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These currents define the following unit vectors in

the Lie algebra S of G:

M) = -@h“u,?{)
VE(X) = % hu(x, cl) (4.38)
al(x) = Z n"(x, 3

We will assume that the Cabibbo angles QV and 6, are
equal, as the experimental data suggest. So we can also assu-

me that the total weak current is an image of the same tensor

operator

wi(x) z vz(x) - ai(x) = hu(x, Zt) (4.39)

Equations (4.38) and (4.39) define the following directions in
the octet: a pseudo root q, and two orthogonal roots CysCy SO

that

cz-;—(ciic) (4.40)

That the weak currents are electromagnetically char

ged impose that c, are eigenvectors of g, , 1.e.

QA c, =15 c (4.40")
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~ . - 3 .
Then q (as all directions of vector currents) is a unit vec-

tor of the diagonal subalgebra SU(S)d, while €+ are in the

SU(3) algebra of (-)chirality

5 = 2 (g ® q) (4.41)

2

ol
I+

= L& + 1% ) with ¥, (0 ® c.) (4.42)
2 2 1 1

There was some similarity between the two strikingly so dif-
ferent electromagnetic interactions and weak interactions as

their Hamiltonians show

H o= e | (3" (x) + 2% (x))a (x) d°%  (n.u2')
em em U

He= 1o | ko s e o v o

e=+t V2 ?

(4.y2m)

where ng’ QE are the electromagnetic and weak leptonic cu-

rrents and Ap is the electromagnetic field.

However, the non leptonic part HNL of Hweak con-
tains terms which do not appear in Nature because they would
e 1
violate the AI = 5 rule for fAY! = 1 transitions. This di-
sagreable feature does not occur in the variant for HNL pro-

posed by L. Radicati (in "01ld and New Problems in Elementary
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Particle Physics", p. 272 (Ac. Press, New York, 1968)); it
keeps only the adjoint representation part (8,1) @ (1,8) of

H i.e.

NL?

Radicati H = H! =

H ~ ~ 3
NL NL z h™(x, Ci)th(X’ Ci)d x (4.43)
€

Sl

where we have defined the symbol ,, between tensor operators

elsewhere (see ref. at the end of IV.4). So H'NL is a tensor

operator in the direction:
-~
z = (0& z)

with (compare with equations 4.25-28)

z = 2c+ v €= Ciy ¢ e,y C, = C3v C4 (4.4y)

Cy T S A (B.u45)

So z is a pseudo-root. We call z the weak hypercharge direc
tion. The strong hypercharge direction y in the octet is gi

ven by the hadron strong mass breaking. It is also a pseudo

-root.
We remark that if q; (i = 1, 2) are two pseudo-
roots
1
93v 93 * 43 05 9349, =0 & (q;, q,) = - 5o0r 1

(4.46)
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Electromagnetic charge conservation by strong and weak mnon

leptonic interactions implies

aAny =0, a Az =0 (4.47)
or equivalently
vy =49ty, av z2 =9t 2 (4.u7")
SO
(q, y) = - 5 = (a, 2) (4. 47m)

But since weak interactions violate hypercharge, (y, z) has

a different value:

- % < (y, z) =1 - =5 sin2 6 < 1 (4.u48)
where 6 is the famous Cabibbo angle.

To explain its value 6 = .23, is a challenge of ha

dronic physics (see V and Cabibbo's lectures).

However we do note the vector relation in the oc-

tet

2y v 2 t+ y + z + 3q sinZ 8 = 0 (4.49)
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IV.6 The algebra of currents

The action of SU(2) or Uy(2) on the Hilbert space
of hadrons is obvious (and it is given in the Rosenfeld ta-
bles!)s but how do we know the action of G = (SU(3) x SU(3))
a (1, P, C, PC)?. The answer is that Nature tells us and a se
cond sentence (the first one was given in IV.5) summarizes

the main progress in hadron physics:

"The generators F(3) of the Lie algebra representa
tion of G on the hadron space }C are given by the integral of

the currents on a space-like surface:

F(t, %) = ho(x; B) d°% (4.50)

x%=t
If the symmetry G were exact, we would have
auh“(x;’é) =0 (4.51)
~
and F(a) would be independent of t.

