on M

SO(3, 3)/SO(3)× SO(3)

Grassmanian of 
3-planes in Λ2

⇔

Conformal metrics can be encoded into the 
knowledge of which forms are self-dual 



Riemann : Λ2M → Λ2M

Curvature and self-duality

Or, in terms of the self-dual split
+

+
-

-
Q,P - symmetric 

3x3 matrices

Einstein condition
Riemann = Λ metric

⇔ 10 equations

Bianchi identity ⇔

Riemann =
�

Q N
NT P

�

N = 0
TrQ + TrP = 2Λ

�

TrQ = TrP

Differential Bianchi identity ⇔ Λ = const
don’t need the 10th 

equation as independent



Connection on Λ+M

Levi-Civita connection on T ∗M ⇒ connection on Λ+M
(self-dual part of Levi-Civita)

Its curvature        is the self-dual part of the Riemann 

Einstein condition:

Curvature of the metric connection on  
is self-dual as a two-form

Λ+M
N=0

trQ = const

Differential Bianchi identity ⇒

F+ Q, N parts



Remarks on          bundleΛ+M

wedge product metric + volume form on M

Λ+M⇒ metric (positive-definite) in fibers of

connection in            preserves this metricΛ+M

⇒ all            are SO(3) bundlesΛ+M
Which bundle?

�

M
(Riemann)2 = 2χ(M)

�

M
(Riemann)(Riemann)∗ = 3τ(M)

Euler characteristic of M

Signature of M

(F+)2 + (F−)2

(F+)2 − (F−)2

first Pontrjagin 
form 

p1 =
�

M
(F+)2 = 2χ(M) + 3τ(M)

Hitchin

for Einstein manifolds
2χ(M) + 3τ(M) ≥ 0

bundle is fixed by the topology of M

⇒
(F+)2 = TrQ2 − TrN2



Plebanski formulation of GR

Idea: encode metric in the split Λ2M = Λ+M ⊕ Λ−M

Since all         bundles are isomorphic, fix the principal SO(3)Λ+M

bundle over M with 
E →M   the usual SO(3) invariant 

metric in the fibers

fibers su(2)

Let            be the associated bundle

p1 = 2χ(M) + 3τ(M)

Let B : E → Λ2M
such that the pullback of the wedge 
product metric to E coincides with 

the SO(3) invariant metric in E

Declare the image of E in          to be Λ2M Λ+M ⇒ conformal metric

Declare the image of the (inverse) metric in E in  Λ2M ⊗ Λ2M

(composed with the wedge product) to be the volume form

⇒ full metric

defined modulo SO
(3) rotations B ∧B ∼ δ



Connections

The metric connection in          is also encoded in BΛ+M

Lemma: ∃ unique (modulo gauge) SO(3) 
connection A in E such that dAB = 0

Lemma: It coincides with the pull-back (under B) 
of the metric connection in  Λ+M

Thus B can be taken as the basic object



Einstein equations

Theorem: The metric encoded in B is Einstein iff
∃Q ∈ End(E) : F (A(B)) = QB curvature of the self-dual part 

of the Levi-Civita connection is 
self-dual as a two-form

Action principle:

S[B, A,Q] =
�

M
Tr

�
B ∧ F (A)− 1

2
QB ∧B

�

TrQ = Λ
trace of Q is fixed 
and is not variedvarying wrt Q gives the condition that B is an 

isometry, other equations also follow



Euler-Lagrange equations

B ∧B ∼ δQ variation:

A variation: dAB = 0

B variation: F (A) = QB

To get a better feel for this, consider linearization

B ∧ b ∼ δ ⇒ b = b̃ + φB
φ ∈ C(M)

where

the trace part
the tracefree part of 
the metric variation

b ∈ E ⊗ Λ2M

b̃ ∈ E ⊗ Λ−M

But      provides an isomorphism B E ∼ Λ+M ⇒ B(b̃) ∈ Λ+M ⊗ Λ−M

This is the known identification

Λ+M ⊗ Λ−M ∼ S2
0T ∗M

symmetric tracefree 
2-tensors



The second linearized equation db + [a, B] = 0

a ∈ E ⊗ Λ1M linearized connection

To disentangle the content, consider tracefree perturbations only

Introduce a new exterior derivative

d− : E ⊗ Λ1M → E ⊗ Λ−M

a(b)⇒

Lemma: a(b̃) = d∗−b̃

b = b̃

The last equation linearized da(b) = qB + Qb

Let us take its             part (for tracefree perturbations)Λ−M d−d∗−b̃ = Qb̃

This is the tracefree part of the (linearized) Einstein condition!
(on an arbitrary background!)



