*n

jo, AJ\} ]0, M], 2 equal eigenvalues, little group U(2); one

particular orbit, A, is that of the pure states.

The "interior of the triangle\“]]M, A[ (open side) is the ge-
neric stratum: 3 differents eigenvalues; on ]M, A[, y = 0,
i.e. rank p = 2; interior of the triangle, rank p = 3.

Note that this classification of spin-j polarization states
into strata of SU(2j + 1) has some physical interest, but on

ly the orbits and strata of 0(3) are completely physical. We

leave to the reader the study of this group action.

d) Action of SU(3) on R8, the octet space.

We call "octet'" the (real) vector space of the Lie
algebra of SU(3). It can be realized as the vector space of

3 x 3 Hermitean matrices with zero trace
X = X, tr x = 0 (3.5)
and the action of ué& SU(3) on x is as in (3.3)
X - u X u ! (3.5")

So similarly the orbit space is characterized by the eigenva

lues a, B, Yy of x

(3.6)

v
w
iv
<

a+ B+ vy =0 a



. . 1
It is the 60° sector y'Oa of Fig. 1 (5 of the plane) where
now O represents the zero matrix. There are three strata

again.

The octet space is a Euclidean space, with the sca

lar product

(x, y) = = tr xy (3.7)

(indeed (x,x) = 1 (a2 + 82 + YQ) 2 0, (x,x) =0 =>x = 0)

2
which is SU(3)-invariant: (uxu"l, uyu“l) = (x, y).

The characteristic equation of the matrix can be

written

x2 - (x,x)x - I det(x) = 0 (3.8)

The reality of the x eigenvalues requires

L (x,x)3 2 27(det x)2 (3.9)

This gives another (diffeomorphic) realization of the ovrbit

space (Figure 2).
We will be also interested in the

e) Action of Aut SU(3) on S7_

Where S, is the sphere of the vectors of the oc-

tet R8 with unit length: (x, x) = 1 (see Fig. 2).



The action of SU(3) on S7 yields two strata whose

image in the orbit space are:

]QQ'[, open segment. The orbits are [SU(3):U(1) X U(l)J. In
deed the matrices u which A (x,%)
commute (eq.(3.5'")) with
a diagonal matrix x with
three distinct eigenva-
lues are diagonal and they
form the subgroup

U(1) x U(1) of SU(3). It

belongs to the conjugacy

class of "Cartan sub-

groups'. Fig. 2

Q, Q', two points which represent the two orbits:

det x = % —2 , which are diffeomorphic to [SU(3): U(Q)J =~

The group SU(3) has only one class of outer auto-
morphisms, which can be represented by the complex conjuga-
tion u » u = (u-1)7T = (uT)—l. Since x & RS => ¢ ¥ csu(3),

the corresponding action on the Lie algebra is

R ~xT = - % (3.10)

This does not change (x, x) but it changes the sign of det
X, so the orbit space 87/Aut SU(3) is the segment QR, with:

]QR[, image of the generic stratum, open dense in 87.

2
Q, image of stratum of one orbit, ldet x] = ~7:, (x,x)=1
3v3



e d

R, image of stratum of one orbit, det x = 0, (x,x) = 1;
as we shall see later (IV.2) this is the orbit of the roots
of the SU(3)-Lie algebra.

II1.2 General properties of smooth actions of compact Lie

gI”OUES

For a fixed g& G, we denote ¢(g,.) by ¢ . They are
diffeomorphisms M'~_:bi_> M. For a fixed m € M, wi denote
$(., m) by b They are smooth maps G-—£m4>M with Imwm= G(m)
the orbit of M.

The orbits G(m) are closed compact submanifolds of
M. The layers are also manifolds. They are the strata of the
stratification of M obtained by the action of G. The little
groups Gm are closed. A good introduction to the study of the
compact Lie group smooth actions is R.C. Palais, The classi-
fication of G-spaces, Memoirs Amer. Math. Soc. n® 36 (1960).