Since this is not the case, the action of G on &
depends on t according to (4,50). There is a drawback. If
(4#.51) is not satisfied, Coleman (J. Math. Phys., 7, 787,
1966) has shown that F(t,/;) is not selfadjoint so exp{
ir(t, g)b for all’g, do not yield a unitary representation of
G. There is a mathematical difficulty here to be solved, but
meanwhile physics should continue. Gell-Mann has proposed a

richer formulation of the algebra of currents g
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7
§(x - x') h° (t, x3 3 A b)

o}
e
=y
o
—~
+
b
X ¥
log
S
—
it

(4.52)

If (4.50) is well defined, by double integration (4.52)yields
(4.34").

Another interesting question, since (4.51) is not
satisfied, is to find the value of the divergence of the cu-
rrents. It is often assumed that the G non-invariant part of
the total Hamiltonian is the integral on space of a Lorentz
invariant density H (which has to be the image of a tensor

operator in a direction m')
S~
R

~ o~ ~

H(x, m') = )—((x, neaqe c,® c2€B z), (4.53)

when one takes into account the mass breaking term of strong
interaction, the electromagnetic interaction, the weak lepto
nic and non leptonic interaction). With such a hypothesis and
some assumption of good mathematical behaviour of the physi-

cal quantities and use of equation (4.35), one proves that

o pM e, T - Hix, LZ) m) (4.50)

The relevance to hadronic physics of the different
hypothesis (4.50) and (4.34"') or (4.52) or (4.53) will be

mainly discussed in B. Renner's lectures.
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IV.7 Why critical orbits and idempotents of the algebra

appear in the breaking of hadron symmetry

We have to emphasize that by a large variety of ex
periments observing for instance parity and/or hypercharge
violating or conserving effects, the octet directions y,q,z,
Cys Sy which Nature gives us enable us to orient ourselves
completely in the octet space (indeed with the operations A
and y and linear combination y, g, 2z, cys Sy generate the full
octet#). This is not completely true for the SU(3)t ® sSU(3);
some directions in SU(S)+ seem out of reach if one does not

add the parity operator which exchanges su(3)" and su(s)”.

Although the tensor operators depend linearly on
their argument, it is only their value on the sphere of unit
vectors which is physically relevant: e.g. J.n is the angular
momentum component only when n is a unit vector; e.g. see the
quoted Cabibbo's paper and how he had to insist that the cu-

rrent was of "unit length" (his quotation marks).

We have already noticed that the primordial direc-
tions of the octet are on the two critical orbits (y,q,z, on

1» ¢, on the other) of the action of Aut SU(3) =

= 8U(3) g (1, C) on 8.

one, c

More precisely, the smallest subspace of the octet which is
both a A - and a w-subalgebra and which contains y, q, 2z,

c is the full octet.

c 2

1’
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The action of G on its Lie algebra is richer, (see
Michel and Radicati quoted above). It has twelve strata and
five critical orbits,one per minimal stratum. E@’; are on one,
Z is on another, 31’ ?2 on a third onej; a fourth ocne could be
a candidate for bearing the CP violation direction. Must the

fifth one also bear a primordial physical direction?.

I hope that the role of critical orbits is clear to
all physicists. In any physical theory blending a group inva
riance and a variational principle, symmetry breaking solu-
tions will appear on the critical orbits (other solutions may
also appear elsewhere). So the results of many models of sym
metry breaking in the physics literature are absolutely inde
pendent of the function to be varied in the model (generally

the Lagrangian), they just verify the general mathematical

theorem.
We also verify on the complexified octet:
Yvy =-%¥, dyd * -9, 2y2 = -2, c,yc, =0 (4.55)
and on ¢16
A},’VAS; = %‘3’1, Ellv?ll = %E, Ejv,\?: = -7, Aclivﬂcjt =0 (4.56)

and we understand why idempotents and nilpotents of symmetric

algebras appear in symmetry breaking

The hadronic physical quantities are at each time
tensor operators of G and equations of hadronic physics are

covariant for G. A covariant relation between tensor opera-
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tors implies a geometrical equation for their arguments. A
non linear equation for a tensor operator (e.g. a bootstrap
equation) will imply a non linear equation on its argument;

the simplest such equation is

~ o~
X y X = k: (4.57)

with A # 0 (idempotent) or A = 0 (nilpotent).