Towards the “pure connection” formulation

Idea: Take A in             as the main variableE →M

Consider Einstein metrics such that             spans a definite 
3-dimensional subspace in        Λ2M

For a definite A, declare the subspace spanned by F(A) to be Λ+M

⇒ conformal metric
To get the full metric and 
Einstein equations consider
F (A) ∧ F (A) ∈ Λ4M ⊗ End(E)

In Plebanski this is
Q2Tr(B ∧B)

volume form

Definition: An SO(3) connection is called definite
if F (A) ∧ F (A) is a definite matrix

Fine, Panov

Λ2(vol) :=
�
Tr
√

F ∧ F
�2Define the 

volume form via Λ = s/4

F (A+)
⇒ conformal metric



Theorem: Let A be a definite connection in the principal SO(3) 
bundle over M with p1 = 2χ(M) + 3τ(M)

Let F be its curvature 2-form. Define

(so that                      is an isometry).    B : E → Λ2M

Then the metric defined by F (or B) is Einstein if
dAB = 0

Einstein metrics with   
and definite 

SO(3) connections (on a specific 
bundle over M) satisfyings �= 0

s

12
+ W+

ΛB := Tr(
√

F ∧ F )(F ∧ F )−1/2F

dAB = 0

alternatively, metrics for which F (A+) spans Λ+M

Examples not covered:

S2 × S2

Kahler-Einstein



Variational Principle

well-defined on the space 
of definite connections

should take a given 
bundle to get GR

p1Euler-Lagrange equations dAB = 0

where

thus precisely Einstein metrics

KK arXiv:1103.4498

partial results on zero scalar 
curvature in early 90’s

ΛB := Tr(
√

F ∧ F )(F ∧ F )−1/2F

Remark: Recalling the metric as defined by F

SGR[A] =
1

16πGΛ

�

M

�
Tr(
√

F ∧ F )
�2

SGR[A] = ΛM2
p Vol(M)

action is just 
the volume



The new functional from Plebanski

B = Q−1Fcan solve the B equation

S[A, Q] =
�

Q−1F ∧ F + µ(Tr(Q)− Λ)

now minimize wrt Q, keeping the trace fixed

µQ2 = F ∧ F⇒

⇒

⇒ S[A] =
1
Λ

� �
Tr
√

F ∧ F
�2

Λ
√

µ = Tr
√

F ∧ F precisely the same procedure as 
one that leads to the so-called 
Eddington’s formulation of GR

S[Γ] =
1
Λ

�
d4x

�
det(Rµν)

(also Schrodinger)

as in our formulation, 
it is just the volume



Half-flat metrics

The gauge-theoretic reformulation of GR gives a 
simple characterization of half-flat metrics

Theorem: A connection whose curvature viewed as a 
map F : E → Λ2M is an isometry F ∧ F ∼ δ

Capovilla, Dell, 
Jacobson ’90 gives a half-flat metric (instanton) of non-zero

Proof: Define B = F

dAB = 0Satisfies as well as B ∧B ∼ δ

Thus gives an Einstein metric with Q ∼ δ

Q|tf = 0, P |tf �= 0

Weyl curvature is purely anti-self-dual⇒

scalar curvature
Fine ’10



To get a better feel for the new functional, let us 
consider linearization (around an ASD connection)

Lemma: b̃ = d−a

φ = TrB−1(d+a)

Lemma:

B−1(d+a) ∈ E ⊗ E
where

δ2SGR =
�

M

�
B−1(d+a)

���
sym,tracefree

�2

variation of the conformal factor is not independent!

At a critical point corresponding to ASD Einstein 
metric the functional is non-negative

convex after gauge-fixing ⇒ local rigidity of ASD Einstein metrics 
(of positive scalar curvature)

the space of connections 
mod gauge transforms is 
only 9 functions per point



On-shell equivalent description of gravitons

(Euclidean) EH functional is not convex 
(conformal mode problem)

The new action (its Euclidean version) is a 
convex functional

Same critical points!

Description of GR without the conformal mode problem!

