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0. INTRODUCTION

Broken symmetry is a fascinating subject of phy-
sics. Essentially it occurs in this fashion: for a physical
problem we have a group of invariance G and the solution of
the problem is invariant only under a subgroup H< G. For
instance the interactions among the ions or atoms of acrys
tal are invariant by translations and rotations and there=-
fore under the group G they generate, namely E(3), the Eu-
clidean group in three dimensions. However the crystal it
self is invariant only under its crystallographic group H

which is a subgroup of G = E(3).

Given a solution with broken symmetry of a G-in-
variant problem, this solution can be transformed by G and
yields a family (we shall say a G-orbit) of solutions. For
instance, by rotating and translating a crystal we obtain

a family of states of the same crystal.

To know which state of the family (= which point
of the G-orbit)occurs is sometimes not specially interesting;
the answer may invoke extraneous conditions: the presence of
impurities, inhomogeneities, crystal seeds decide that the
crystal is formed by a growth from this point and not from
a neighbouring point. For other problems, as you will see
in the other lecturers courses, the choice of a particular

point in the orbit of solutions is physically very impor-



tant. In this set of lectures we will mainly study another

aspect of symmetry breaking: which subgroups H of G can be

groups of invariance for states with broken G-symmetry?.

In the first lecture we will discuss this problem
when G is the Euclidean group E(3) (see II). We will have to
use some general (geometrical) concepts for the study of
group actions (I). The second lecture will be devoted to the
special, but very interesting case of differentiable action
of a compact Lie group on a manifold (III). This will give
us some hints as to why the symmetry G may prefer to break

into a given subgroup H.

The last two lectures (IV) will be devoted to the
geometrical study of the breaking of the symmetry of the ha
drons. The approach will be quite tentative because it does
not correspond to the study of the breaking for a given state,
but rather one wants to consider the breaking of symmetry of
the ﬁhysical laws themselves, We shall show that all direc-
tions of breaking of the hadronic symmetry G=(SU(3)xSU(3))
(1, P, C, PC) are very special, with exceptional mathemati-
cal properties that we will have to explain in these lectu-

res. The two main properties of these directions are:

1) they lie on critical orbits for some G-action,

2) they are idempotents or nilpotents of a G-invariant

algebra.



Note.- Notation for groups:

Cyclic group of n elements: Zn; Z_ is also denoted by 7.

Additive group of integers: Z, of real numbers: R.
Multiplicative group of positive real numbers Rf .
General linear group of nxn real (resp. complex) inversible
matrices GL(n, R) (resp.GL(n, ¢)). Their subgroups of matri

ces with determinant one: SL(n, R), SL(n, ¢).

Group of nxn unitary matrices U(n); then SU(n) =

= U(n) A SL(n, ¢).

Group of nxn real orthogonal matrices 0(n) = U(n) / GL(n,R);
then S0(n) = 0(n) SL(n, R).

E(n) is the Euclidean group (= 0(n) - inhomogeneous group)
in n (real) dimensions and DE(n) the corresponding group of

"similitude" (Euclidean transformations and dilatations).

The pseudo-orthogonal groups are denoted by 0(p, q).



I. FUNDAMENTAL NOTIONS FOR THE STUDY OF GROUP ACTIONS

We just give here the essential definitions and re

sults” .

I.1 Definitions

Consider a set E:carrying a mathematical structure
(e.g. set, vector space, manifold).We denote by Aut £ its au

tomorphism group; e.g.:

forg a set, Autg is the groupj)(f) of permutations of ele-

ments of .

for 8 a vector space, Aut E - GL(E), the linear group on &
whose elements are the inversible linear opera-

tors on 5 :

for E a manifold, Aut E = Diff E. the group of diffeomorphisms

of Eu

The participants to the GIFT III Seminar were given the
text of two lectures given elsewhere; they contain proofs

and more details.



G acts effectively on E.if Ker f, the kernel of f,

is trivial. e.g.<§, vector space, f is a linear representa-

tion of G on &, which is faithful when Ker f = {e}.