IV.8 Real or complex algebra? SU(3) or SL(3, ¢)2.

Since weak currents carry an electromagnetic char
ge, they cannot be Hermitean. It is true that we can write

the Hermitean Hamiltonian only in terms of Hermitean currents

~

1> ¢, appear in equation (4.53)

for instance. But the algebra generated by the physical cu
rrents is a complex algebra: it is SL(3, ¢) & sL(3, ¢).

. . ~
and so only the directions c¢

There have been historical arguments for quantum
physicists to avoid non-compact Lie groups for particle mul
tiplets because their finite representations are not unita-

ry. However the isospin currents given to us by Nature T _,
+

We leave as an exercise to write the explicit Hamiltonian

(4.42") and (4.43) only in terms of ¢y and Cyt hint, re-

lace © by its value in (4.42).
P +
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T, T,
=271,

form a real non compact algebra TS/\T = T,, T+,\T =
, namely SL(2, R).

There might be a deep argument for considering the
complexified of the invariance group G in hadronic physics.
Analytic properties are essential and for instance, complexi
fication of the Lorentz group by analytic continuation yields
important results in axiomatic theory (e.g. the CTP theorem).
The introduction of the complexified# G of G in hadronic phy
sics was considered by L. Abellanas (J. Math. Phys., 13,No.7,
1064 (1972)). The adjoint action of semi-simple Lie groups on
their Lie algebra space has beautiful properties. Any finite
dimensional Lie algebra can be faithfully represented by an
algebra of matrices g;. Let fF(for semi-simple) be the set of
diagonalizable matrices and N the set of nilpotent matrices
(i.e.3 k > 0, ok = 0). Then every xegcan be written in a

unique way:

X = s + n, S A D =0, setF, néJ\f (4.58)

Letjz be the set of regular elements of’g? i.e those elements
x whose little group Gx has minimal dimension £ (equal to the
rank of the semi-simple Lie group). In the action of the com

plex semi-simple Lie group G oni?, one finds that:

52,\:€is an open dense stratum in:f: and

52(\J(}s an open dense orbit in aNA

It may be amazing to recall here a general theorem:

G = G x G where G is the complexified of G considered as

real group again.
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For SL(3, ¢), the complement# in j’and,N/of this stratum and
this orbit is respectively one stratum and one orbit that we
shall label as "exceptional". Then y, g, z are in the excep-

tional strata in:e, ¢, are in the exceptional orbit in N .

+

V. THE STRONG BREAKING OF SU(3) x SU(3)

V.1 Critical orbits and idempotent candidates for strong

breaking

We want the breaking of G = (SU(3) x SU(3)) g
a (1, P, C, PC) invariance to be onto a subgroup HC G which
still contains the discrete invariances P, C, PC since they
are preserved by strong interactions, and we want the connec
ted component Ho of H to contain Uy(?)d, the group of isospin
and hypercharge conservation. The connected subgroups of
SU(3) x SU(3) which contain Uy(Q) are (the arrow indicates in

clusion, d is for diagonal)

(We exclude the vector 0, which forms the set ﬂ{q.Nﬁ It is
a stratum, with little group SL(3, ¢).



L4

- 115 -

su(3)d

o ()8 2 v ()3 xu (n?
y y y —_— . _
\ u ()T x u (2)
y y

su () xsu ()" xu (1
y y y

(5.1)

C. Darzens in a paper submitted to Ann. Phys. gives alist of
all critical orbits [G:H], with H_ in (5.1), which appear in

irreducible representations of G.

Some of these results were obtained by B. Renner
and A. Sudberry, Nucl. Phys. B.13, 27 (1969) which tried to
solve a similar physical problem (not phrased however in terms

of critical orbits).

With the usual notation (m, n) for the irreducible
representations of SU(3), the representations of G are either
of the type (n,n), when n = n; (n,n) ® (n,n); (n,m) & (m,n)
when m = m, n = n; and (n, m) ® (m, n) ® (m, n) ® (n, m) in

the general case.
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Critical orbits for

Hy = su(3)d appear only in (n,n) @ (n,n)
H = u(2)" x u(2)” " o (1,8)@ (8,1)
H, = SU(2)+XSU(2)_xU(l)dappear only in (3,3) @ (3,3)
H o= u(2)9 " Mmoo (3,6)@(6,3)9(3,6)@®(6,3)

The vectors of the three first families of orbits are idempo
tents or nilpotents of the unique symmetric algebra one can
form in these representations; there is no such algebra for
the representation of the last line and Darzens excludes it.