The following properties can be proven:

The canonical map (see I.3)

il
M —s M/G

on the orbit space is open, closed, proper#.

# For a continuous map, inverse image f~1 (open set) = open
set; £°1 (closed set) = closed set and f (compact set) =
= compact set. If f (open) = open, the map f is open;
f(closed) = closed, then f is closed, and f proper <=
& -1 (compact) = compact.
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Let M® the set of points of M invariant under ge& G,

i.e. M8 = {m € M, g.m = m}. It is closed; so is MH ng;H Mg,
and GMH = g\EJG g.MH. If H is a maximal stabilizer in the G-ac

tion, GM  1is the corresponding minimal stratum: it is closed.

The differential d(cbg)m at m of the diffeomorphism

¢g is an inversible linear map between the tangent planes:

aCe )
T (M) g T (M) (3.11)
m g.m

(the matrix of d(q:g)m is the Jacobian). For ge& G > then

g—— d(¢ ) is a linear representation of G_ in T_(M).
g’'m m m

The group G has a finite Haar measure du(g)which can

be normalized to one: [ du(g) = 1. Given a Riemannian metric
G

A(x, y) on M, its average by G:

A (x, y) = J AMg.x, g.y)du(g) ’ (3.12)
G

is G-invariant: A(g.x, g.y) = A(x, y), so G acts on M by iso-

metries.

At each point m, Gm transforms the geodesics pas-
sing through m into themselves so the choice of a chart on a
neighbourhood of m with geodesic coordinates gives a locally

linear action of Gm (which is equivalent to the linear repre-

sentation g - d(¢g)m).

We shall study this local action in III.4. We first

give some results on:



IIT.3 Global properties of compact Lie group smooth actions

A review of these global properties is given in D.
Montgomery, '"Compact groups of transformations", p. 43 of Dif

ferential Analysis, Bombay Colloquium (1964).

a) If M is compact, the number of strata is finite.

b) This is also the case for a linear representation g->D(g)
of G on a complex space ¢n of finite dimension n. This can be
considered as a real action on RQn. Indeed, since G is com-
pact, D(g) is equivalent to aunitary representation® U(g) and
U(g) @ G(g) is equivalent to a real orthogonal representation

which acts on R2n and transforms the sphere 82n into itself.

It is very remarkable that the converse theorem is

true (G.W. Mostow, also R.C. Palais):

c) If (G, M, ¢), a smooth action of a compact Lie group, has
a finite number of strata,there is an equivariant injective
smooth map 6 into a finite dimensional R™ carrying an ortho-
gonal representation of G (and 6(M) is a submanifold of Sn

since the spheres are the orbits of the orthogonal action).

Indeed U(g) = SD(g)S“1 with S, the positive square root of

82 = ID(g)D(g)* du(g). Furthermore one proves that
G
J U(g2) du(g) = *1 or zeroj; when it is 1, D(g) is equivalent

to an orthogonal representation.



~a

Hence, in this case the action of G on M is global

ly equivariant to a linear action, but n can be very large.

d) Palais has also shown that for n large enough there is a

countable infinity of inequivalent actions of G on Sn'

e) To prove c) one first uses that the regular representation
of G, i.e. the infinite dimensional representation R of G on
the Hilbert space i;(G) of square integrable functions# on G,
contains every type of orbit [G:H], with H closed, and that
each orbit is contained into a finite dimensional subspace of

J%(G) (containing also the origin 0).

f) Montgomery and Yang have proved that there is a stratum
which is open dense. Indeed we remarked this property in all

examples III.1.

R = @& n. Di’ the direct sum over all irreducible represen-
i
tations of G, each appearing n. times with n, = dimension

of Di' The matrix elements of all Di form an orthogonal

basié of'l;(G).