The transform of mée by g€ G is denoted by f(g).m

or simply g.m.

Our next task is to compare the actions of G.

riant if there is a morphism# E-Q——P E' compatible with the

group action:

Yee 6,¥ne&, £'(g).0(m) = 6(£(g).m) (1.1)

It is very convenient to use commutative diagrams

of morphisms:
E ] El
B
f(g)l '(g) (piagram 1)
9 2
E — s £
i.e.Vgé G, Gof(g) = £'(g)y8.

One also says that © is an equivariant morphism.

# A morphism is a structure preserving map. For sets, vector
spaces, manifolds, morphisms are respectively called maps,

linear maps, smooth maps.



Def. 3.- Two G actions are equivalent if there exists between

them an equivariant isomorphism.That is, 6 is inversible and

£1(g) = 6of(glos (1.2)

An interesting problem is to class the 1inequivalent actions

of G on E.

I.2 Classification of orbits

Def. 4.- The orbit of m€ & is the set G.m = {g.m, g € G} of

the transforms of m by G.

Def. 5.- The little group (= stabilizer = isotropy group) of

me & is the set Gm = {ge& G, g.m = m}. It is a subgroup of G.

If n € G.m,:ag &€ G such that n = g.m; therefore

g (1.3)

One says that Gn and Gm are conjugated in G.

The abstract set of all orbits equivalent (see Def.

3) to a given one (0 is called an orbit type, and it is deno-

ted by (0). The set of all subgroups of G conjugated to a gi
ven subgroup H is called the conjugacy class of H, and it is
denoted by (H). The fundamental theorem for the classifica-

tion of orbits is:



Theorem 1.- To each type of G-orbits (0) there corresponds a
conjugacy class (H), and conversely, to each (H) there co-
rresponds an orbit type (0). The groups H of (H) are the 1it

tle groups Gm of the points m of any orbit of (0).

The subgroups of a group G form a lattice, with the
partial order: H & H' &< HcC H'.

The conjugacy classes of the subgroups of G form
also a lattice: (H) = (H') <== VHe (H),V H'e(n'), Jge€a,
gHg_lc H'.

With theorem 1, this defines a partial order on the
set of G-orbit types. It is customary to take the reverse or
der: the larger the little group, the smaller the orbit. In-

deed for a Lie group G and its closed subgroups H we have:
dim G = (dim of little group H = Gm)+(dimensioncf orbit G.m)

We shall often denote a G-orbit of type (H) by [G:H].A proto
type of such an orbit is the set of left cosets gH of H in G,
with the left multiplication g.aH = gaH for the action of G.

I.3 Orbit space. Layers

Consider an action of G on E. It partitions E in

to (disjoint) orbits.



Def. 6.- The set of G-orbits of<S will be denoted by E/G and

it is called orbit space. We shall denote by m the canonical

map S—T-T—> E/G. The set of all elements of & whose little

group is conjugated to Gm is called the layer of m and we

shall denote it by S(m). Hence &, by‘the action of G, is par
titioned into layers; each layer is the union of all orbits
of the same type. Given an action of G on E we shall denote
by £// G the set of layers. It is a subset of the set {({)}

of orbit types. It can also be identified with a subset of
{(H)} (the set of cnnjugacy classes of subgroups of G), that
subset which contains the conjugacy classes of the little groups
which appear in the action of G on E. Then one can speak of
the minimal (resp. maximal) little groups of the action of G
on € or, equivalently of the maximal (resp. minimal) layers

of that action.

Example: The set of fixed points {mé&:VgeG, g.m. =m} usua
lly denoted by EG, when it is not empty, is the minimal 1la-
yer of (G,g, f£).