Choosing a n-dependent Lagrangian ;f; with the variance
ay & BW_ ., a” + BT =1 (5.2)
WA w1

where y is the unique (up to a sign) unit vector of the
(3,3) ® (3,3) which has H = (SUy(2)+x suy(2)“x Uy(l))

g (1, ¢, P, CP) as little group and\ﬂn is the vector inva-
riant by SU(3)d in the (n,n) ® (n,n), or (n,n) when n = n,
representation. After a fit of the meson mass spectrum Dar-
zens computes for instance the meson-meson scattering
lengths. Of course for low n (values as 3,6,8) the results
are near the S. Weinberg values (Phys. Rev. 146, 1568,(1368).
However it is a nice feature of the Darzen's paper to see the
dependence on n of these physical constants! (they go as n2/3

for large n).
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V.2 Critical orbits of the (3,3) @& (3,3) representation

If one assumes that the strong interaction breaking
is in an irreducible (over the reals) representation, the
(3,3) ® (3,3), proposed by M. Gell-Mann, R.J. Oakes, B. Ren-
ner (Phys. Rev. 175, 2195 (1968)) is the best candidate (see
also the arguments in B. Renner's lectures). Radicati and I
have studied in our paper (Ann. Phys. 66, 759 (1971)) the or
bits of SU(3) x SU(3) in this representation. The (3,3) re-
presentation space can be realized as the 9 dimensional com-
plex space of the 3 x 3 complex matrices‘i, on which the

SU(3) x SU(3) action is defined by

(u1, u2) € suU(3) x suU(3), X > u % u, (5.3)
This action preserves the Hermitean scalar product:
1 %
<k, y> = Z tr x"y (5.4)

18,
This space considered as 18-dimensional real space R~ is that
of the (3,3) ® (3,3) representation; it is an orthogonal re-
presentation which leaves invariant the £Euclidean scalar pro

duct:

(x, y) = Re <x, y> = % tr (x%y + y¥x) (5.5)

VA

Gell-Mann has defined an orthonormal basis, generally used in

the literature: uo, Ujseees Ugs Vos Vystees Vg- The group ac

tion leaves also invariant a symplectic (= antisymmetric) bi
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linear form A in R18 defined by:

(x, Ay) = Im <x, y> = = ﬁ%-tr (x* —’y“ ) (5.6)

B R A

By the action (5.3) it is possible to diagonalize the matrix

x such that the (diagonal) matrix elements a, B, Y el¢ satis
fy:
a 2 B 2y 20 (5.7)
Note that two invariants of the action are
i 1
det x = aeyel¢, (x, x) = 5 (a2 + 82 + y2) (5.8)

The orbit space of the action of SU(3) x SU(3) on
Syq F {(x, x) = 1} is a cone (Fig. 3) cut by a plane L1 to
the axis, in a 3 dimensio

nal space.

For this action of SU(3)x
x SU(3), the four strata
are represented by: The in
side of the cone for the
generic stratum, (little
group? (U(1) x U(1))d),

open dense.

We recall that the little groups are defined up to a con-

jugation.
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The surface of the cone minus the vertex A and the
circle; i.e. the two disconnected pieces: lateral side and

bottom. Little group U(Q)d.

The circle of the base represents a closed stratum
of one parameter (¢) family of orbits; the little group is
SU(3)d (it is maximal). The vertex of the cone is a stratum
of one orbit (which is therefore critical); little group
su(2)t x su(2)” x U(1)d which is also a maximal subgroup in
the lattice of little groups of this action

su(2)" xsu(2) xu(1)d

g

(u(1) x u(1NY —s u(d (5.9)

N

su(3)d

Exercise: Must all SU(3) x SU(3) invariant vector fields on

817 have zeros?. (Solution at the end of this section).