III. 4 Local properties of the action (G, M, ¢)

a) The equivariant retraction

Let Q be a G-invariant submanifold of M and A(x,y)
a G-invariant Riemann metric. There exists a neighbourhood

V. such that, given x € V Min A(x, y) is unique and is ob-

Q Q’

yeQ
tained for a unique# y€ Q that we denote by rQ(x). Then
r
VQ — L Q is a smooth retraction which is equivariant for

the (isometric) action of G. If g & Gx’ the equivariance of

the map yields

r(x) = r(gx) = g.r(x), so ge'Gr(x)’ i.e. G C Gr(x) (3.13)
and when Q is the orbit G.m, this implies

< . 1

(6,) = (6.), Vxev, (3.131)

b) The local representation of G _on the orbit

If H is a subgroup of G, the normalizer){G(H)isthe
largest subgroup of G which has H as invariant subgroup. So

4
. i .
the points wm(ﬁ%(Gm)) of the orbit G.m have also G_  as

It is the foot of the geodesic from x, orthogonal to Q.

Yo has been defined in the beginning of III.Z2.



little group, i.e.

G

v O ) = eom\m "

(3.14)

G
m

We shall call (G.m)° the connected component of G.m MA\M .

c) The local representation of G on Tm(G.m)

We denote by<; the vector space of the Lie alge-
bra of G. The group G acts on g by an orthogonal linear re-
presentation, called the adjoint representation. It leaves
invariant a Euclidean scalar product and we shall denote by
gfithe subspace of g\orthogonal to){, the space of the Lie
algebra of the subgroup H of G. Let (G, G, ¢) be the action
of G on itself by left translation: ¢(g1, g2) = g848,- Consi
der now a G-manifold (G, M, ¢). Then v is an equivariant map
from (G, G, ¢) to the orbit G.m, and its differential at the
unit e € G

T (6) =§ Wde | T (G.m) (3.15)
e - T otm 7 :

maps g on the tangent space to the orbit at m. Ker d(wm)e =
> e
=¢§ so Im d(y ) dis isomorphic to (S ) . And one sees that
m m-e m
the local representation of Gm on Tm(G.m) is equivalent to
4
that of Gm on (gm) obtained by the adjoint representation
of G. This representation is generally reducible. And if
(6.m)° contains some point besides m, Tm(G.m)O is the sub-
space of the trivial component of the representation of Gm

on T (G.m).
m



d) The slice N(m) at m. Action of Gm on N(m)

The slice N(m) is the inverse image of m by the

equivariant retraction on G.m. Locally:

r—l
G.m

N(m) (m) (3.16)

In the geodesic coordinates,N(m) is a linear manifold so it

is locally the subspace of Tm(M) normal to the orbit#. For
points of N(m) equation (3.13) reads
x € N(m) = GXC:Gm (3.17)
and furthermore
for x € N(m), GX = Gm > x € S(m) (3.18)

the stratum of m.

So the linear orthogonal representation of Gm on

Tm(N(m)) decomposes into a direct sum of the trivial repre-

sentation on the subspace

F(m) = Tm(N(m))[\ Tm(S(m)) (3.19)

#

In what follows, however, we will not use explicitly local
geodesic coordinates. We need only to know that the slice
N(m) is a submanifold defined by (3.16) and its tangent
space Tm(N(m)) is the subspace of Tm(M) orthogonal to
T,(G.m).



intersection of the tangent spaces to the slice and to the

stratum at m. We will call
K(m) = F(m)l'(\ Tm(N(m))

To summarize: We have decomposed Tm(M) into the direct sum
of 3 orthogonal subspaces invariant for the local (orthogo-

nal) linear representation of G .

T (S(m))
m

et e,
Tm(M) = Tm(G.m) ® F(m) & K(m) (3.20)

G, acts trivially only on F(m) and on Tm(G.m)o. If F(m) =0,

we say that the orbit is isolated in its stratum; there is

a neighbourhood VG o of G.m which contains no other orbits

of the same type.

Note that for m' and m" of the same connected com
ponent of a stratum, the local actions of(an,rv Gm" are equi

valent#.