The conformal mode has been “integrated out” and is 
now absent even off-shell

z

y

Restriction of the EH action to a smaller space 
gives a convex functional

space of metrics space of conformal metrics = 
SU(2) connections/gauge



How to do calculations: Scattering Amplitudes

gauge-fixing condition invariant under shifts

(∂a)BC ≡ ∂A
A�aBCA�

A = 0in spinor terms where aABC
A� ∈ S3

+ ⊗ S−

gauge-fixed Lagrangian - functional on

L(2) + L(2)
gf =

�
∂(A

A� aBCD)A�
�2

+
3
4

�
(∂a)AB

�2
= −1

2
aABC

A�
∂2aABC

A�

5.2 Feynman rules for MHV

For MHV computations the only contributing term in the Lagrangian is the first (anti self-dual) term

L(3) =
2

MMp

(∂a)ABCD(∂a)M
�
N

�
AB(∂a)M �N �CD.

The corresponding vertex reads

V (α,β, γ)EFM
M �GHN

N �ABC
D� =

2
iMMp

(kα + kβ)E
D�kM

α N �kN

β M ��AF �BG�CH

The propagator is

∆(k)EFM
M

�
ABC

D� =
�E

(A�F
B�M

C)�D�M
�

k2

6 Polarization spinors

In our description the main dynamical field is a (complex) SO(3) connection, which in [1], [2] has been
denoted by Ai

µ, where µ is the spacetime index, and i = 1, 2, 3 is the Lie algebra one. As is common
to any modern derivation of the scattering amplitudes, the formalism of helicity states turns out to
be extremely convenient. These are most efficiently described using spinors, or, as some literature
calls them, twistors. The recent wave of interest to the spinor helicity methods originates in [8]. The
method itself is, however, at least twenty years older [9], [10]. For a concise review of the method
the reader can refer to e.g. [11]. For more details see [8] and references therein. To give a spinor
description of the helicity states for Ai

µ we need to fix our spinor notations.

6.1 Spinors

We use relativist’s spinor notations, see [12]. In this framework an important role is played by the
soldering form θAA

�
µ , which is an object that maps vectors to rank two mixed spinors. The spinor

”metrics” �AB, �A
�
B

� then give rise to a metric gAA
�
BB

� = �AB�A
�
B

� on the space of rank two mixed
spinors, and this pulled back with θAA

�
µ gives the metric gµν (modulo a signature dependant sign). We

use the signature (−,+,+,+) best suited for the Wick rotation to the Euclidean signature. With our
conventions the soldering form is hermitian (θAA

�
µ )∗ = θAA

�
µ , which then requires a minus sign in the

relation between the metric and the soldering form squared:

gµν = −θAA
�

µ θBB
�

ν �AB�A�B� . (65)

Using the soldering form θAA
�

µ any spacetime index can be replaced by a pair of spinor indices (one
primed one unprimed). It is also possible to replace the Lie algebra index i in Ai

µ by spinor indices.
In the spinor notation the connection Ai

µ reads AAB
µ , where the pair AB is symmetric. It turns out

to be very convenient to write the helicity vectors/tensors in this completely spinorial notation, and
we shall do so here as well.

6.2 Background

The discussion above assumed that a spacetime metric (or the soldering form) exists, and so can be
used for the identification of the spacetime and spinor indices. However, the main dynamical field of
our theory is a connection, and there is no metric to start with. The later arises as follows. Let us
first start with a metric background and build a certain connection corresponding to this background.
We can then forget about the original metric and use the obtained connection as our background

11

Thus, the propagator

ABC
D� M �

EFM
1
k2

only the (3/2,1/2) 
component propagates

C∞(S3
+ ⊗ S−) Analog of Feynman 

gauge in YM

Gauge-fixing:

∂µ
�
P (3/2,1/2)ai

µ

�
= 0



Spinor helicity states

These can be continued to the non-zero mass shell as

h+
AA�BB�(k) =

kAE�qE�
qA�kBF �qF �

qB�

[kq]4
, h−AA�BB�(k) =

qAqEkEA�qBqF kFB�

(kq)4
, (79)

where in the denominators, as before, one understands that eventually the massless limit will be taken,
when all the denominators get well-defined.