The problem we have to solve is that of the action
of the full group G = (SU(3)" x 8U(3)7)g (Z,(P) x 2,(C)). We
have solved it for the connected subgroup GO which is an in-
variant subgroup. The following general theorem is easy to

prove and useful:

Theorem: The quotient group G/GO acts on the orbit space M/GO
and the diagram 2 of canonical maps on orbit spaces is commu

tative, so

M/G = (M/G_)/(G/G ) (5.10)
o o



o

- 120 -

M
™
™
o
™ t
M/G - (M/6_)/(6/G,)
Diagram 2
C acts trivially on uO s Ugo Vg s Vg i.e. C acts tri-

vially on the physical space R 8 we consider, and the ac-

tions of P and CP are identical. The u's (v's) are eigenvec
tors of P or CP for the eigenvalues + 1 (-1)#. On the orbit
space of Fig. 3, this represents the symmetry through the
plane of azimuth ¢ = 0 (or 7). Therefore only orbits whose
representative points are in the triangle ABC have a little
group containing P, CPand C. There are seven strata.Two are
closed; one contains one orbit (represented by A) which is
critical, with 1little group SUy(2)+ X SUy(2)~ X Uy(l)d a

o (1, P, CP, C), where y is an arbitrary pseudo-root of the
octet. The other closed stratum contains two orbits, which
are therefore critical. These are represented by the points

Band C (¢ = 0, ¢ = m) with little group SU(3)da(1,P,CP,C).

In Michel and Radicati quoted above, C and CP have been
mistakenly exchanged; this error does not change the 1lit-
tle groups of critical orbits and the conclusions of the

paper.



t
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Solution of the exercise

Gradient fields must have a zero on the critical or
bit represented by the point A of the orbit space. The little
group of this critical orbit is H = SUy(2)+ X SUy(2)—ny(1)d
where y is an arbitrary pseudoroot of the octet. The orbit is
[SU(S) x-8u(3): H], it has dimension 16 - 7 = 9, Since it is
odd dimensional and compact, its Euler-Poincaré characteris-
tics is zero. So it is possible to have on the orbit a non va
nishing vector field. Is it possible to have it SU(3) x SU(3)
invariant?. Yes, because the normalizer of H in SU(3) x SU(3)
is U(2)T x U(2)” which has a dimension larger than H by one
unit and which is connected. There is therefore no obstruction
to the construction of a SU(3) x SU(3) invariant vector field

on § We can realize one such vector field with the antisym

metriz bilinear form A defined in equation (5.6):it is simply
Ax = ix. Indeed the vector Ax at ﬁ’is in the tangent plane to
the unit sphere since (33 Aﬁ) = 0 and AX is always different
from zero when E,# 0; the invariance of A by the linear action
of the SU(3)" x SU(8)” in the space R'8 of the (3,3) ® (3,3)
representation insures that the vector field Ax omn 8,4 is

SU(3) x SU(3) invariant and has no zero.

V.3 The idempotents and nilpotents of the (3,3)(9 (5,3) repre-

sentation

For more details we refer to Michel and Radicati,al
ready quoted in V.2 and also: Evolution of Particle Physics
(E. Amaldi Festschrift) p. 191, Academic Press, New York(1970)
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The (3,3) & (3,3) representation of SU(3) x SU(3)
appears only once in its (symmetrical) tensor product. As we
have seen in IV.1, this defines, up to a normalization fac-
tor, a symmetrical algebra on R18, the vector space carrying
the (3,3) @ (3,3) representation, and this algebra has
SU(3) x SU(3) as group of automorphisms. We have denoted in
our paper the algebra law by the symbol + . With the reali-

. 18 . .
zation of R by 3 x 3 complex matrices, the law =+ 1is:
1 & % EO S B & % %
X vy 7 5 I(tr x“tr y* - tr x"y") - x"tr y© - y“"tr X +
A peovll A A O A W A WAL
+ ox®y® o4y (5.11)
Vo WAL Al WA

We leave to the reader who prefers to use basis the pleasure
to write in a full page all equations defining the structure

constants!

Specific equations of this algebra are:

-1

if det x # 0, x ¢ ox = (x)77 det x* (5.12)
— 1
(iTE)T(iT.’i) = x det x (5.12")

Note that (5.12) is defined only on the open dense set of in
versible matrices, but as an algebraic relation this defi-
nes it everywhere (and (Eﬁfﬁ)ff = I det fﬁ is everywhere de
fined). Equation (5.12') shows that for some fourth power,

every element is idempotent.
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One finds for unit vectors one orbit of nilpotents

y = 0 (5.13)

Yy 1 Y.
represented by A in the orbit space (Fig. 3) and two orbits

of idempotents

L A R (5.131)

which are represented respectively by C and B in Fig. 3.