For more details for III.4 and III.5 see Louis Mi

chel, C. R. Acad. Sc. Paris, 272, 433 (1971).

III.5 G-invariant vector fields on M

Every physicist knows what is a vector field. For

the sake of the argument let us give a formal definition.

# Indeed, the local linear action of G at m is a continuons
function R of m valued in the set of linear representations
of G. Since the latter has a discrete topology when G is
compact, the function R is constant on each connected com

ponent of a stratum.



The tangent vector bundle

(M) = \U T (M) (3.21)
me M

is a manifold with an action of G, obtained by transfer(see

I.4) of the action of G on M and the canonical projection

t
T(M) —— M, ‘t:—1 (m) = Tm(M) (3.22)

is an equivariant smooth map for the two G-manifolds M and

T(M).

A vector field is a smooth section s
s
M — T(M), tys = Identity on M (3.23)

For a G-invariant vector field, the vector s(m) is inva-

riant under Gm; therefore

s(m)€ T (6.m)° & F(m) € T _(S(m))<T_(M) (3.24)
m m m

Hence, G-invariant vector fields are tangent to the stratum

Furthermore all G-invariant vector fields vanish

on the orbits G.m such that

(¢6.m)°® = m, F(m) = 0 (3.25)

G-invariant gradient vector fields are the gradient of G-in
p n
variant smooth functions M —— R. Such functions are cons-

tant on each orbit so their gradient is orthogonal to the or



bit, i.e.

(grad f%né F(m) (3.26)

If we call critical orbits of (G, M, ¢) the orbits which are
orbits of critical points (i.e. grad f = 0) for all G-inva-

riant smooth functions M £, R, we have established the

Theorem:

orbit isolated in its stratum =» critical orbit (3.27)

The converse 1is also true.

In ex. III1.1b, ¢, e, there were strata containing

a finite number of orbits. These orbits are critical.

In example III.le, for instance, the little group
U(2) is maximal in SU(3) so it is its own normalizer.Hence all
SU(3)-invariant vector fields on 87 have zeros on the two or

bits det x = t 2/3 /3.

As we have seen (e.g (3.24)), if the identity con-
nected component offﬂ;(Gm), the normalizer of the little group
Gm of a critical orbit is strictly larger than Gm, there may
exist G-invariant vector fields tangent and non-vanishing at
this critical orbit G.m; however if the Euler-Poincaré cha-
racteristic of the orbit X(G.m) # 0, then every smooth vec-
tor field on G.m must have a zero, and by G-invariance it is

everywhere zero in G.m.



Similarly, if S(m) is compact (which is the case
for instance when M is compact), if G maximal, so S(m) clo-
sed (III.2) and has an infinity of orbits, all G-invariant
smooth functions have at least two orbits of critical points;

these orbits depend on the function.

IIT1.6 Structure of the orbit space

We have seen in III.3 f that there is in (G, M, ¢)
a generic stratum open dense; then equation (3.13')shows that

thereisa minimal little group, corresponding to this stratum

which is therefore the maximal stratum. Montgomery and Yang
have given several conditions on orbit and stratum dimen-
sions (see Montgomery's review or the Haifa lectures); we
will give others here. Let y, u be the dimensions of G and

M respectively, W the dimension of the orbits of the maxi-

mal stratum

y' =y - w_ 20 (3.28)

is the dimension of the minimal little group which appears

in the action.

As we have also seen in III1.3 ¢, the action (G,M,
¢) is equivalent to a linear action through an orthogonal re
presentation. Let us consider more in details this case of

linear action.



Then orbits can be labelled by algebraic invariants
(we did it in the examples) so the orbit space will be a semi-
algebraic set, i.e. a set given by algebraic equations or ine
qualities. What is the dimension of the orbit space?. In the
generic stratum, it is the dimension of the stratum u, minus

the dimension of the orbits, w s SO
dim M/G = u - w_ = u - vy + y'o (3.29)

The image of the other (smaller strata) is given by relations

between these p - W algebraic invariants so it is of smaller

dimension.