A relation between the connection and metric helicity can then be worked out as follows. Here
one recalls that any connection defines a (conformal) metric by requiring that the triple of curvature
two-forms of this connection be self-dual with respect to this conformal metric. In practice, at the
level of the perturbations, this boils down to the requirement that the anti-self-dual part of the
perturbation curvature ∂a is proportional to the anti-self-dual tensor Σi

[µ
αhν]α constructed from the

metric perturbation hµν (which is traceless on shell). The proportionality coefficient in this formula
is a factor of M (for dimensional reasons). Then recalling the usual rescalings needed to make h and
a their canonical normalizations we get the following relation, best stated in the spinor language:

MhAB A�B� = ∂E
A�aB�EAB. (80)

It is then easy to check that, up to inessential at the moment numerical factors, the above defined
connection helicity states reproduce the usual metric helicity. In the computation of kE

A��+B�EAB one
uses the fact that kE

A�kEB� ∼ M2�A�B� , which explains how the factors of M get canceled out to give
the correct final expression for the metric helicity. Note that in this calculation we have taken the
massless limit at the end, when no factors of M have remained.

Thus, we see that the anti-self-dual part of the linearized curvature ∂[µaAB
ν] (times 1/M) gives the

usual metric helicity states. Let us also see what the self-dual parts become. We get:

kAA�
�+A�

BCD ∼ 1
M

kAkBkCkD, (81)

where it is understood that kA ∼ kAA�
qA� . Similarly,

kAA�
�−A�

BCD ∼M3qAqBqCqD. (82)

The right-hand-sides here are just (modulo the M prefactors) the self-dual parts of the Weyl curvature
of the corresponding gravitons. The bottom line is that neither the self-dual, nor anti-self-dual parts
of the linearized curvature are zero for our states. However, the anti-self-dual part of the positive
helicity curvature vanishes in the M → 0 limit (in view of (80)), and the self-dual part of the negative
helicity curvature vanishes. At the same time, the self-dual part of the positive helicity blows up in
this limit. So, in a sense, in the massless limit the positive helicity is self-dual, while negative helicity
is anti-slef-dual as one expects, but one cannot use this fact till the very end of the calculations, once
all the spinors have been contracted.

Our final remark is that on-shell we should also have the property that our connection is just
the self-dual part of the metric-compatible spin connection. The latter is expressible in terms of the
derivatives of the metric (perturbation), and so, recalling all normalizations involved in defining the
canonically normalized fields, we must have:

MaAA�BC = ∂CB�hAA�B
B�

. (83)

It is again easy to see that for both polarizations this relation is satisfied (modulo inessential for the
moment numerical factors).

6.6 Helicity

The helicity states in our language are

ε+(k)ABC
D� =

1
M

kAkBkCpD�

[kp]
, ε−(k)ABC

D� = M
qAqBqCkD�

(kq)3

15here, as usual            are arbitrary spinors not aligned with pA, qA kA

[kp] := kA�pA�
, (kp) := kApAand are spinor products

To take the                limit

kAA�
= kAkA�

+
M2qAqA�

(kq)[kq] kAA�
kAA� = −2M2so that

need to make the (positive helicity) external momenta slightly massive
M → 0

Usual spinor helicity calculations! Same amplitudes (e.g. graviton-graviton, MHV)

the only headache is taking the                 limitM → 0 arXiv:1210.6215



Relation to the metric description 

hABA�B� ∼ 1
M

(∂a)ABA�B� aABCA�
∼ 1

M
∂(A

B� hBC)A�B�

both are true on k2 = 2M2

then our helicity states are just images of the usual metric states

both valid on-
shell only

3-vertex in the metric language

our calculations are exactly the same as ones done with the usual metric 
helicity states and the above vertex

L(3) ∼ 1
Mp

�
∂(A

A� ∂B
B�hCD)A�B�

�
hM �N �

ABhM �N �CD

square of the 
YM vertex

Bern’s 3-vertex for GR



Much simpler linearized action, 
much simpler interaction vertices!

Summary so far:

Using S3
+ ⊗ S− instead of S2

+ ⊗ S2
−

to describe gravitons

parity invariance 
non-manifest!

“Restriction” of the EH action to a smaller space of 
conformal metrics gives a convex functional

e.g. off-shell 4-vertex contains 
only 7 terms, as compared to a 
page in the metric-based case

Formulation in which the off-shell 3-vertex 
is (basically) (YM vertex)^2 became possible because the 

conformal mode does not 
propagate even off-shellin this respect similar to Bern’s reformulation 



Let f be a function on 

satisfying

f(αX) = αf(X) homogeneous degree 1

gauge-invariant

1)

2)

Then

Generalization: Diffeomorphism invariant gauge theories

f(F ∧ F ) is a well-defined 4-form (gauge-invariant)

Can define a gauge and 
diffeomorphism invariant action

g⊗S g
f : X → R(C)
g - Lie algebra of G

f(gXgT ) = f(X), ∀g ∈ G

X ∈ g⊗S g

no dimensionful 
coupling constants!