I.4 Transfer of group action

Given an action of ¢ on E&, E% ..., there is a '"na
tural" action of G on the mathematical structures that one
builts '"canonically" with 81, Eé ... . For instance if US,Ef
fl)’ (G, 52, f2) are linear representation of G,one defines

the linear representation f1 ® f2 on the tensor product §1® 82.
As another example the natural action of G on Hom(gl,EQ),ﬂm

vector space of linear maps from El to E is defined by

2 9

ge G, gl’—“g‘——"gs



So:

In
is
E.

is

1

g.0 = £,(g)_ o f, (g) (1.14)

8 equivariant < 08¢ Hom(Ea, EQ)G

particular, if E is a complex vector space, Hom(E, ¢) =&°
the dual of &. The elements of Eﬁ are the linear forms on
The action of G on &% is g - f(g~1)T (T = transposed); it

the contragredient representation of f.

I.5 ExamEle

Action of the Lorentz group: 0(3,1) on the space-

time with a chosen origin.

There are four layers that we can label by the conjugacy class

of their little groups:

(0(3,1)): the origin; one orbit.

(E(2)): the light cone minus the origin; one orbit.

0(2,1): the outside of the light cone; one parameter family

of orbits, the one-sheet hyperboloids of the space-

like vectors of fixed length.

(0(3)): the inside of the light cone; one parameter familyof

Of

orbits, the two-sheet hyperboloids of the time-like

vectors of fixed length.

these four strata, the first one is minimal, the three

other are maximal.



Note.- Sections III, IV, V are independent of the next sec-

tion (II), although some examples in III use the vocabulary

introduced in II.

ITI. BROKEN EUCLIDEAN SYMMETRY

To an audience of high energy physicists, it might
be useful to recall that broken symmetries appear elsewhere

in physics, and to explain how the breaking is described.

IT.1 C*—algebra of observables and states

In the most general present formulation of quantum
mechanics, the physical observables of an infinite physical

system# form a C*—algebra,CZ, i.e. a Banach space on the com

plex numbers, carrying an algebra structure with a # opera-
tion: (Aa)® = Xa®, (ab)* = b¥*a® such that the norm lall sa-
tisfies: Ha|2 = |a*a|. (0f course the algebra.ﬂn formed by

the nxn complex matrices is a C*-algebra when a® is the Her
mitean conjugate of a, i.e. a¥ = 5T and ﬂa“ = square root of

the largest eigenvalue of the matrix a®a).

A linear form onczlis a continuous linear map

élni» ¢. (ForJ:n,to any linear form ¢ there corresponds a ma

trix pcbé 'Cn such that ¢(a)=tr p¢a>‘ Any state of the system is re

It is a mathematical idealization to replace the Avogadro

number 6x1023 by infinity,



presented by a norm - one positive linear form, i.e.

¢ is a linear form such that

$(1) = 1, Vae(l, ¢(a*a) 2 0 (2.1)
(where I is the unit of the algebraCl, Ia = al = a).

Iijn is the algebra of observables, every state ¢ is repre-
sented by a positive matrix p¢ (i.e. p¢ is Hermitean and its
eigenvalues are 2 0) which is called the density matrix of the
state; it is normalized by tr p¢I = trp p¢ = 1. Denoting by Hn
the n-dimensional Hilbert space on whichJCn is the set of ope
rators, the normalized vectors x >é}%ﬁ <x,x> = 1, represent
only the "pure'" states and their density matrices are rank

one Hermitean projectors p = x><x characterized by p* =p= p%
tr p = 1. The density matrices form a convex set (i.e.if Pqo
p, are density matrices, aypg a5l 5 with 0 < ay s 0 < Ay
a; toa, = 1, is a density matrix) whose extremal elements

(i.e. elements p such that p = alpl + a2p2, ulaz # 0 =

== py = p2) are the pure states.

Similarly, for any C*—algebraéz, the states ¢ form
a convex domain in ¥ (the dual of (1) whose extremal points
are the pure states (for a general C*—algebra they may not be

representable by a state vector).