As a matter of fact, since M—'— M/G is an open map,
the image of the generic stratum SO is open dense and the ima
ge of the other strata is in the boundary BSO. The criticalor
bits, which are the orbits isolated in their strata, are iso-
lated points in the orbit space: they correspond to well defi
ned values of the algebraic invariants (as we have seen in the

examples) and we will be able to recognize them easily.



IV. THE BREAKING OF HADRONIC SYMMETRY BY WEAK AND

ELECTROMAGNETIC INTERACTIONS

Except if otherwise stated, the content of IV and
V reports on papers made with L. A. Radicati. Previous refe

rences are in the last one: Ann. Phys. 66, 758 (1971).

IV.1 G-invariant algebras

We use here the large definition of algebra on a

vector space E. 1t is a homomorphism:

E®c& —-——L—» (4.1)

The tensor product 5@5 can be decomposed into a direct sum

CeE-(EoE)e (£ E) oo

of a symmetric and antisymmetric tensor product. So we can

also define symmetric, o, and antisymmetric, a, algebras by



A

\éég——g——»g, E9l = (4.3)

(0f course, there are algebras which are neither symmetric nor

antisymmetric!).

Assume now that 6: carries a linear vrepresentation
of G. If the representation on E ®E contains (by direct sum
decomposition) a subrepresentation equivalent to that on 'E‘,
we can therefore find an equivariant map (as in (4.1))for the
group action and we obtain an algebra on E which has G as au

tomorphism group.

More precisely, the set of algebras one can make in

this fashion forms a v-dimensional vector space where

v = dim Hom (E®E,E)HE (4.14)

S A
It is easy to see that E@g and ‘8@ E are stable by the

v

G action, so we can define the corresponding Vs

i

o G A G
v, = dim Hom (E@g,é) s v_ dim Hom (E®E,E) (4.5)

v oz v o+ v (4.5")

For example, for a simple Lie group G and its adjoint repre-
sentation (i.e. as we have seen, the representation on the vec
tor space of its Lie algebrag), v = 1 and the corresponding

algebra is the Lie algebra; v, = 0 except for the simple Lie



groups of the series A, (1 > 1) whose compact form is

1
Su(n).

IV.2 Geometry of the octet

The aforementioned property was well exploited by
Gell-Mann in his first paper on SU(3) to study the two alge
bras on the Octet.

In ITII.1d eq.(3.5) we have repreccnted the octet

space R8 by 3 x 3 matrices
X = x*, tr x = 0 (4.6)
with the Euclidean scalar product
(x, y) = i Xy (4.7)

2

and the SU(3) action

u€ SU(3): x —> u x u (4.8)

The Lie algebra is represented by
i
XANY ¢ F (xy - yx) (4.9)

and the symmetric algebra by



V3 4
IV (xy + yx - 3 (x,y) I) (4.10)
(where I is the unit matrix).

Note that our definition of the symmetrical alge-
bra is ¥3 times that of Gell-Mann, but there are good esthe

tical arguments to use the 1 and ié coefficients in (4.9)

2 2
and (4.10).
Gell-Mann called f.. and d.. the structure
ijk ijk

constants of the algebras, i.e. with an orthonormal basis
X.

i

()\i, xj) = 5l.j, xi,\xj = fijkxk, Aiv xj = /3dijkxk (4.11)

The characteristic equation (3.8) becomes

xe(x v x) = (xyRIyx = xyg Xy x = (x,x)x (4.12)

So all elements are idempotents of power 3.
One easily proves from 4.12 that

(xy x, xyXx) = (x,x)2 (4.13)

From now on to simplify the writing we shall use only unit

vectors, i.e.