S[A] = i
�

M
f(F ∧ F )

defining 
function

F = dA + (1/2)[A, A]

Lorentzian signature 
functional



Field equations: dAB = 0

B =
∂f

∂X
Fwhere X = F ∧ Fand

compare Yang-Mills equations:

* - encodes the metric

dAB = 0

B = ∗Fwhere

Second-order 
(non-linear) PDE’s

Dynamically non-trivial theory with 2n-4 propagating DOF

Gauge symmetries:

δφA = dAφ

δξA = ιξF

gauge rotations

diffeomorphisms

apart from the single point ftop = Tr(F ∧ F )



The simplest non-
trivial theory: (interacting massless spin 2 particles)

G=SU(2)  -  gravity

specific f() - GR

Define the metric by:

Span{F (A)} = Λ+M (vol) ∼ f(F ∧ F )

S[A] ∼ Vol(M)The functional is just the volume:

The linearization (around de Sitter) is the same for any f()

For any choice of f() - a theory of 
interacting massless spin 2 particles



Deformations of GR

All other choices of f() lead to 
different (from GR) interacting 

theories of massless spin 2 particles

A generic theory is not parity invariant!

seemingly impossible due to the GR uniqueness, but specific 
(sometimes innocuous) assumptions that go into each version of 

the uniqueness theorems are explicitly violated here

Not a dynamical theory of gµν

Modified gravity theories with 2 propagating DOF - a very 
interesting object of study

can be shown to correspond to the 
EH Lagrangian with an infinite set of 

counterterms added

(in its second-order formulation)



In GR only parity-preserving processes:

+

-

+

+ + +

-+ - -

- -

amplitude A ∼ 1
M2

p

s3

tu
∼

�
E

Mp

�2

becomes larger than unity at Planck 
energies, cannot trust perturbation theory

Parity violation is quantified in scattering amplitudes



In a general theory from our family parity-violating 
processes become allowed:

+ +

- -

-

+ -

- -

++

+

A ∼ s4 + t4 + u4

M8
p

∼
�

E

Mp

�8

A ∼ stu

M6
p

∼
�

E

Mp

�6

A general theory likes negative helicity gravitons!

Can speculate that at high energies these processes will dominate and all gravitons will get 
converted into negative helicity ones (strongly coupled by the parity-preserving processes)



Quantum Theory Hopes

Remark: no dimensionful coupling constants 
in any of these gravitational theories (negative) dimension coupling 

constant comes when expanded 
around a background

Non-renormalizable in the usual sense

Hope:  the class of theories - all possible f() - is large enough 
to be closed under renormalization

∂f(F ∧ F )
∂ log µ

= βf (F ∧ F )

I.e. physics at higher energies continues to be 
described by theories from the same family = no new DOF appear 

at Planck scale, just the 
dynamics changes



The speculative RG flow

ftop(F ∧ F ) = Tr(F ∧ F )

corresponds to a topological theory
(no propagating DOF)

necessarily a fixed point 
of the RG flow

ftop

fGR Planck scale

strongly coupled negative helicity gravitons at high energies
⇒ no propagating DOF ? ⇒ topological theory ?

flow from very steep 
in IR towards very 
flat in UV potential



Summary:

Dynamically non-trivial diffeomorphism invariant gauge theories

The simplest non-trivial such theory G=SU(2) - gravity

GR can be described in this language (on-shell equivalent only)

Computationally efficient alternative to the usual description

Different from GR (parity-violating)
 spin 2 particles

If this class of theories is closed under renormalization

⇒ understanding of the gravitational RG flow
description of the Planck scale physics

theories of interacting massless

possibly different quantum theory⇒

(no propagating conformal mode even off-shell)



Open problems

Chiral, thus complex description. Unitarity?

Coupling to matter?

Enlarging the gauge group - rather general types of 
matter coupled to gravity can be obtained. Fermions?

Closedness under renormalization?

Are these just some effective field theory models, 
or they are UV complete as Yang-Mills?