The positivity of ¢((a + Ab)* (a + Ab)) for any A

implies the Cauchy-Schwarz inequality:

lo(b¥a)|? = ¢(b*b) ¢(a%a) (2.2)



-

so if ¢(a®a) = 0, then for every béCl, $(b*a) = 0; i.e. the
elements cel such that ¢(c) = 0 form a left ideal Q¢ of Q.
On the quotient vector space(Q/Q¢ (i.e. the space whose ele
ments are the subsets of (L of the form & = aQ¢)¢ is a genui
ne Hermitean scalar product:

<a,B> = ¢(a*b), <a,i> = 0 =—> 4 = oea/%, i.e.az=g0 (2,3)

¢

We denote by H¢ the topological completion of
Cl/ﬂ¢. With the Hermitean scalar product (2.3) H¢ is a Hil-

bert space. We can also obtain a linear representation m, of

¢
CLon H¢ by

n¢(a)b = abQ¢ = (ab) (2.4)

It satisfies for the expectation value ¢ (a) of the observa-

ble a on the state ¢

( = <Q Q 2.5
¢(a) < ¢|ﬂ¢(a)| ¢> ( )
Moreover ¢ a pure state <& ﬂ¢iS an irreducible represen-
tation®.

#

For high energy physicist who had never seen that,this is
the well-known Gelfand-Naimark-Segal construction, lear-
ned by all your young students in their undergraduated
math courses (I.E. Segal, Bull. Am. Math. Soc. 53, 73
(1947), I.M. Gelfand and M.A. Naftmark, Izvest. Sec. Math.
12, uu5 (19u48)).



-

IT.2 G-invariant states

Consider the physical action of the invariance group

Gle.g.G = E(3)) on(l, the algebra of observables

6 —— Aut (2.6)

We assume that (g, a) » a(g).a, also denoted by a_(a),is acon
tinuous function from G x CLontoél. The action a gefines also
an action g — at_l of G on[}?, the dual ofél. This action trans
forms the convex set of states into itself.

Consider a G-invariant state ¢, i.e.

VaeQJVgeG, Wt4¢ﬂa)=¢(%(w)=¢(a) (2.7)
g

It defines a unitary representation U, of G on H¢(I.E. Segal,

¢
Duke Math. J. 18, 221, (1951)) such that

1

(ug(a)) = U¢(g) ﬂ¢(a) U¢(g) (2.8)

’!Tq)

U = 2.8
¢(g)Q¢ 2, ( )

When ¢ is not a pure state we will want to reduce the repre-
sentation n¢ of the algebra of observables. This may introdu-

ce the breaking of symmetry.

To expleain it we follow the forthcoming paper '"Cen-

tral decomposition of invariant states. Applications to the



-

groups of time translations and of Euclidean transformations
in algebraic field theory" by D. Kastler, G. Loupias, M. Meb
khout and L. Michel, to appear in Comm. Math. Phys.#.

I1.3 The decomposition of a G-invariant state into pure sta-

tes. Broken G-symmetry.

If the G-invariant state ¢ 1is not a pure state, we
can decompose it as a sum (which is an integral) of pure sta
tes ¢€(j where(j is a set of pure states transformed into it

self by G:

¢ pdu(y), du(y) = 1 (2.9)

g o}

With the following physical assumption of asymptotic abelian
ness (introduced by S. Doplicher, D. Kastler and D.W. Robin-
son, Comm. Math. Phys. 3, 1, (1966))

ice.¥a, bel, NoeQ¥, o([a, o (5)]) > 0 as t(e6) » = (210)

(for instance when G = E(3) the Euclidean group, t are trans

lations going to infinity), one can prove that:

dpy is G-invariant, i.e. Vgge G, du(gy) =duly) (2.11)

and that the only subsets of Cytransformed into themselves by

G are either of up-measure one or of p-measure zero.

# The first part of this paper,corresponding to II.3 was cir
culated as a Marseille preprint of R.Haag,D.Kastler, L.Mi-
chel in 1969. See also D.Ruelle, J. Functional Analysis 6,
116 (1970) and A. Guichardet and D. Kastler, J. Math. Pu-
res et Appliquées 49, 349 (1970).



Such sets Cyare called ergodic transitive. As a par

ticular case Cycan be transitive, i.e. @ is an orbit of G.