(x, x) =1 (4.1y)

Every idempotent of power 2 satisfies then:
av ¢ T qg=0 (4.15)

Since this is a second degree equation, it shows that the

q's have only two distinct roots, so they have two equal

roots and they form the two critical orbits of the SU(3)-
-action on S(7) (see III.le). Given an arbitrary element x,
generally x and x,, x are linearly independent, and they ge
nerate a y-algebra. Because of (4.12) this algebra is two
dimensional and it is the maximal abelian a-algebra contai
ning x, so by definition it is the Cartan-subalgebra gx ge
nerated by x; it is the Lie algebra of Gx’ the little group

of x.

The adjoint representation of the Lie algebra of

SU(3) on R8 is
xv+—> f(x), f(x)y = xA ¥ (4.16)

By definition the roots of the Lie algebra satisfy the fol
lowing property: given a Cartan subalgebra gx’ the Hermi
tean operators ixf(a), a € g; commute and they have as spec

trum (= set of eigenvalues):



a e‘;x, Spect.[in(a)]= twice zero and (a, ri) (4.17)
r.(i = 1 to 6) are the 6 roots of g‘.
i X

One shows that the characteristic equations of the

roots are given by

(r, ) =1, 6(r) = (ryr, ) =0 (4.18)

So all roots are on a single orbit of SU(3) on S7. This or-
bit is critical for the action of Aut SU(3) as we have seen

in III.1le.

As every high energy physicist knows the 6 roots of

a Cartan are at the vertices of a regular hexagon, so if r.

i
is a root, - r. is also one and S r. = 0.
i . i
i=1
The vectors q defined for every root r as
qQ =ryr (4.19)

are idempotents of the Lie algebra. They satisfy (4.15) with
the + sign. Note that there are 3 such vectors in a Cartan.

They satisfy

) a. = 0 (4.20)



We call them pseudo-roots or y-roots because if one defines

d(x) by
dix)y = xyvy (4.21)

then d(x) is an orthogonal operator on R8, with spectrum:

aegx, Spect d(a) ={/y(a), - VYy(a),twice (a,qi), i = 1,2,3}

(4.22)
i.e. each d(a) has 3 eigenvalues doubly degenerate.
Since the continuous function x » 6(x)
e(x) = (x, x, x) (4.23)
is odd 0(x) = - 6(- x) (4.2u)

in every 2-plane of the octet this function must have at
least two zeros on the unit circle. So every two-plane con-
tains at least two roots. There are 3-planes and L-planes of

the octet which contain only root-vectors (up to a scalar
factor).

For instance, given a pseudo-root q, its centrali
zer, (i.e the Lie algebra of its little group) is the four
dimensional space Uq(2). The perpendicular space Uq(?fL con
tains only root vectors. The perpendicular space to g in

Uq(2) is SUq(?) which also contains only root-vectors.



Equation (4.12) shows also that there are no nil
potents: a # 0, aya = 0. However, if we consider the com-
plexified space ¢8 of R8, its elements are traceless 3 x 3
complex matrices and we can extend by (4.9) and (4.10) the

a-and y-algebras.

Then consider two real roots ry, T, belonging to

the same SUq(Q). One proves

Ty r2 roots: r,vry = rov r, = 4q = ryv T, = (rl, r2)q

(4.25)
So if
1 .
= = — +
(rl, r2) 0, r, 5 (r1 £ 1 r2) (4.26)
we have complex nilpotents
r.ov r, = 0 r vy r_ = 0 (4.27)
Note that
r, = T, AT, (4.28)

forms with r, and r, an orthonormal basis of SUq(Q).
For more information on the "Geometry of the oc-

tet" the reader is referred to the preprint of that name

(1969 - Pisa and Tel Aviv) which will appear this year in

Ann. Inst. H. Poincaré.
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IV.3 The geometry of the Lie algebra of SU(3) x SU(3)

This Lie algebra is the direct sum

su(a)t @ su(3)”

where * are the sign of the chirality. We know the action of
the charge conjugation C on it (see 3.10). The parity opera-
tor P is also an outer automorphism of SU(3) x SU(3)which ex
changes the two factors. The action of the product CPis then

defined.