We remark that this representation (3,3) @& (3,3)
can be extended to G = (SU(3) x SU(3)) g (1,P,PC,C) where C
is represented trivially and the algebra + has still G as
group of automorphisms. So elements in G-critical orbits of
817 are idempotents or nilpotents of the linear representa-

tion, and conversely.

V.4 Is the direction of strong breaking an idempotent?.

As we have seen in V.1, if we choose the direction
of strong breaking in a real reducible representation of G
(e.g. ay & Bﬂné (3,3) ®(3,3) ® (8,8)) it is an idempotent.
However if we stay only inside the (3,3)&@& (3,3) it is not.
)H, with H = Uy(?)d g (1,C,CP,P)

Consider the closed set (817

(see II1.2 for the definition of MH). It is a one dimensional
submanifold of 817
of P,C,CP, is mapped in the orbit space on the triangle ABC

(of Fig. 3). In the realization of g18 by 3 x 3 matrices, it

which, with the usual definition of phases

is the set of real, diagonal matrices d satisfying
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1 2
— tr 47 = 1 (5.14)
2 —

e

0
B 2 _ 2
( 0 ‘/E), n_ = -1 '/; » D= I\/g- (5.15)

has been specially

This one parameter family of vectors &€ R
studied by Kuo, and by Okubo and Mathur in several papers.In

the u., v. basis
1 J

L (u - V2 u_,), n. = u (5.16)
(o] 8 >t (@]

y =

and, according to Gell-Mann, Oakes and Renner already quoted,

the direction of breaking is along the vector

(5.17)

m v u - 1.25 u
e} 8

i.e. nearer to SU(2) xSU(2)x

which is nearer to y than to n
WA WA

x U(1) breaking than to SU(3) breaking.

More generally, we defined a vector B: orthogonal

to‘zvln the plane Yo 3*,i.e.

1
- n' = 4& (V3n, -y), i.e. n' = ( 1 )
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(n' is 0 in Fig. 3) and m is fixed by the angle w

AA

=y cos w + n' sin w (5.19)
Nanad

m
M e

so that the direction u, t+ cug corresponds to the angle

‘tg w = __‘{2__+.__C:‘__ (5.20)
1 - V2 ¢
and ¢ = - 1.25 corresponds to tg w = .058. To summarize:
c = - /—2_ ¢=$ m =y ;:} tg w = 0
c = - 1.25 = tg w = .058 (5.21)

c = 0 = m = n é::—_—_?tgm:\/—é—

F. Pegoraro and S. Subba Rao in a preprint: "Effect of weak
interactions on the breaking of hadronic internal symmetry",

to appear in Nucl. Phys., assume that

m = x(u + cu. + du,) (5.22)
VS e} 8 3

and impose that in the (unique) symmetric (complex) G-inva-

riant algebra on the space of the

((3,3)® (3,3))@® (1,8) (5.23)

m @<, (5.23"

must be nilpotent.
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They find four families of solutions. The physically interes
ting one yields

d = - 12—1—9 i.e. - 12;1_2 u3) (5.24)

m = x(u + cug
/3 - © /3

which was already proposed by Oakes somewhat more arbitrarily
but seems to fit better the data than m of equation (5.17).
(R.J. Oakes, Phys. Let. 29B, 683 (1969) and 30B, 262 (1969).

More generally we can ask the question of the:

V.5 Relation between strong and weak breaking

This subject is quite open and you will hear more
about it in N. Cabibbo's lectures. I do not believe that the
re is a "cheap", geometrical way to compute the Cabibbo angle
6. But one can hope that 6 is not a fundamental constant of
physics and that it can be obtained through some computation;
or at least, be related to some other variables. For ins-
tance, which G-invariant relations there can be between the
direction of weak breaking, defined by 6, and that of strong

breaking defined by w in the previous section.