The descomposition (2.9) is carried simulta-
neously with the decomposition of ﬂ¢ into irreducible repre-
sentations. To give more details we need the following con-

cepts:

If R is a set of bounded operators on H, the commu
tant R' of R is the set of bounded operators which commute
with every element of R. Then R' is a von-Neumann algebra and
(R')'" = R" is the von-Neumann algebra generated by R.For ins

tance if R is a representation of an algebra,

R irreducible <& R' = {AI} (2.12)

By definition a factorial representation is a direct sum or
direct integral of equivalent irreducible representations.

Then
R factorial &> RnAR' = {)I} (2.13)

We denote by 7., Ug the sets {n(a), ae}, {U(g), g& G} and
by R = le Ug- Then for G-invariant asymptotic abelian non pu
re states, R is factorial. The decomposition of R into irre-
ducible representations yields a decomposition of the Hilbert

space H, into a direct integral

¢

H = H du(y) (2.14)



Each HW carries a unitary representation of the subgroup G

of G, where Gw is the little group of y.Elements g &G, g ¢ Glb
although they are automorphisms of Cz,and therefore of m({])
are not "unitarily implementable" (i.e. they cannot be re-
presented by unitary operators). Of course they can be repre

sented by an isometric operator between different Hilbert

spaces:
\Y
H ————E———* H
t
ag_l(w)
(Hf——!——+ H2 is isometric <«—> V¥V = I, vvE = 12 E>

<x,x> &>V ys>eH,, <V¥y, v¥y>

4 VX>€H1, <Vx, Vx> )

<Yy

To summarize: the G-invariant transitive state ¢

is a mixture of an orbit T of pure states. Each state

is invariant under a subgroup Gw of G. For each state y the
symmetry G is broken. This is exactly the situation we des-
cribed in the introduction (with the example of a crystal).

On the Hilbert space H, which carries the irreducible repre

v

sentation n, of the algebra of observablescz, the automor-

phisms g € G, g ¢ Gw ofcz,are not implementable.

IT.4 The symmetry groups H of transitive Euclidean states

The classification of ergodic transitive actions of
E(3) is still to be done. I will present here the classifi-
cation of transitive Euclidean states. The list of orbits

g = [E(S):}ﬂ of the Euclidean group which can appear in the de



composition (2.9) of Euclidean invariant states is completely
known. Each such orbit is characterized by a conjugacy class
(H) where H is a closed subgroup of E(3) such that [E(S):H]

carries an E(3) invariant measure du which is finite(fdu=1)#.

Then one proves that [E(S):H] is compact.

The list below gives the subgroups H in which the
E(3) symmetry can be broken for the equilibrium state of an in

finite physical system.

#

Any locally compact group G carries a left invariant positi
ve measure u(the Haar measure):V’gl, g, € G, du(glgz)

= du(g2) which is unique up to a constant factor. But p might
not be right invariant, i.e. du(gng) = Adu(gl) where A is a
positive number (Aé:Rj) which depends on g5 One shows that
A(g) is a continuous representation of G which is called the
modular function A, of G. Or course if G abelian A, = 1. If G

G G

G(G) must be a compact subgroup of Ri, so AG= 1. One

calls gigzgllggl"the commutator of g4 and g2" (eG) and G' the

compact A

derived group of G, the group generated by all the commutators
of all pairs of elements of G. Then G' is the smallest dinva-
riant subgroup of G such that the quotient group G/G' is abe-
lian. Of course if G = G', AG = 1. This is the case of Eucli-
dean group E(n), n > 2. An orbit [G:H] carries a G-invariant
measure 1iff(=if and only if)VIléPh AG(h) = AH(h). A  compact
orbit [G:H] may not carry a G-invariant measure(ex:[SO(B,l):
DE(Q)J, isomorphic to S,, the two-dimensional sphere = the
set of light-like directions) but if it does, this measure is
finite. There are non compact orbits carrying finite measures,

e.g. [SL(2,R): SL(2,2)].



Note that H is defined up to a conjugation in E(3).
However the broken symmetry classes are defined traditional-
ly by crystallographers by subgroups HC E(3) up to a conjuga-
tion in GL+(3, R), the identity component of GL(3,R) (for ins
tance two differents crystals which can be transformed into
each other by a dilation belong to the same symmetry class).