We can extend the scalar product and algebras defi
ned on R8 to R16, the vector space of su(3) @ su(3)”. e
shall use a -~ to indicate elements of R16 and no ~ for those

of R8. Explicitly,

T:a,®a, (3,F)=(a,, b)) (a, b)) (4.29)
;o -
(apab) = (a A b)) & (a_pAb_) (4.30)
(F3,B) = (a vy b)) ® (a_vb) (4.31)

We leave to the reader to look for the idempotents of the \,~al

gebra.
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IV.4 Tensor operators

We need to recall a precise definition of "tensor
operators'" used in physics: they are not operators on}f,the
Hilbert space of state-vectors. Assume that we have a symme
try group G acting on o€ by the unitary representation U(g)
and on a finite dimensional space E by the representation
D(g). We denote by i:(3€) = Hom (36,96) the vector space of
linear operators on}€ . Then a E—tensor operator for G is
an element of Hom (8 ,4:(36))G, i.e, it is an equivariant

linear map T:
E—1 - L (4.32)

which therefore satisfies
VneE, Vee c: Utg) 1(m) W)™ = 1(0(g)p)  (4.33)

Let us call respectively L and iF the representation of the

Lie algebra g; obtained by differentiation of D andT], i.e.
~ ~ -~ ~

Y 3, beg, (L), t3)] = L&A D) on &  (4.3%)

[F(Z), F(3)] =ir(3 A D) on 3  (s.381)

(the F(Q)'s are Hermitean).
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Then equation (4.33) yields:

[F(3), T(m)] = iT(L(Z)m) (4.35)

We remark that, if Eiff Ei and Ti’ T2 are two tensor opera-
tors, we can define the tensor-operators T1 + T2, T1(9 T2,

T1 ® T, by sum or product of images, namely

2

T, + T
E om0 ! 2 Ty(m) + T,(m)
T, ® T
éie gza D, ® my ! . : Ty(m ) + Ty(m,) (4.36)
T, ® T
L1 2
€1®EQ 2n,® m, | T, (m,) . T,(m,)

For the readers not used to our notation, may we
remind that for the rotation group they use the notation:
> >, ~ ; - = > R - .

J . n instead of F(m) with [J.nl, J.nzj = i J.n;xn,, which
is strictly similar. So for instance the symbolic notation
IxJ = i J corresponds to FAF = iF and the D operators on
X are defined by D = Fy F (see also L. Michel. Lecture No

tes in Physics 6, 36 (1970) Springer).
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IV.5 The weak and electromagnetic directions of breaking;

weak and strong hypercharges

The hadronic symmetry group, started in 1932 by Hei
senberg as SU(2) has grown very much since 1960.We shall sta

bilize it at

G = (SU(3) x SU(38)) 4 (1, P, C, PC) (4.37)

and in the following, except if otherwise stated, we shall
use G for this group. It always describes an approximate sym
metry. If G, or even a subgroup H of it, were a groupof exact
symmetry, there would exist a fundamental degeneracy in natu
re that we could not explore (it may appear just as parasta-
tistics). Because the G symmetry is approximate we are able
to orient ourselves in the hadron internal symmetry space and
it was soon recognized that the electromagnetic interaction
and also the weak interaction were pointing at some definite
directions in this space. However Feynman and Gell-Mann(Phys.
Rev. 109, 193 (1958)), Cabibbo (Phys. Rev. Lett. 10, 531
(1963)) and Gell-Mann (Physics 1, 63 (1964)) found a much
deeper relation between these two kinds of interaction. This

fundamental discovery can be summarized in one sentence:

For hadrons the electromagnetic current j"(x), the
vector part v"(x) and the axial vector part a’(x) of the weak

current are images of the same tensor operator hu(x), which

belongs to the adjoint representation of G.