We just give here the remarks made with Radicati
(quoted paper). If Y +~ L(3) is the representationof the Lie
algebra of G on R18, the space of the (3,3)® (3,3), the lo-
west degree algebraic invariants one can form with Z and m

are:

~
(m, L(z)m) = 0 (5.25)
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(m, AL(Z)m) = - :/—1' (1 - 3 sin® 0)(1 - 3 sinw)=£(8,u)(5.25")
as Kaad 3
(L(Dm, L(m) = —— (V3 - £(8, w)) (5.25m)
@ w 2V3

Note that the invariants with odd power in m vanish.
e

We leave to the reader the search for more inva-
riants. Most of them are symmetrical functions of 6 and w.
For such invariants, whatever the fashion they will enter in
a physical problem, they will have solutions 6 =w (there may
have also broken symmetric solutions). This does not corres-

pond to the actual values:

tg 6 = 0.25, tg w = .058 (5.26)

It is surely useful to look at all invariants built with all
unit vectors of the directions of breaking (EQ‘E,'Z+) inclu-
ding the possible values of m. But it is not enough to do phy

sics.

To know that the directions of breaking possess so
many beautiful mathematical properties and are very exceptio
nal directions in their space is fascinating. It is also a
physicist's work to find regularity in Nature as we did.Exam
ples of such a useful work was Balmer's discovery of the
(1/n2) - (1/m2) law for the hydrogen spectral lines,although
Balmer could have no idea how the inverse of the square of in

tegers would enter in physics.
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It also seems that Niels Bohr did not know Balmer's

law when he made his first hydrogen atom model!.

V.6 Relations between critical orbits on the unit sphere and

idempotents or nilpotents of symmetrical algebra for the

orthogonal actions of compact Lie groups

As Mr. Jourdain was doing prose, physicists found
critical orbits and idempotents without knowing their existen
ce. Now that they are conscious of these concepts and want to
use them they naturally ask me the relations existing between
them. They are not simple. Consider the four statements con-
cerning the orthogonal action of a compact Lie group for a

unit length vector m:

a) The little group G is maximal in the (finite)set of
little groups (up to a conjugation) which appear in

the action.
b) The stratum S(m) of the unit sphere is closed.
c) The orbit G(m) of the unit sphere is critical.

d) m is idempotent or nilpotent of the symmetric algebra.

From the examples we gave,we have seen the following non im-

plications

c == d: indeed it is the case for the root orbit of ex
III.1.e: Action of Aut SU(3) on S,, R(the "equa
tor") is a critical orbit but its vectors r sa
tisfy equation (4.19), so they are not idempo-

tent or nilpoutent.
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d =F c: indeed for ¢ = 0 or m on the closed stratum of

the SU(3) x SU(3) action on the unit sphere %j
of the (3,3) @ (3,3) representation (see Fig.3)
the vectors m , m_ of equation 5.13' and 5.15
are idempotent but their orbits are not criti
cal for the action of the connected group

SU(3) x sU(3).

These two examples also show that

a =—F ¢ and
=

We have proven (beginning of III.2) a = b.Could
we prove with slightly stronger assumption (a and c) = d4°?

The G-invariance of the symmetric algebra =3

=> G D G : it might be that xe¢x = 0; if not, and if G

Xy X X X

is maximal GX L GX and xyx, X are on the same stratum. If
T

this stratum has a unique orbit (stronger hypothesis c¢) then

x¢4x and x are on the same orbit. Hence x+x = h.x with

h e T(G(GX). Hence the

Theorem: Given an orthogonal action of G which possesses a

symmetrical algebra ¢+ , if there is a stratum on the unit
sphere with a single orbit [G:H] and if HE(H) = H, the vec-
tors of this orbit are idempotents or nilpotents: X¢x = AX

(X may be zero).
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Of course the elements of a critical orbit might
be idempotent even if the orbit is not single and ]té(ﬁ) is

strictly larger than H.

Conversely let p = (x¢x, x). Any function of u has
extrema on the unit sphere where x is idempotent.Indeed, with

the Lagrage multiplier X, such extrema are obtained for

grad (f - x((x, x) - 1)) = 0 (5.27)
i.e.
af )
3 d_{,l_ XX - 2 Ax = O (5.28)

This does not imply that the idempotents are on a critical
orbit because the functions of p may not be the most gene-
ral G-invariant function on the unit sphere (they are so for

the SU(3) invariant functions on 87).

To conclude, the relations between idempotents and
critical orbits are not very direct, but both seem to play

an important role in symmetry breaking.
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