We have found five families of symmetry classes:

1. The crystallographic groups in 3 dimensions. They form 230

symmetry classes.

2. The groups generated by the group R of translations along
an axis 4 and the Euclidean transformations which induce a
2-dimensional crystallographic group (17 classes) on the
plane R2 1 3; such transformations contain a discrete group
22 of translations in R2, and eventually rotations around u

(of angle multiple of or %),rotation of m around an axis

r
3
in R2, symmetry through the R2 plane or through a plane con

taining G. This family contains a finite number of classes.
3. The groups generated by

i) the translations in a plane R?,

.. . > . . > 2
ii) a translation Mu (X#0) along the directionm u L R™.

iii) and zero, one, two or three of the following genera-

tors a, B, Y:

>
a) a rotation around u of angle rational to .

. . . 2
B) a rotation of m around an axis in the plane R .

y) the symmetry through the plane R2 or through a pla

. ->
ne containing u.



This family contains an infinity of symmetry classes, and

among them the 2 classes of l-dimensional crystal groups.

4. The semi-direct product T g K' where K' is a closed sub-
group of the orthogonal group in 3 dimensions (an infini-

ty of classes).
5. The groups generated by

i) the translations in a plane R? (as in 3.i)

.
ii) helicoidal transformation (a, r) along the axis

N
L R? with an angle 6(r) irrational to m,i.e. a = Au,

> ey e

£ 0, n(r) = 3, 8(r)/m irrational.

iii) as in 3.iii).

This family is generally forgotten in such a classifica-

tion. It also contains an infinity of symmetry classes.

When the angle © of the generator in ii)becomes ra

tional, the groups go from family 5 to family 3.

Some symmetries only in each family are realized in

nature#. Examples of symmetries in family 5 or 3 are the cho
lesteric liquids and the matter in a helimagnetic state,while
ferromagnetism is an example of a broken Euclidean symmetry

in family 4.

#

Some other realizations are only due to man, e.g. the 17
classes of two dimensional crystal symmetries are all pre-
sent in the decorations of the Granada Alhambra (see e.g.

H. Weyl, Symmetry, Princeton Univ. Press, 1952, p. 109).



-

II1.5 Broken symmetry in molecules, in phase transitions.

There is a famous theorem (H.A. Jahn and E. Teller,
Proc. Roy. Soc. (London), A 161, 220 (1937)) in molecular phy-
sics. It applies to molecules which do not possess an axial

symmetry# so their symmetry group G is discrete, e.g.

HQO -+ symmetry group G = 22 x 22

CH, - symmetry group G =.91 (permutation of the
4 H atoms, gi < 0(3))

NH3 - symmetry group G = g%

This theorem tells us that the lowest orbital electron state
belongs to a one-dimensional linear representation of G. The-
refore if this representation is not the trivial one,the sym-
metry G is broken into a subgroup H such that G'&¢ H& G where

G' is the derived group of G, defined in the footnote of p.69.

How does the symmetry change in a phase transition
e.g: liquid - crystal?. In which crystal symmetry classes can
go a given crystal under a allomorphic phase transition?.The-
re is a theory by Landau on this problem (see Landau and Lifs

chitz, Statistical Physics, § 136).

Those better understood examples can help us for the

study of symmetry breaking in hadron physics.

#

i.e. it does not apply to molecules with all their atoms on

a straight line, e.g. CO, CO2



ITI. SMOOTH ACTION OF COMPACT LIE GROUPS

We consider in this section only real, c” (i.e in-
finitely differentiable) manifolds M. Anaction of an abstract
group G on M would be defined by a homomorphism f:

G——i—» Diff M. However, since a Lie group G is defined on a
manifold, one defines a subfamily of G-actions on M, called

the smooth actions.

Def. 1.- A smooth action of the Lie group G on the manifold

M is a smooth map

G x M —t—— M (3.1)

which satisfies
¢(e, m) = m, 9Ce,, ¢(gym)) = 4(g, gy, m) (3.2)

As before, we shall denote ¢(g, m) simply by g.m.

The smooth actions of compact Lie groups have very
rich properties. We list them in III.2, 3. One of themis that
M is stratified (in the sense of Thom lectures) by the group

action, so the layers we use in that case are Thom's strata.



IIT.1 Physical examples of smooth compact Lie group action

a) Action of 0(3) on the phase space of three particles.

Let M be the phase space of 3 particles, of mass
m., (m1m2m3 # 0), with energy-momenta P with Py t Py, t Py
= p fixed. G is the little group of p in the Lorentz group,

so G is isomorphic to 0(3) (see example I.5).

There are two strata: A generic stratum, when Pqs
Pys Py are linearly independent, the little group being 22.
This stratum contains a 2 parameter family of 3 dimensional
orbits. It is open dense in M. The other stratum, Pys> PpsPg
linearly dependent, is a one parameter family of two dimen-
sional orbits [0(3):0(2)] diffeomorphic to S,, the two-di-

mensional sphere.

The orbit space is the Dalitz plot. Its inside is
the image of the generic stratum, its boundary that of the
closed stratum. It is well known that the Dalitz plot has a

natural 0(3)-invariant measure.

b) Action of 0(3) on the states of pure polarization of a

spin 1 particle.

It is an error spread in some textbooks that every
spin 1 state vector (e.g. p-state of a hydrogen atom), can
be transformed to any other one by a rotation. Pure states
of a spin j particle with non vanishing mass and given ener

gy-momentum are described by the normalized state vectors,
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defined up to a phase, in a 2j + 1 dimensional Hilbert space
and by definition of P(27, ¢), this set is the complex 2j di
mensional projective space; its real dimension is 4j. Since
dim 0(3) is 3, if 4j > 3, i.e. j 2 1, the group G = 0(3) can

not act transitively on P(23, ¢).

For j = 1, there are 3 strata: A generic one, (H4-
dimensional) one parameter family of 3-dimensional orbits,

little group Z and two two-dimensional strata of one orbit

s
each: The orbii [0(3): 0(2) «x 221 = P(2, R) of longitudinaly
polarized states (by a suitable choice of quantization axis

this state has jZ = 0), the orbit [b(S): O(QX] = 82 of circu
larly polarized states; by a suitable choice of quantization
axis such state has jZ = £ 1 which is changed into 3 1 by a
reflexion (the 0(2) little group is generated by the S0(2)

group of rotations around the quantization axis and by the ro

tations of m around a perpendicular axis#).

Professor Galindo told me the following parametrization of
the orbit space. Take the particle at rest. The polariza-

>
tion vector z can be decomposed into real and imaginary
- - R > X . 4
part z = x + iy. Note that =z 1is definedup to a phase e "'
. . S Be . .
and its Hermitean product is z*.z = 1.The orbit space 1s

the set of values of 2.211/2

- X >
= u(z) with 0 < u(z) < 1 for
the generic stratum, p(;) = 0 for circular polarization,

u(z) = 1 for the longitudinal one.
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c) Action of SU(3) on the spin-1 polarization states.

The spin-j polarization states are described by a
(25 + 1) x (2 + 1) Hermitean matrix p = p* 2 0 (i.e non ne
gative eigenvalues) with tr p = 1. The group SU(2j +1) acts

on this M manifold by

(25 + 1)2-1

p =+ upu® = upu“1 ( 3430

The pure states are defined by p2 = p i.e. rank p =1; they

form one orbit ESU(2j + 1): U(2j)J‘z P(25, ¢). (= diffeomor
phic). We treat now the case j = 1, so the manifold M is

eight dimensional.

By a unitary transformation (3.3) every p can be
diagonalized and its eigenvalues %, B, y put in a decreasing

order, so the orbit space is labelled by

(3.4)
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a + B + vy =1 a

This is the triangle MOA, 1/6
of the equilateral triangle
ABC of Fig. 1. There are 3
strata whose images in the or

bit space are:

0, one fixed point, the

unpolarized state




